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The Menu

• What is a Random Number?

• Cracking Random Number Generators

• Entropy/Workload estimation

• rand(3) and Netscape’s Old Generator
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Introduction

This is the first part of a two-part lecture on randomness in
security.
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security.
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Next part: A sampling of generators.
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Introduction

This is the first part of a two-part lecture on randomness in
security.

This part: Basics, simple generators, breaking generators.

Next part: A sampling of generators.
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What is a Random Number?
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What is a Random Number?

Is 2 a random number?
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Is 2 a random number?

We talk about a sequence of numbers as being random

Okay, a sequence of random numbers begins 132, 521, 254. Is
132 a random number?



3/49

�

�

�

�

�

�

	

What is a Random Number?

Is 2 a random number?

We talk about a sequence of numbers as being random

Okay, a sequence of random numbers begins 132, 521, 254. Is
132 a random number?
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What is a Random Number?

Is 2 a random number?

We talk about a sequence of numbers as being random

Okay, a sequence of random numbers begins 132, 521, 254. Is
132 a random number?

A sequence of random numbers begins 132, 132, 132. Is 132 a
random number?

Briefly, a sequence is random if you can’t predict the (n+ 1)-st
element of the sequence even if you know the first n elements
of the sequence.
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Applications for Random Numbers

• Session keys for encrypted data exchange

• One-time passwords

• Random passwords

• HTTP cookies

• Cryptographic tokens and nonces

• TCP initial sequence numbers
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Predictiable “Random” Numbers

• Session key compromised =⇒ conversation readable

• One-time password guessable =⇒ bank account plundered

• HTTP cookie guessable =⇒ identity stolen

• Cryptographic token guessed =⇒ protocol broken

• TCP ISN guessed =⇒ connection hijacked



6/49

�

�

�

�

�

�

	

The C Library’s rand(3)

#include <stdio.h> /* For printf(3) */
#include <stdlib.h> /* For srand(3) and rand(3) */

int main(int argc, const char* argv[ ]) {
unsigned int seed = atoi(argv[1]);
int i;

srand(seed);
for (i = 0; i < 10; i++)

printf ("%u\n", rand()); 10

return 0;
}
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Looks Random, Doesn’t It?

Results of calling the program with 1074781755,
1074781757, and 1074781758:

Run 1 Run 2 Run 3
706062696 1167387154 1949615244
388317246 16703281 1986396061

1795625833 2027155102 538593506
1641240349 1937794218 492684994
1013505830 731325747 600732415
1048427458 929979607 1414558367
1562911947 2034902343 680342290

836469238 1030204849 1677570512
1567615431 740744080 1408795345

84389751 443114406 1719419442
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Predicting rand(3)

If we know the seed, we can predict the entire sequence.
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Predicting rand(3)

If we know the seed, we can predict the entire sequence.

If we know that the seeds is actually the number of seconds
since Jan 1, 1970 at the time the program was run, the
sequence becomes guessable:
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Predicting rand(3)

If we know the seed, we can predict the entire sequence.

If we know that the seeds is actually the number of seconds
since Jan 1, 1970 at the time the program was run, the
sequence becomes guessable:

We guess that the sequence was generated some time after
November 2003.

A non-leap year has about 365 · 24 · 3600 = 31536000
seconds. (We’re not counting leap seconds.)

From 1970 to 2003, there were eight leap years with
366 · 24 · 3600 = 31622400 seconds.

From January 1, 2003 to October 2003 are
365− 31− 30 = 304 days, or 26265600 seconds.
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Breaking rand(3) With TOD Seed (1)

We start seeding the generator with November 1, 2003, which
is approximately
(2003− 1970− 8) · 31622400+ 8 · 31622400+ 26265600 =
1069804800 and generate the first few numbers.

If they match the sequence that we already know, we stop.
Otherwise, we increment the seed and start again.

How long will that take?
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We start seeding the generator with November 1, 2003, which
is approximately
(2003− 1970− 8) · 31622400+ 8 · 31622400+ 26265600 =
1069804800 and generate the first few numbers.

