
0/54

�

�

�

�

�

�

	

A Day at the Races

Andreas Zeller/Stephan Neuhaus
Lehrstuhl Softwaretechnik
Universität des Saarlandes, Saarbrücken



1/54

�

�

�

�

�

�

	

The Menu

• What is a Race Condition?

• Examples

• File Access

• Temporary Files

• Locking



2/54

�

�

�

�

�

�

	

What is a Race Condition

A race condition happens when a process can change the
assumptions of another process about the state of its
environment because of concurrency.



2/54

�

�

�

�

�

�

	

What is a Race Condition

A race condition happens when a process can change the
assumptions of another process about the state of its
environment because of concurrency.

/* Lots of include directives omitted */

unsigned char* read file(const char* filename) {
/* We run suid root, so we have to check access before calling open(2). */
if (access(filename, R OK) == 0) {

int fd = open(filename, O RDONLY); /* Can’t fail, we checked! */
unsigned char* buf = malloc(1024);

if (buf != 0)
(void) read(fd, buf, 1024); /* Ignore error */ 10

(void) close(fd); /* Ignore error */
return buf;

} else
return 0;

}



3/54

�

�

�

�

�

�

	

In the Meantime. . .

Race code Attacker code
access("f")



3/54

�

�

�

�

�

�

	

In the Meantime. . .

Race code Attacker code
access("f")

unlink("f")



3/54

�

�

�

�

�

�

	

In the Meantime. . .

Race code Attacker code
access("f")

unlink("f")
symlink("/etc/shadow", "f")



3/54

�

�

�

�

�

�

	

In the Meantime. . .

Race code Attacker code
access("f")

unlink("f")
symlink("/etc/shadow", "f")

open("f")



3/54

�

�

�

�

�

�

	

In the Meantime. . .

Race code Attacker code
access("f")

unlink("f")
symlink("/etc/shadow", "f")

open("f")

In principle, it does not matter whether there is one
nanosecond or one hour between access() and open(); one
context switch is enough.



3/54

�

�

�

�

�

�

	

In the Meantime. . .

Race code Attacker code
access("f")

unlink("f")
symlink("/etc/shadow", "f")

open("f")

In principle, it does not matter whether there is one
nanosecond or one hour between access() and open(); one
context switch is enough.

In practice, it’s easier to attack if the window is one hour
instead of one nanosecond, but it’s still doable:



3/54

�

�

�

�

�

�

	

In the Meantime. . .

Race code Attacker code
access("f")

unlink("f")
symlink("/etc/shadow", "f")

open("f")

In principle, it does not matter whether there is one
nanosecond or one hour between access() and open(); one
context switch is enough.

In practice, it’s easier to attack if the window is one hour
instead of one nanosecond, but it’s still doable:

If you try it and it doesn’t work, try it again



3/54

�

�

�

�

�

�

	

In the Meantime. . .

Race code Attacker code
access("f")

unlink("f")
symlink("/etc/shadow", "f")

open("f")

In principle, it does not matter whether there is one
nanosecond or one hour between access() and open(); one
context switch is enough.

In practice, it’s easier to attack if the window is one hour
instead of one nanosecond, but it’s still doable:

If you try it and it doesn’t work, try it again ⇒ let a computer
do it for you!



4/54

�

�

�

�

�

�

	

Broken passwd Command

The passwd command changes a user’s password in
/etc/passwd.



4/54

�

�

�

�

�

�

	

Broken passwd Command

The passwd command changes a user’s password in
/etc/passwd.

File contains user name, (encrypted) password, user ID, group
ID, full name (sometimes called the GCOS field), home
directory and shell, separated by colons.



4/54

�

�

�

�

�

�

	

Broken passwd Command

The passwd command changes a user’s password in
/etc/passwd.

File contains user name, (encrypted) password, user ID, group
ID, full name (sometimes called the GCOS field), home
directory and shell, separated by colons.

neuhaus:abcdefghijk:7006:100:Stephan Neuhaus:/home/neuhaus:/bin/bash

This particular passwd command allowed a user to change his
password in a file that was not /etc/passwd, but that was
given on the command line.



4/54

�

�

�

�

�

�

	

Broken passwd Command

The passwd command changes a user’s password in
/etc/passwd.

