
Project 1 : Simple Fuzzer

March 7, 2017

The subjects for the course projects are hosted as a public project on our Gitlab https://securitytesting.

cispa.saarland/kampmann/subjects. Each subject resides in a top level directory and you can invoke
them using:

python <subjec t >/<module> < i n p u t f i l e >

Depending on your setup you might need to substitute python for python3 if your system uses Python
2.x by default. The subjects will terminate with a non-zero exit code in case of an error. Additionally
to the public subjects we will also evaluate your implementation on two secret subjects and on variants
of the public subjects that contain additional bugs. Your implementation is expected to be accessible
as a python module simplefuzzer.py in the root directory of your project repository. The fuzzer is
supposed to be invokable as:

python s i m p l e f u z z e r . py −s <seed> −t <timeout> −p <path−to−subjec t−module>

The produced failure inducing samples should be written to the working directory using ∗.sample as
file ending.

In order to evaluate your implementation we will use 5 seeds provided by you in a text file seeds.txt

stored in the root directory of your project repository containing one seed per line. Additionally to
the seeds provided by you, we will choose 5 additional random seeds. For each seed we will run your
implementation with a timeout of 5 minutes (the timeout is given as seconds).

1 Part 1: Fuzzing

Implement a simple fuzzer using the techniques demonstrated in the first lecture. The fuzzer is supposed
to be initialized by the provided random seed to make executions deterministic. We consider all inputs
that result in a non-zero exit code of the subject and do not raise a ParseException as failure induc-
ing. In order to invoke the subject from your fuzzer, we recommend the use of the subprocess module
https://docs.python.org/3/library/subprocess.html. Your implementation is expected to write
all generated failure inducing inputs into the working directory using *.sample as file ending. You are
allowed to create temporary directories for generated samples in order to use them as inputs for the
provided subject. At the end of the execution these temporary directories and inputs that are not failure
inducing are expected to be deleted. The fuzzer will be graded based on the number of unique exceptions
that are triggered in each subject.

2 Part 2: Delta Debugging

The second part of this project is the minimization of inputs using delta debugging. Implement and
apply the delta debugging algorithm to all failure inducing inputs in order to provide a minimal input
that triggers the same exception. The minimization is not invoked as a separate tool. After finding
failure inducing inputs during fuzzing your implementation is supposed to minimize them immediately.
You are allowed to create temporary directories in the working directory for intermediate inputs that are
generated by the delta debugging algorithm but these directories and temporary files have to be deleted
at the end of the execution. The minimization will be graded by comparing the size of your minimized
inputs to the size of a minimization produced by our reference implementation.

1

https://securitytesting.cispa.saarland/kampmann/subjects
https://securitytesting.cispa.saarland/kampmann/subjects
https://docs.python.org/3/library/subprocess.html

	Part 1: Fuzzing
	Part 2: Delta Debugging