If they match the sequence that we already know, we stop.
Otherwise, we increment the seed and start again.

How long will that take?

On a 2.6 GHz P4, it takes about
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Breaking rand(3) With TOD Seed (1)

We start seeding the generator with November 1, 2003, which
is approximately
(2003− 1970− 8) · 31622400+ 8 · 31622400+ 26265600 =
1069804800 and generate the first few numbers.

If they match the sequence that we already know, we stop.
Otherwise, we increment the seed and start again.

How long will that take?

On a 2.6 GHz P4, it takes about 30 seconds
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Breaking rand(3) With TOD Seed (2)
#include <stdio.h>
#include <stdlib.h>

static const unsigned int sequence[ ] = {
706062696, 388317246, 1795625833, 1641240349, 1013505830,

1048427458, 1562911947, 836469238, 1567615431, 84389751,
};
int main() {

unsigned int seed = 1069804800;
int success = 0; 10

int tries = −1;

while (!success && tries < 10000000) {
int i;

tries++;
srand(seed + tries);
for (i = 0; i < sizeof(sequence)/sizeof(sequence[0]); i++) {

if (rand() != sequence[i])
break; 20

}
success = i == sizeof(sequence)/sizeof(sequence[0]);

}
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if (success)
printf("Seed is %u\n", seed + tries);

else
printf("No success\n");

return 0;
} 30
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The Reason: Not Enough Entropy

“Entropy” is often used by cryptographers.
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The Reason: Not Enough Entropy

“Entropy” is often used by cryptographers.

Generally means the amount of “true randomness” in a
sequence.

A sequence of n-bit numbers that consists of only one number
has no entropy.
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The Reason: Not Enough Entropy

“Entropy” is often used by cryptographers.

Generally means the amount of “true randomness” in a
sequence.

A sequence of n-bit numbers that consists of only one number
has no entropy.

A sequence of n-bit numbers that contains all n-bit numbers
in a non-periodic, unforseeable sequence has maximum
entropy (n bits per element).
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Netscape’s Old SSL Session Key Generator

#include <sys/time.h>
#include <sys/types.h>
#include <unistd.h>
#include <stdlib.h>

typedef unsigned char uint128[16]; /* A 128-bit value */

uint128 make key() {
struct timeval now;
unsigned long a, b; 10

uint128 seed, nonce, key;

gettimeofday (&now, NULL); /* Local time since Jan 1, 1970 */
a = mixbits (now.tv usec);
b = mixbits (getpid() + now.tv sec + (getppid() << 12));
seed = MD5 (a, b); /* C++ Warning! Compute MD5 of concat of a and b */
nonce = MD5 (seed++); /* C++ warning! */
key = MD5 (seed++); /* C++ warning! */

return key; 20

}
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How to Crack Old Netscape SSL Data

A snooper records an SSL-encrypted data exchange between a
Netscape browser and a Web server and immediately sets
about breaking it.

The general strategy is to try to decrypt the traffic with a
guessed key (brute-force).

If the correct key was guessed, the output will be a stream of
7-bit ASCII characters containing lots of known plaintext.
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If the correct key was guessed, the output will be a stream of
7-bit ASCII characters containing lots of known plaintext.

This strategy is independent of the quality of the cipher.
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A snooper records an SSL-encrypted data exchange between a
Netscape browser and a Web server and immediately sets
about breaking it.

The general strategy is to try to decrypt the traffic with a
guessed key (brute-force).

If the correct key was guessed, the output will be a stream of
7-bit ASCII characters containing lots of known plaintext.

This strategy is independent of the quality of the cipher.

If we know the seed, we know the key and the nonce.
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How to Crack Old Netscape SSL Data

A snooper records an SSL-encrypted data exchange between a
Netscape browser and a Web server and immediately sets
about breaking it.

The general strategy is to try to decrypt the traffic with a
guessed key (brute-force).

If the correct key was guessed, the output will be a stream of
7-bit ASCII characters containing lots of known plaintext.