File contains user name, (encrypted) password, user ID, group
ID, full name (sometimes called the GCOS field), home
directory and shell, separated by colons.

neuhaus:abcdefghijk:7006:100:Stephan Neuhaus:/home/neuhaus:/bin/bash

This particular passwd command allowed a user to change his
password in a file that was not /etc/passwd, but that was
given on the command line.

The passwd program must run suid root (i.e., with superuser
privileges).



5/54

�

�

�

�

�

�

	

Passwd Operation

passwd
program

User

/etc/passwd

root:abcdef:0:0:Superuser:/root:/bin/bash
stn:bcdefg:7006:100:Stephan Neuhaus:/home/stn:/bin/bash
zeller:cdefgh:7001:100:Andreas Zeller:/home/zeller:/bin/bash



6/54

�

�

�

�

�

�

	

Passwd Operation

passwd
program

User

1 Acquire new password

/etc/passwd

root:abcdef:0:0:Superuser:/root:/bin/bash
stn:bcdefg:7006:100:Stephan Neuhaus:/home/stn:/bin/bash
zeller:cdefgh:7001:100:Andreas Zeller:/home/zeller:/bin/bash



7/54

�

�

�

�

�

�

	

Passwd Operation

passwd
program

User

1 Acquire new password

2 Read /etc/passwd

root:abcdef:0:0:Superuser:/root:/bin/bash
stn:bcdefg:7006:100:Stephan Neuhaus:/home/stn:/bin/bash
zeller:cdefgh:7001:100:Andreas Zeller:/home/zeller:/bin/bash



8/54

�

�

�

�

�

�

	

Passwd Operation

passwd
program

User

1 Acquire new password

2 Read

3 Write

/etc/passwd

/etc/ptmp

root:abcdef:0:0:Superuser:/root:/bin/bash
stn:bcdefg:7006:100:Stephan Neuhaus:/home/stn:/bin/bash
zeller:cdefgh:7001:100:Andreas Zeller:/home/zeller:/bin/bash

root:abcdef:0:0:Superuser:/root:/bin/bash
stn:xyzabc:7006:100:Stephan Neuhaus:/home/stn:/bin/bash
zeller:cdefgh:7001:100:Andreas Zeller:/home/zeller:/bin/bash



9/54

�

�

�

�

�

�

	

Passwd Operation

passwd
program

User

1 Acquire new password

2 Read

3 Write

4 Rename

/etc/passwd

/etc/ptmp

/etc/passwd

root:abcdef:0:0:Superuser:/root:/bin/bash
stn:bcdefg:7006:100:Stephan Neuhaus:/home/stn:/bin/bash
zeller:cdefgh:7001:100:Andreas Zeller:/home/zeller:/bin/bash

root:abcdef:0:0:Superuser:/root:/bin/bash
stn:xyzabc:7006:100:Stephan Neuhaus:/home/stn:/bin/bash
zeller:cdefgh:7001:100:Andreas Zeller:/home/zeller:/bin/bash

root:abcdef:0:0:Superuser:/root:/bin/bash
stn:xyzabc:7006:100:Stephan Neuhaus:/home/stn:/bin/bash
zeller:cdefgh:7001:100:Andreas Zeller:/home/zeller:/bin/bash



10/54

�

�

�

�

�

�

	

The .rhosts File

There used to be in every user’s home directory a file called
‘.rhosts’.



10/54

�

�

�

�

�

�

	

The .rhosts File

There used to be in every user’s home directory a file called
‘.rhosts’.

This file contained hostname/username pairs that were
permitted to use the rsh command to login to the user’s
account without a password. For example:

goscinny.cs.uni-sb.de neuhaus

This would allow a user neuhaus on goscinny.cs.uni-sb.de
to rsh to this machine and log in without a password.



