
Project 4 : Grammar Inference

March 16, 2017

1 Grammar Inference

Implement a grammar learner that, using the techniques presented in the lecture, is able to lean grammars
from python programs that use pyparsing to parse inputs. For each subject your implementation must
be able to learn a grammar by observing and analyzing executions with a set of sample inputs. The
grammar must be saved as a file in the format specified by the grammar subject. For observing the
executions you can use the sys.settrace() function as shown in the lecture. You can assume that all
given sample inputs are valid and will not result in a ParseException.

In order to invoke the subject from your fuzzer and measure its coverage, we now recommend loading the
subject module dynamically from file and calling its main(filename) method directly from your code:

import importlib.util as iu
import sys

load the subject module
spec = iu.spec_from_file_location("arithmeticExpr.arithmetic",

"arithmeticExpr/arithmetic.py")
subj = iu.module_from_spec(spec)
initialize the subject
spec.loader.exec_module(subj)

now you can execute the subject by calling its main method
subj.main(’path/to/your/generated/input.sample’)

Notes on Grammar Inference:

As demonstrated in the lecture the easiest way to observe the decomposition of inputs by a pyparsing
parser is to observe the call hierarchy and return values of relevant functions. Since the parsing functionality
is implemented in individual parseImpl functions that are provided by all subclasses of ParseElement
we are able to derive a parse tree by fucussing dynamic analysis on these invocations. The nodes in
the derived trees correspond to productions in the learned grammar and they are directly related to
individual ParseElement instances. Since pyparsing implements a strategy that uses backtracking you
also need to track exceptions that are thrown by the observed functions in order to be able to accurately
discard a partial parse tree that corresponds to a failed parsing attempt for a input fragment.

After deriving parse trees for all sample inputs you can derive the nonterminal symbols of the grammar
by identifying the unique ParseElement instances corresponding to nodes in the parse trees. The start
symbol can be derived by identifying the unique ParseElement instance of all root nodes. The unique
ParseElement instances of a node N and its children imply a production rule where the nonterminal
symbol corresponding to N can be substituted by a sequence of the symbols corresponding to its children.
More general and precise rules can be inferred when considering the class of the ParseElement instances.

Notes on nonterminal names:

In order to derive more meaningful names for nonterminal symbols you can exploit that all our subjects
compose the grammar rules in a function BNF(). By looking at the frame when this function returns, you
can check if a ParseElement instance is stored in a local variable and therefore the name of the variable
might be useful as a descriptive nonterminal name.

1

2 Implementation

The subjects for the course projects are hosted as a public project on our Gitlab https://securitytesting.
cispa.saarland/kampmann/subjects. Please make sure to pull the most recent revision of the subjects
from the project (especially since we added the sample inputs). Each subject resides in a top level directory
and you can invoke it using:

python <subject>/<module> <inputfile>

Depending on your setup you might need to substitute python for python3 if your system uses Python
2.x by default. The subjects will terminate with a non-zero exit code in case of an error. Addition-
ally to the public subjects we will also evaluate your implementation on two secret subjects and on
variants of the public subjects. Your implementation is expected to be accessible as a python module
grammarinference.py in the root directory of your project repository. The fuzzer is supposed to be
invokable as:

python grammarinference.py -s <sample-dir>
-p <path-to-subject> -m <name-of-subject-module>

The m and p parameters are intended to be passed to the spec_from_file_location function. The s
parameter is the path to the sample directory that contains the samples as individual files ending with
.sample.

The produced grammar should be written to the working directory as result.grammar.

In order to evaluate your implementation we will run the grammar inference on each subject (including
the secret subjects) with the provided sample set and a different representative sample set of our choice.
We will use a grammar based fuzzer to generate inputs from the grammars learned by your tool and
measure the grammar coverage the inputs produce on the original grammar.

2

https://securitytesting.cispa.saarland/kampmann/subjects
https://securitytesting.cispa.saarland/kampmann/subjects

	Grammar Inference
	Implementation