This strategy is independent of the quality of the cipher.

If we know the seed, we know the key and the nonce.

How can we guess the seed?
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Entropy Estimation For A Snooper

struct timeval contains seconds and microseconds
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Entropy Estimation For A Snooper

struct timeval contains seconds and microseconds

Seconds since Jan 1, 1970 trivial to estimate for snooper
(looks at watch; sometimes, exchanged cleartext messages
have local time of day!). Estimate skew of at most half a
minute: at most 5 bits unknown.
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struct timeval contains seconds and microseconds

Seconds since Jan 1, 1970 trivial to estimate for snooper
(looks at watch; sometimes, exchanged cleartext messages
have local time of day!). Estimate skew of at most half a
minute: at most 5 bits unknown.

“Microseconds” usually aren’t: clock resolution at millisecond
level: 10 bits max.
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Entropy Estimation For A Snooper

struct timeval contains seconds and microseconds

Seconds since Jan 1, 1970 trivial to estimate for snooper
(looks at watch; sometimes, exchanged cleartext messages
have local time of day!). Estimate skew of at most half a
minute: at most 5 bits unknown.

“Microseconds” usually aren’t: clock resolution at millisecond
level: 10 bits max.

Process ID and parent process ID are 16-bit numbers. Assume
maximum entropy: 32 bits.



15/49

�

�

�

�

�

�

	

Entropy Estimation For A Snooper

struct timeval contains seconds and microseconds

Seconds since Jan 1, 1970 trivial to estimate for snooper
(looks at watch; sometimes, exchanged cleartext messages
have local time of day!). Estimate skew of at most half a
minute: at most 5 bits unknown.

“Microseconds” usually aren’t: clock resolution at millisecond
level: 10 bits max.

Process ID and parent process ID are 16-bit numbers. Assume
maximum entropy: 32 bits.

Total entropy (= size of search space): 47 bits; average number
of keys to try if all are equally likely: 246. (This number is also
known as the cryptographic work factor.)
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Average Crack Time

Average time to find key in theory (at 100,000,000 tests per
second) 246/108 ≈ 246/226 = 220 seconds, or about two weeks.
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Average time to find key in practice in 1995
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second) 246/108 ≈ 246/226 = 220 seconds, or about two weeks.

Average time to find key in practice in 1995 about one minute!
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Average Crack Time

Average time to find key in theory (at 100,000,000 tests per
second) 246/108 ≈ 246/226 = 220 seconds, or about two weeks.

Average time to find key in practice in 1995 about one minute!

The keys are not equally distributed in the search space: start
with the more probable values first, hit the key earlier.

• start with the current time and work backwards;

• start with process ID in the low 1000s;

• and keep the parent process ID less than the process ID.
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Ballpark Estimates

These are just back-of-the-envelope calculations that are
merely used to give a “ballpark figure”, a rough estimate. We
also say “The amount of work needed to find the key by
brute-force is on the order of a few weeks”.
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These are just back-of-the-envelope calculations that are
merely used to give a “ballpark figure”, a rough estimate. We
also say “The amount of work needed to find the key by
brute-force is on the order of a few weeks”.

Obviously, “a few weeks” is better than “a few seconds”



17/49

�

�

�

�

�

�

	

Ballpark Estimates

These are just back-of-the-envelope calculations that are
merely used to give a “ballpark figure”, a rough estimate. We
also say “The amount of work needed to find the key by
brute-force is on the order of a few weeks”.

Obviously, “a few weeks” is better than “a few seconds”, but in
“a few years”, “a few weeks” will just be “a few seconds”!
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Ballpark Estimates

These are just back-of-the-envelope calculations that are
merely used to give a “ballpark figure”, a rough estimate. We
also say “The amount of work needed to find the key by
brute-force is on the order of a few weeks”.

Obviously, “a few weeks” is better than “a few seconds”, but in
“a few years”, “a few weeks” will just be “a few seconds”!