11/54

�

�

�

�

�

�

	

Stealing a .rhosts File

localhost neuhaus :::::

.rhosts

dir link

/home/neuhaus /home/zeller

passwd program

neuhaus

passwd link/.rhosts



12/54

�

�

�

�

�

�

	

Stealing a .rhosts File

localhost neuhaus :::::

.rhosts

dir link

/home/neuhaus /home/zeller

passwd program

neuhaus

passwd link/.rhosts



13/54

�

�

�

�

�

�

	

Stealing a .rhosts File

localhost neuhaus :::::

.rhosts

dir link

/home/neuhaus /home/zeller

passwd program

neuhaus

passwd link/.rhosts



14/54

�

�

�

�

�

�

	

Stealing a .rhosts File

localhost neuhaus :::::

.rhosts

dir link

/home/neuhaus /home/zeller

passwd program

neuhaus

ptmp

passwd link/.rhosts



15/54

�

�

�

�

�

�

	

Stealing a .rhosts File

localhost neuhaus :::::

.rhosts

dir link

/home/neuhaus /home/zeller

passwd program

neuhaus

ptmp

passwd link/.rhosts



16/54

�

�

�

�

�

�

	

Stealing a .rhosts File

localhost neuhaus :::::

.rhosts

dir link

/home/neuhaus /home/zeller

passwd program

neuhaus

ptmp

localhost neuhaus :::::

passwd link/.rhosts



17/54

�

�

�

�

�

�

	

Stealing a .rhosts File

localhost neuhaus :::::

.rhosts

dir link

/home/neuhaus /home/zeller

passwd program

neuhaus

ptmp

localhost neuhaus :::::

passwd link/.rhosts



18/54

�

�

�

�

�

�

	

Stealing a .rhosts File

localhost neuhaus :::::

.rhosts

dir link

/home/neuhaus /home/zeller

passwd program

neuhaus

.rhosts

localhost neuhaus :::::

passwd link/.rhosts



19/54

�

�

�

�

�

�

	

Stealing a .rhosts File

localhost neuhaus :::::

.rhosts

dir link

/home/neuhaus /home/zeller

neuhaus

.rhosts

localhost neuhaus :::::



20/54

�

�

�

�

�

�

	

Avoiding TOCTOU

• Check and use must be one atomic operation. (Or anyway
as near as dammit.)



20/54

�

�

�

�

�

�

	

Avoiding TOCTOU

• Check and use must be one atomic operation. (Or anyway
as near as dammit.)

• This is not always easy to achieve, and the secure solution
is not always the most obvious one.



20/54

�

�

�

�

�

�

	

Avoiding TOCTOU

• Check and use must be one atomic operation. (Or anyway
as near as dammit.)

• This is not always easy to achieve, and the secure solution
is not always the most obvious one.

• When working with files, try to avoid library or system calls
that take a file name as an argument instead of a file
handle or file descriptor.



20/54

�

�

�

�

�

�

	

Avoiding TOCTOU

• Check and use must be one atomic operation. (Or anyway
as near as dammit.)

• This is not always easy to achieve, and the secure solution
is not always the most obvious one.

• When working with files, try to avoid library or system calls
that take a file name as an argument instead of a file
handle or file descriptor.

• Don’t do your own access checking on files. Instead, if you
use a setuid program, set your euid and egid to the
appropriate values and drop all extra group privileges with
setgroups(0,0) (see references).



20/54

�

�

�

�

�

�

	

Avoiding TOCTOU

• Check and use must be one atomic operation. (Or anyway
as near as dammit.)

• This is not always easy to achieve, and the secure solution
is not always the most obvious one.

• When working with files, try to avoid library or system calls
that take a file name as an argument instead of a file
handle or file descriptor.

• Don’t do your own access checking on files. Instead, if you
use a setuid program, set your euid and egid to the
appropriate values and drop all extra group privileges with
setgroups(0,0) (see references).

• Never use access(2)!



21/54

�

�

�

�

�

�

	

Dropping Privileges (1)

Your process runs from a suid program and temporarily needs
to perform some action with the original caller’s permissions.



21/54

�

�

�

�

�

�

	

Dropping Privileges (1)

Your process runs from a suid program and temporarily needs
to perform some action with the original caller’s permissions.

Unix distinguishes between the real and effective user IDs.



21/54

�

�

�

�

�

�

	

Dropping Privileges (1)

Your process runs from a suid program and temporarily needs
to perform some action with the original caller’s permissions.

Unix distinguishes between the real and effective user IDs.

The effective user ID (euid) is used for all permission checking;
the real user ID (ruid) is used for bookkeeping and is changed
only rarely (e.g., during login).



21/54

�

�

�

�

�

�

	

Dropping Privileges (1)

Your process runs from a suid program and temporarily needs
to perform some action with the original caller’s permissions.

Unix distinguishes between the real and effective user IDs.

The effective user ID (euid) is used for all permission checking;
the real user ID (ruid) is used for bookkeeping and is changed
only rarely (e.g., during login).

When I execute the passwd program, my euid would be 0
(because passwd is a suid root program), but my ruid would
remain 7006.



21/54

�

�

�

�

�

�

	

Dropping Privileges (1)

Your process runs from a suid program and temporarily needs
to perform some action with the original caller’s permissions.

Unix distinguishes between the real and effective user IDs.

The effective user ID (euid) is used for all permission checking;
the real user ID (ruid) is used for bookkeeping and is changed
only rarely (e.g., during login).

When I execute the passwd program, my euid would be 0
(because passwd is a suid root program), but my ruid would
remain 7006.

There is also the saved user ID, which was added since the
ruid and euid weren’t enough.



22/54

�

�

�

�

�

�

	

UIDs in POSIX

POSIX-compliant systems have the following semantics:

• the real (user or group) ID is the real (user or group) ID



22/54

�

�

�

�

�

�

	

UIDs in POSIX

POSIX-compliant systems have the following semantics:

• the real (user or group) ID is the real (user or group) ID

• the saved (user or group) ID is the effective (user or group)
ID at the time of process execution



22/54

�

�

�

�

�

�

	

UIDs in POSIX

POSIX-compliant systems have the following semantics:

• the real (user or group) ID is the real (user or group) ID

• the saved (user or group) ID is the effective (user or group)
ID at the time of process execution

• the effective (user or group) ID starts out as the saved ID,
and is changed by setuid(2) and setgid(2).



22/54

�

�

�

�

�

�

	

UIDs in POSIX

POSIX-compliant systems have the following semantics:

• the real (user or group) ID is the real (user or group) ID

• the saved (user or group) ID is the effective (user or group)
ID at the time of process execution

• the effective (user or group) ID starts out as the saved ID,
and is changed by setuid(2) and setgid(2).



23/54

�

�

�

�

�

�

	

setuid in POSIX
#include <sys/types.h>
#include <unistd.h>

extern int setuid(uid t uid);
extern int setgid(gid t gid);



23/54

�

�

�

�

�

�

	

setuid in POSIX
#include <sys/types.h>
#include <unistd.h>

extern int setuid(uid t uid);
extern int setgid(gid t gid);

• If any of euid, ruid, or saved UID are 0, set ruid and saved
UID to the argument.



23/54

�

�

�

�

�

�

	

setuid in POSIX
#include <sys/types.h>
#include <unistd.h>

extern int setuid(uid t uid);
extern int setgid(gid t gid);

• If any of euid, ruid, or saved UID are 0, set ruid and saved
UID to the argument.

• Set the euid of the process to the argument



23/54

�

�

�

�

�

�

	

setuid in POSIX
#include <sys/types.h>
#include <unistd.h>

extern int setuid(uid t uid);
extern int setgid(gid t gid);

• If any of euid, ruid, or saved UID are 0, set ruid and saved
UID to the argument.

• Set the euid of the process to the argument

POSIX suid root programs cannot temporarily drop their
privileges and re-assume them afterwards!



23/54

�

�

�

�

�

�

	

setuid in POSIX
#include <sys/types.h>
#include <unistd.h>

extern int setuid(uid t uid);
extern int setgid(gid t gid);

• If any of euid, ruid, or saved UID are 0, set ruid and saved
UID to the argument.

• Set the euid of the process to the argument

POSIX suid root programs cannot temporarily drop their
privileges and re-assume them afterwards!

Usually not necessary anyway: If you find that you are
changing UIDs back and forth, beware!

Dropping privileges is tricky (see references for a tutorial)



24/54

�

�

�

�

�

�

	

Opening Files

How to create a file if it doesn’t already exist, and how to
truncate it is it does. (There is no system call that does that for
you.)