So, to be safe, you should aim for “a few times the age of the
universe”, or “a few times the number of electrons in the
universe”.
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X Windows Security—Not!

An X server can authenticate an X client if the client and the
server share a secret.

The most common method is called MIT-MAGIC-COOKIE-1 and
works by the server generating a random number that the
client presents to the server for authentication.

If the wrong cookie is presented, the authentication fails and
the client cannot connect to the server.

No matter that communication between client and server is not
encrypted, if I can guess the cookie, I can connect to the
server, despite “security”.

Here is some actual old code that generates the secret key:
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X Windows Security—Not!

An X server can authenticate an X client if the client and the
server share a secret.

The most common method is called MIT-MAGIC-COOKIE-1 and
works by the server generating a random number that the
client presents to the server for authentication.

If the wrong cookie is presented, the authentication fails and
the client cannot connect to the server.

No matter that communication between client and server is not
encrypted, if I can guess the cookie, I can connect to the
server, despite “security”.

Here is some actual old code that generates the secret key:

key = rand() % 256;
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Kerberos V4
#include <stdlib.h> /* For random(3) and srandom(3) */
#include <unistd.h> /* For gethostid(2) */

static long counter = 1;

long session key() {
srandom (time.tv usec ˆ time.tv sec ˆ getpid()

ˆ gethostid() ˆ counter++);
return random();
} 10
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Netscape-Style Entropy

That’s even worse than Netscape, because there is no mixing
function involved! (The high-order bits will change much less
quickly than the low-order bits.)

You can estimate fairly well the value of counter from the
number of times the routine is called and the machine’s
uptime. Let’s say 10 unknown bits.

The gethostid() is tied to the machine’s IP address, plus
some other easily guessed stuff: perhaps 10 more bits.

The tv_sec member has 5 unknown bits, the tv_usec 10
more, getpid() has 16.

Total entropy with a proper mixing function would be about
51 bits, which is small enough.
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No Mixing Function

The lower 16 bits from counter overlap with getpid(), so
they don’t add to the entropy. The upper 16 bits are easily
guessed, giving perhaps 10 bits.

If the lower 16 bits are occupied by getpid(), only the upper
16 bits of the other variables are relevant.

16 random bits

32 random bitsxor

32 random bits
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It’s Worse Than Netscape!

The tv_usec value will increment in amounts of 1000 (using
millisecond resolution), or 210. That means that only values
larger than 26 milliseconds will be above the 16 bits, reducing
the 10 bits of entropy to 4.

The tv_sec value is essentially known; counter gives 10 bits,
gethostid() is easily guessed, giving perhaps also 10 bits.
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It’s Worse Than Netscape!

The tv_usec value will increment in amounts of 1000 (using
millisecond resolution), or 210. That means that only values
larger than 26 milliseconds will be above the 16 bits, reducing
the 10 bits of entropy to 4.

The tv_sec value is essentially known; counter gives 10 bits,
gethostid() is easily guessed, giving perhaps also 10 bits.

Total entropy: 24 bits.
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It’s Still Worse Than Netscape!

But the worst thing is. . .
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It’s Still Worse Than Netscape!

But the worst thing is. . . even with a proper mixing function. . .
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It’s Still Worse Than Netscape!

But the worst thing is. . . even with a proper mixing function. . .

The return value from session_key() is only 32 bits!
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What To Do: Proper Mixing

#include <openssl/md5.h>

static void
digest mix(unsigned char *digest, int random1, int random2) {

MD5 CTX md5;
unsigned char buf[sizeof(int)];
int i;

MD5 Init(&md5);
for (i = 0; i < sizeof(int); i++) { 10

buf[i] = random1 & 0xff;
random1 = random1 >> 8;

}
MD5 Update(&md5, buf, sizeof(buf));
for (i = 0; i < sizeof(int); i++) {

buf[i] = random2 & 0xff;
random2 = random2 >> 8;

}
MD5 Update(&md5, buf, sizeof(buf));
MD5 Final(digest, &md5); 20

}
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Why a Good Mixing Function is Better

Digesting 123 (7b) and 65373 (ff5d), extended to 128 bits

• by xor: 26ff0000000000000000000000000000

• with MD5: b5d8e7d2861101a0ae3dfb8520a94e7b

Digesting 124 (7c) and 65374 (ff5e), extended to 128 bits

• by xor: 22ff0000000000000000000000000000 (difference
is 1 bit, or 0.78%)

• with MD5: 61708b24b3b2d62d5c136779a234adc2
(difference is 71 bits, or 55.47%)
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Algorithmic Attacks: LCPRNGs

This acronym stands for Linear Congruential Pseudo-Random
Number Generators.
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Algorithmic Attacks: LCPRNGs

This acronym stands for Linear Congruential Pseudo-Random
Number Generators.

Choose integers 0 <m, 2 ≤ a < m, and 0 ≤ c < m. Choose
0 ≤ X0 <m arbitrarily. Then the “random” sequence is
Xn+1 = (aXn + c) mod m.

Example: m = 31, a = 9, c = 12, X0 = 1.

n aXn aXn + c Xn+1

1 9 21 21
2 189 201 15
3 135 147 23
4 207 219 2

This sequence is periodic and the period is at most m (why).
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More on LCPRNGs

Obviously, we want the period to be maximal. This can trivially
be achieved with a = 1 and c = 1, but the resulting sequence
is not very random-looking (why?) (That’s the reason for
stipulating a ≥ 2 on the previous slide)
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More on LCPRNGs

Obviously, we want the period to be maximal. This can trivially
be achieved with a = 1 and c = 1, but the resulting sequence
is not very random-looking (why?) (That’s the reason for
stipulating a ≥ 2 on the previous slide)

There is a large body of well-researched theory about
LCPRNGs, how to choose a, c, and m so that random-lloking
sequences emerge that pass a number of statistical tests.
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More on LCPRNGs

Obviously, we want the period to be maximal. This can trivially
be achieved with a = 1 and c = 1, but the resulting sequence
is not very random-looking (why?) (That’s the reason for
stipulating a ≥ 2 on the previous slide)

There is a large body of well-researched theory about
LCPRNGs, how to choose a, c, and m so that random-lloking
sequences emerge that pass a number of statistical tests.

Unfortunately, these numbers can still not be used for
cryptographic applications, because, first of all, some parts of
the numbers in LCPRNGs are periodic with small periods:
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More on LCPRNGs

unsigned int my_random() {
static unsigned int seed = 13579;

return seed = 69069*seed + 314159269; /* Assume 32-bit arithmetic */
}

This generator gives: 13579, 1252047220, 3092059785,
2837623130, 4158474167, 323447088, 2356173845,
2574614134, 1806824227, 1286941356, 3718486113,
1977131858, 349283151, . . . . In hex:

k 0 1 2 3
X0·4+k 0000350b 4aa0b974 b84d1689 a922b15a
X1·4+k f7dd47b7 13476930 8c705c15 99757e76
X2·4+k 6bb1f323 4cb52aac dda39861 75d8a352
X3·4+k 14d1a34f 073379e8 ee0b176d 5938fbee
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Subsequences of LCPRNGs

The sequence alternates between even and odd integers. Not
very random. . .
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Subsequences of LCPRNGs

The sequence alternates between even and odd integers. Not
very random. . .

The sequence of residues modulo 4 (the least significant two
bits) is 3, 0, 1, 2, 3, 0, 1, 2. . . , suggesting a period of 4.
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Subsequences of LCPRNGs

The sequence alternates between even and odd integers. Not
very random. . .

The sequence of residues modulo 4 (the least significant two
bits) is 3, 0, 1, 2, 3, 0, 1, 2. . . , suggesting a period of 4.

The sequence of residues modulo 8 (the least significant three
bits) is 3, 4, 1, 2, 7, 0, 5, 6, 3, 4, 1, 2, 7, 0, 5, 6
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Subsequences of LCPRNGs

The sequence alternates between even and odd integers. Not
very random. . .