24/54

�

�

�

�

�

�

	

Opening Files

How to create a file if it doesn’t already exist, and how to
truncate it is it does. (There is no system call that does that for
you.)

Naive solution:

1. Check if file exists. If it exists, go to step 2, otherwise go to
step 3



24/54

�

�

�

�

�

�

	

Opening Files

How to create a file if it doesn’t already exist, and how to
truncate it is it does. (There is no system call that does that for
you.)

Naive solution:

1. Check if file exists. If it exists, go to step 2, otherwise go to
step 3

2. Open and truncate the file, and terminate.



24/54

�

�

�

�

�

�

	

Opening Files

How to create a file if it doesn’t already exist, and how to
truncate it is it does. (There is no system call that does that for
you.)

Naive solution:

1. Check if file exists. If it exists, go to step 2, otherwise go to
step 3

2. Open and truncate the file, and terminate.

3. Create a new file, and terminate.



24/54

�

�

�

�

�

�

	

Opening Files

How to create a file if it doesn’t already exist, and how to
truncate it is it does. (There is no system call that does that for
you.)

Naive solution:

1. Check if file exists. If it exists, go to step 2, otherwise go to
step 3

2. Open and truncate the file, and terminate.

3. Create a new file, and terminate.

This has of course a TOCTOU problem. If between steps 1
and 2 someone creates a symlink to the password file, step 2
will open and truncate it.



25/54

�

�

�

�

�

�

	

Opening Files: Solution

This code was copied from Viega, McGraw, Building Secure
Software, Addison-Wesley, 2001. Code available from
http://www.buildingsecuresoftware.com

(See handout)

http://www.buildingsecuresoftware.com


26/54

�

�

�

�

�

�

	

O EXCL And NFS

This code works because the O EXCL flag guarantees that the
file did not already exist when the file system processes the
open(2) call.



26/54

�

�

�

�

�

�

	

O EXCL And NFS

This code works because the O EXCL flag guarantees that the
file did not already exist when the file system processes the
open(2) call.

Unfortunately, this does not work when the directory holding
the file is on a network filesystem (in Windows, this is a SMB
share) using NFS versions 1 or 2.



26/54

�

�

�

�

�

�

	

O EXCL And NFS

This code works because the O EXCL flag guarantees that the
file did not already exist when the file system processes the
open(2) call.

Unfortunately, this does not work when the directory holding
the file is on a network filesystem (in Windows, this is a SMB
share) using NFS versions 1 or 2.

Worse, some NFS servers don’t even tell you that the file was
already there.



26/54

�

�

�

�

�

�

	

O EXCL And NFS

This code works because the O EXCL flag guarantees that the
file did not already exist when the file system processes the
open(2) call.

Unfortunately, this does not work when the directory holding
the file is on a network filesystem (in Windows, this is a SMB
share) using NFS versions 1 or 2.

Worse, some NFS servers don’t even tell you that the file was
already there.

Therefore, make sure that the file is on a local file system.



27/54

�

�

�

�

�

�

	

Temporary Files: Problem

Temporary files are usually created in a shared directory (/tmp
in most Unix systems).



27/54

�

�

�

�

�

�

	

Temporary Files: Problem

Temporary files are usually created in a shared directory (/tmp
in most Unix systems).

Temp files are susceptibe to the same problems that regular
files are.



27/54

�

�

�

�

�

�

	

Temporary Files: Problem

Temporary files are usually created in a shared directory (/tmp
in most Unix systems).

Temp files are susceptibe to the same problems that regular
files are.

Additionally: if the attacker can guess the name of your
temporary file, he or she can prepare the attack in advance
(create a symlink to a certain place).



27/54

�

�

�

�

�

�

	

Temporary Files: Problem

Temporary files are usually created in a shared directory (/tmp
in most Unix systems).

Temp files are susceptibe to the same problems that regular
files are.

Additionally: if the attacker can guess the name of your
temporary file, he or she can prepare the attack in advance
(create a symlink to a certain place).

The standard C library has tmpfile(3), but this is often not
implemented in a secure manner.



28/54

�

�

�

�

�

�

	

Temporary Files: Recommendation

• Pick a prefix for your file name. For example ‘my app’.



28/54

�

�

�

�

�

�

	

Temporary Files: Recommendation

• Pick a prefix for your file name. For example ‘my app’.

• Generate at least 64 bits of high-quality random data



28/54

�

�

�

�

�

�

	

Temporary Files: Recommendation

• Pick a prefix for your file name. For example ‘my app’.

• Generate at least 64 bits of high-quality random data

• Encode the bits so that they are printable (BASE64).



28/54

�

�

�

�

�

�

	

Temporary Files: Recommendation

• Pick a prefix for your file name. For example ‘my app’.

• Generate at least 64 bits of high-quality random data

• Encode the bits so that they are printable (BASE64).

• Concatenate ‘/tmp’, the prefix, and the encoded bits.



28/54

�

�

�

�

�

�

	

Temporary Files: Recommendation

• Pick a prefix for your file name. For example ‘my app’.

• Generate at least 64 bits of high-quality random data

• Encode the bits so that they are printable (BASE64).

• Concatenate ‘/tmp’, the prefix, and the encoded bits.

• If you plan on using fopen(3) in the next step, set the
process’s umask to, e.g., 0066 (see exercises). If you use
open(2), use a restrictive mode argument, e.g., 0600.



28/54

�

�

�

�

�

�

	

Temporary Files: Recommendation

• Pick a prefix for your file name. For example ‘my app’.

• Generate at least 64 bits of high-quality random data

• Encode the bits so that they are printable (BASE64).

• Concatenate ‘/tmp’, the prefix, and the encoded bits.

• If you plan on using fopen(3) in the next step, set the
process’s umask to, e.g., 0066 (see exercises). If you use
open(2), use a restrictive mode argument, e.g., 0600.

• Use open(2) or fopen(3) to create the file.



28/54

�

�

�

�

�

�

	

Temporary Files: Recommendation

• Pick a prefix for your file name. For example ‘my app’.

• Generate at least 64 bits of high-quality random data

• Encode the bits so that they are printable (BASE64).

• Concatenate ‘/tmp’, the prefix, and the encoded bits.

• If you plan on using fopen(3) in the next step, set the
process’s umask to, e.g., 0066 (see exercises). If you use
open(2), use a restrictive mode argument, e.g., 0600.

• Use open(2) or fopen(3) to create the file.

• Immediately afterwards, use unlink(2) to remove the file
from the file system. (It won’t go away until you close the
file again.)



28/54

�

�

�

�

�

�

	

Temporary Files: Recommendation

• Pick a prefix for your file name. For example ‘my app’.

• Generate at least 64 bits of high-quality random data

• Encode the bits so that they are printable (BASE64).

• Concatenate ‘/tmp’, the prefix, and the encoded bits.

• If you plan on using fopen(3) in the next step, set the
process’s umask to, e.g., 0066 (see exercises). If you use
open(2), use a restrictive mode argument, e.g., 0600.

• Use open(2) or fopen(3) to create the file.

• Immediately afterwards, use unlink(2) to remove the file
from the file system. (It won’t go away until you close the
file again.)

• Use fdopen(3) if necessary to create a file pointer.



28/54

�

�

�

�

�

�

	

Temporary Files: Recommendation

• Pick a prefix for your file name. For example ‘my app’.

• Generate at least 64 bits of high-quality random data

• Encode the bits so that they are printable (BASE64).

• Concatenate ‘/tmp’, the prefix, and the encoded bits.

• If you plan on using fopen(3) in the next step, set the
process’s umask to, e.g., 0066 (see exercises). If you use
open(2), use a restrictive mode argument, e.g., 0600.

• Use open(2) or fopen(3) to create the file.

• Immediately afterwards, use unlink(2) to remove the file
from the file system. (It won’t go away until you close the
file again.)

• Use fdopen(3) if necessary to create a file pointer.



29/54

�

�

�

�

�

�

	

• Use the file and close it when you’re done.



30/54

�

�

�

�

�

�

	

File Locking

Sometimes you need exclusive access to a resource, for
example to make an atomic update.



30/54

�

�

�

�

�

�

	

File Locking

Sometimes you need exclusive access to a resource, for
example to make an atomic update.