The sequence of residues modulo 4 (the least significant two
bits) is 3, 0, 1, 2, 3, 0, 1, 2. . . , suggesting a period of 4.

The sequence of residues modulo 8 (the least significant three
bits) is 3, 4, 1, 2, 7, 0, 5, 6, 3, 4, 1, 2, 7, 0, 5, 6

In general, the least significant k bits of this generator form a
periodic subsequence of length 2k.

While the high-order bits of the generator have no such
weakness, you must not use a LCPRNG for cryptographic
applications!
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Demolishing LCPRNGs

Statistical properties of the sequence (which may be OK) not so
interesting. Rather, concerned with predictability of the next
number in the sequence, even without knowing its internal
state (which may be lousy).
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Demolishing LCPRNGs

Statistical properties of the sequence (which may be OK) not so
interesting. Rather, concerned with predictability of the next
number in the sequence, even without knowing its internal
state (which may be lousy).

A RNG is cryptographically broken if it is possible to predict
the next n-bit number in the sequence with probability
1/2n + ε for some ε > 0.

I’ll show you a method to do much more: how to recover the
parameters m, a, and c from the first few numbers of the
sequence.

Example: The numbers 1, 68, 31, 82, 157, 192, 123, 142, 185,
188, and 87 were generated by a LCPRNG. Find m, a, and c.
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Cracking LCPRNGs (1): Finding c

Assume we have numbers X0, X1, . . . that we know are
successive numbers from a LCPRNG with (so far) unknown
parameters m, a, and c. How can we compute them from the
numbers we have?
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Cracking LCPRNGs (1): Finding c

Assume we have numbers X0, X1, . . . that we know are
successive numbers from a LCPRNG with (so far) unknown
parameters m, a, and c. How can we compute them from the
numbers we have?

Assume first that a little bird has told us m. How can we
compute a and c?
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Cracking LCPRNGs (1): Finding c

Assume we have numbers X0, X1, . . . that we know are
successive numbers from a LCPRNG with (so far) unknown
parameters m, a, and c. How can we compute them from the
numbers we have?

Assume first that a little bird has told us m. How can we
compute a and c?

Assume that another little bird has also told us a. How can we
compute c?
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Cracking LCPRNGs (1): Finding c

Assume we have numbers X0, X1, . . . that we know are
successive numbers from a LCPRNG with (so far) unknown
parameters m, a, and c. How can we compute them from the
numbers we have?

Assume first that a little bird has told us m. How can we
compute a and c?

Assume that another little bird has also told us a. How can we
compute c?

Since X1 ≡ aX0 + c (mod m), we have c ≡ X1 − aX0 (mod m),
so knowing a and m gives us c.
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Cracking LCPRNGs (2): Finding a

Next, since X2 ≡ aX1 + c (mod m) and X1 ≡ aX0 + c
(mod m), we have X2 −X1 ≡ a(X1 −X0) (mod m). How can
we find a?

Assume gcd(X1 −X0,m) = 1.
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Cracking LCPRNGs (2): Finding a

Next, since X2 ≡ aX1 + c (mod m) and X1 ≡ aX0 + c
(mod m), we have X2 −X1 ≡ a(X1 −X0) (mod m). How can
we find a?

Assume gcd(X1 −X0,m) = 1.

Answer: We use the Extended Euclidian Algorithm, which
computes, for two positive integers M and N not only
D = gcd(M,N), but also two integers A and B with
AM + BN = D.
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Cracking LCPRNGs (2): Finding a

Next, since X2 ≡ aX1 + c (mod m) and X1 ≡ aX0 + c
(mod m), we have X2 −X1 ≡ a(X1 −X0) (mod m). How can
we find a?

Assume gcd(X1 −X0,m) = 1.

Answer: We use the Extended Euclidian Algorithm, which
computes, for two positive integers M and N not only
D = gcd(M,N), but also two integers A and B with
AM + BN = D.