There are many ways to achieve this (critical sections,
mutexes, monitors etc.), all taught in lectures on Operating
Systems



30/54

�

�

�

�

�

�

	

File Locking

Sometimes you need exclusive access to a resource, for
example to make an atomic update.

There are many ways to achieve this (critical sections,
mutexes, monitors etc.), all taught in lectures on Operating
Systems

Unix doesn’t generally have mechanisms for mutual exclusion,
especially not when distributed processes are concerned.



30/54

�

�

�

�

�

�

	

File Locking

Sometimes you need exclusive access to a resource, for
example to make an atomic update.

There are many ways to achieve this (critical sections,
mutexes, monitors etc.), all taught in lectures on Operating
Systems

Unix doesn’t generally have mechanisms for mutual exclusion,
especially not when distributed processes are concerned.

In order to implement locking, distributed processes must
cooperate.



30/54

�

�

�

�

�

�

	

File Locking

Sometimes you need exclusive access to a resource, for
example to make an atomic update.

There are many ways to achieve this (critical sections,
mutexes, monitors etc.), all taught in lectures on Operating
Systems

Unix doesn’t generally have mechanisms for mutual exclusion,
especially not when distributed processes are concerned.

In order to implement locking, distributed processes must
cooperate.

One technique is to use lock files.



31/54

�

�

�

�

�

�

	

Lock Files

1. The processes agree on a file name and a location for a file
(called the lockfile).



31/54

�

�

�

�

�

�

	

Lock Files

1. The processes agree on a file name and a location for a file
(called the lockfile).

2. When a process wants to acquire the lock, it tries to create
(using O EXCL) the lockfile. If that succeeds, the process
now owns the lock and proceeds to step 3. If it fails, the
process waits a bit and repeats this step. (See exercises.)



31/54

�

�

�

�

�

�

	

Lock Files

1. The processes agree on a file name and a location for a file
(called the lockfile).

2. When a process wants to acquire the lock, it tries to create
(using O EXCL) the lockfile. If that succeeds, the process
now owns the lock and proceeds to step 3. If it fails, the
process waits a bit and repeats this step. (See exercises.)

3. (At this point, the process owns the lock and hence has
exclusive access to the file.) The process does its normal
work.



31/54

�

�

�

�

�

�

	

Lock Files

1. The processes agree on a file name and a location for a file
(called the lockfile).

2. When a process wants to acquire the lock, it tries to create
(using O EXCL) the lockfile. If that succeeds, the process
now owns the lock and proceeds to step 3. If it fails, the
process waits a bit and repeats this step. (See exercises.)

3. (At this point, the process owns the lock and hence has
exclusive access to the file.) The process does its normal
work.

4. The process deletes the lockfile, thereby releasing the lock.

If there are distributed processes around, chances are that for
one of them is on a remote machine and that the lockfile is on
a NFS-mounted file system (so O EXCL won’t work).



32/54

�

�

�

�

�

�

	

Excursion: Unix File System (1)

In the Unix file system, a file is a collection of attributes and
data blocks.



32/54

�

�

�

�

�

�

	

Excursion: Unix File System (1)

In the Unix file system, a file is a collection of attributes and
data blocks.

The attributes contain things like the file’s owner and
permission bits.



32/54

�

�

�

�

�

�

	

Excursion: Unix File System (1)

In the Unix file system, a file is a collection of attributes and
data blocks.

The attributes contain things like the file’s owner and
permission bits.

The data blocks contain the byte sequence that constitute the
file. (This byte sequence has no intrinsic meaning.)



32/54

�

�

�

�

�

�

	

Excursion: Unix File System (1)

In the Unix file system, a file is a collection of attributes and
data blocks.

The attributes contain things like the file’s owner and
permission bits.

The data blocks contain the byte sequence that constitute the
file. (This byte sequence has no intrinsic meaning.)

The structure that combines the attributes and data blocks is
called an information node, or inode, which has a unique
identifying number.



32/54

�

�

�

�

�

�

	

Excursion: Unix File System (1)

In the Unix file system, a file is a collection of attributes and
data blocks.

The attributes contain things like the file’s owner and
permission bits.

The data blocks contain the byte sequence that constitute the
file. (This byte sequence has no intrinsic meaning.)

The structure that combines the attributes and data blocks is
called an information node, or inode, which has a unique
identifying number.