We find x and y so that x(X1 −X0)+ym = 1
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Cracking LCPRNGs (2): Finding a

Next, since X2 ≡ aX1 + c (mod m) and X1 ≡ aX0 + c
(mod m), we have X2 −X1 ≡ a(X1 −X0) (mod m). How can
we find a?

Assume gcd(X1 −X0,m) = 1.

Answer: We use the Extended Euclidian Algorithm, which
computes, for two positive integers M and N not only
D = gcd(M,N), but also two integers A and B with
AM + BN = D.

We find x and y so that x(X1 −X0)+ym = 1

Then, x(X2 −X1)(X1 −X0) ≡ (X2 −X1)(1−ym) ≡ (X2 −X1)
(mod m).
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Cracking LCPRNGs (2): Finding a

Next, since X2 ≡ aX1 + c (mod m) and X1 ≡ aX0 + c
(mod m), we have X2 −X1 ≡ a(X1 −X0) (mod m). How can
we find a?

Assume gcd(X1 −X0,m) = 1.

Answer: We use the Extended Euclidian Algorithm, which
computes, for two positive integers M and N not only
D = gcd(M,N), but also two integers A and B with
AM + BN = D.

We find x and y so that x(X1 −X0)+ym = 1

Then, x(X2 −X1)(X1 −X0) ≡ (X2 −X1)(1−ym) ≡ (X2 −X1)
(mod m).

Therefore, the a that we seek is x(X2 −X1).
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Excursion: Euclid’s Algorithm

/* Given two positive integers m and n, return gcd(m,n) */
int gcd(int m, int n) {

int r = m % n;
while (r != 0) {

m = n;
n = r;
r = m % n;

}
return n;

} 10
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Euclid’s Algorithm: Example

Compute gcd(119,84) (table shows state at beginning of the
while loop):

# r m n
1 35 119 84
2 14 84 35
3 7 35 14
4 0 14 7

It turns out that Euclid’s algorithm is very efficient: If n is the
larger of the two algorithms, line 3 will be executed only
O(logn) times.
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Excursion: Extended Euclidian Algorithm

int egcd(int* a, int* b, int m, int n) {
int a prime = 1, b prime = 0;
int c = m, d = n;
int q = c / d, r = c % d;

*b = 1; *a = 0;

/* am + bn = d; a prime m + b prime n = c = qd + r */
while (r != 0) {

int t; 10

c = d; d = r;
t = a prime; a prime = *a; *a = t − q*(*a);
t = b prime; b prime = *b; *b = t − q*(*b);
q = c / d; r = c % d;
/* am + bn = d; a prime m + b prime n = c = qd + r */

}

/* am + bn = d = gcd(m, n) */
return d; 20

}
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Example: Extended Euclidian Algorithm

Here are the values at the beginning of the while loop for
m = 1769 and n = 551:

# a′ a b′ b c d q r
1 1 0 0 1 1769 551 3 116
2 0 1 1 −3 551 116 4 87
3 1 −4 −3 13 116 87 1 29
4 −4 5 13 −16 87 29 3 0

And sure enough, 5 · 1769− 16 · 551 = 29 = gcd(1769,551).
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The Rain in Spain. . .

Donald E. Knuth was the first to notice the following
phenomenon, George Marsaglia exploited it and broke
LCPRNGs.

We look at a plot of (Xn, Xn+1) versus Xn+2, i.e., we take three
consecutive numbers from a sequence and plot this in 3D.

Linear congruential random numbers fall mainly in the planes
— George Marsaglia
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. . . Falls Mainly in the Plains

"src/planes-data"
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This is a plot of the sequence Xn+1 = (137Xn + 187) mod 256.
The numbers in the sequence lie in a small number of planes.
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Cracking LCPRNGs (3): Finding m

It turns out that successive points of the generator lie on a
lattice:
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Cracking LCPRNGs (4): The Parallelepid

Three points made of successive values of the sequence define
a parallelepid:

(X(i),X(i+1))

(X(j),X(j+1))

(X(1),X(2))

For a LCPRNG with modulus m, the area of the little gray cells
is m (we won’t prove this, and you won’t be expected to prove
this).
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Cracking LCPRNGs (5): Shearing

The red figure’s area is a multiple of the unit cell area

(X(i),X(i+1))

(X(j),X(j+1))

(X(1),X(2))

The transformation that transforms the black figure into the
red figure (called shearing) is area-preserving.

Therefore, the area of the black figure is a multiple of m.
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Cracking LCPRNGs (6): Finding the Area

Therefore, the greatest common divisor of all areas of different
parallelepids is a (small) multiple of m; in practice, it is m
itself.

If we want to find m, we proceed along the following lines:

old_gcd = gcd(d(1,2), d(2,3));
for (i = 3; ; i++) {

int area = d(i, i+1);
int new_gcd = gcd(old_gcd, area);

if (new_gcd and old_gcd haven’t changed since a few iterations)
break;

else
old_gcd = new_gcd;

}
print(old_gcd);
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Cracking LCPRNGs (7): Finding the Area

From linar algebra, you (should) know that the area of the
parallelepid is

d(i, j) = abs

∣∣∣∣∣ Xi −X0 Xi+1 −X1

Xj −X0 Xj+1 −X1

∣∣∣∣∣
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Cracking LCPRNGs (8)

We have the numbers 1, 68, 31, 82, 157, 192, 123, 142, 185,
188, and 87 and wish to know the parameters m, a, and c of
the LCPRNG that generated them.

First, we find m.

We compute
d(1,2) = |(X1 −X0)(X3 −X1)− (X2 −X0)(X2 −X1)| =
|67 · 14− 30 · (−37)| = 2048

d(2,3) = |(31− 1)(157− 68)− (82− 1)(82− 68)| = 1536

d(3,4) = |(82− 1)(192− 68)− (157− 1)(157− 68)| = 3840

d(4,5) = |(157− 1)(123− 68)− (192− 1)(192− 68)| = 15104

d(5,6) = |(192− 1)(142− 68)− (123− 1)(123− 68)| = 7424
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Cracking LCPRNGs (9)

Compute gcd
(
d(1,2), d(2,3)

)
= gcd(2048,1536) = 512

gcd
(
512, d(3,4)

)
= gcd(512,3840) = 256

gcd
(
256, d(4,5)

)
= gcd(256,15104) = 256

gcd
(
256, d(5,6)

)
= gcd(256,7424) = 256

So it looks like m = 256. (Note how fast the sequence
converges.)
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Cracking LCPRNGs (10)

Next, we find a by computing x and y with
x(X1 −X0)+ym = 1. (First we verify that
gcd(X1 −X0,m) = 1, though, but since m is a power of 2, and
since X1 −X0 = 67 is odd, this is easy.)

Firing up the Extended Euclid Algorithm gives x = 107 and
y = −28, hence a = x(X2 −X1) ≡ 107 · (31− 68) ≡ 137
(mod 256).
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Cracking LCPRNGs (11)

It remains to compute c. Setting X1 = aX0 + c mod m gives
c = X1 − aX0 ≡ 68− 137 · 1 ≡ 187 (mod 256).
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Cracking LCPRNGs (11)

It remains to compute c. Setting X1 = aX0 + c mod m gives
c = X1 − aX0 ≡ 68− 137 · 1 ≡ 187 (mod 256).

Now, we have m = 256, a = 137 and c = 187. Let’s check:

k Xk aXk aXk + c Xk+1

0 1 137 324 68
1 68 9316 9503 31
2 31 4247 4434 82
3 82 11234 11421 157
4 157 21509 21696 192

So we were able to extract all parameters from the sequence
after seeing only the first seven numbers. This is not
confidence-inspiring!
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Summary

• What is a Random Number?

• Cracking Random Number Generators

• Entropy/Workload Estimation

• rand(3) and Netscape’s Old Generator

• Seed Guessing Attacks are Independent of the Cipher

• Use Good Mixing Functions

• How to break LCPRNGs (utterly)
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