An inode contains all information about a file except its name.



32/54

�

�

�

�

�

�

	

Excursion: Unix File System (1)

In the Unix file system, a file is a collection of attributes and
data blocks.

The attributes contain things like the file’s owner and
permission bits.

The data blocks contain the byte sequence that constitute the
file. (This byte sequence has no intrinsic meaning.)

The structure that combines the attributes and data blocks is
called an information node, or inode, which has a unique
identifying number.

An inode contains all information about a file except its name.

The name is provided by a directory, which is a special sort of
file that contains (name, inode number) pairs.



33/54

�

�

�

�

�

�

	

Excursion: Unix File System (2)

Inode

Mode bits

Link count
Block 1

Block n

gzip

bash

4711

0815

Owner

Group

Size

Data Block

Data Block

4711

0755

0

0

48844

1

...



34/54

�

�

�

�

�

�

	

Excursion: Unix File System (2)

Inode

Mode bits

Link count

...

Block 1

Block n

gzip

bash

4711

0815

2

Owner

Group

Size

Data Block

Data Block

gunzip 4711

Link count has increased from

ln gzip gunzip1 to 2 after

4711

0755

0

0

48844



35/54

�

�

�

�

�

�

	

Interpreting ls -il

Inode

Mode bits

Link count

Owner

Group

Size

Data Block

Data Block

4711

0755

0

0

48844

4

...

gzip 4711

4711rwxr-xr-x 4 root root 48844 Nov 15 2001

Output of ls -il /bin/gzip



36/54

�

�

�

�

�

�

	

Lock Files and NFS: Solution (1)

1. Create a unique filename, perhaps involving the host name
and process ID (it need not be unguessable)



36/54

�

�

�

�

�

�

	

Lock Files and NFS: Solution (1)

1. Create a unique filename, perhaps involving the host name
and process ID (it need not be unguessable)

2. In the same directory as the lockfile, create a file with the
name from step 1.



36/54

�

�

�

�

�

�

	

Lock Files and NFS: Solution (1)

1. Create a unique filename, perhaps involving the host name
and process ID (it need not be unguessable)

2. In the same directory as the lockfile, create a file with the
name from step 1.

3. Use link(2) to link the lockfile to your unique file. If the
system call succeeds, the process not owns the lock and
can proceed to step 5.



36/54

�

�

�

�

�

�

	

Lock Files and NFS: Solution (1)

1. Create a unique filename, perhaps involving the host name
and process ID (it need not be unguessable)

2. In the same directory as the lockfile, create a file with the
name from step 1.

3. Use link(2) to link the lockfile to your unique file. If the
system call succeeds, the process not owns the lock and
can proceed to step 5.

4. Use stat(2) to check the number of links on the unique file.
If the link count is 2, the process also owns the lock and
can proceed to step 5. Otherwise, wait a bit and return to
step 2.



36/54

�

�

�

�

�

�

	

Lock Files and NFS: Solution (1)

1. Create a unique filename, perhaps involving the host name
and process ID (it need not be unguessable)

2. In the same directory as the lockfile, create a file with the
name from step 1.

3. Use link(2) to link the lockfile to your unique file. If the
system call succeeds, the process not owns the lock and
can proceed to step 5.

4. Use stat(2) to check the number of links on the unique file.
If the link count is 2, the process also owns the lock and
can proceed to step 5. Otherwise, wait a bit and return to
step 2.

5. The process now owns the lock and can use unlink(2) on
the filename created in step 1.



36/54

�

�

�

�

�

�

	

Lock Files and NFS: Solution (1)

1. Create a unique filename, perhaps involving the host name
and process ID (it need not be unguessable)

2. In the same directory as the lockfile, create a file with the
name from step 1.

3. Use link(2) to link the lockfile to your unique file. If the
system call succeeds, the process not owns the lock and
can proceed to step 5.

4. Use stat(2) to check the number of links on the unique file.
If the link count is 2, the process also owns the lock and
can proceed to step 5. Otherwise, wait a bit and return to
step 2.

5. The process now owns the lock and can use unlink(2) on
the filename created in step 1.



37/54

�

�

�

�

�

�

	

Lock Files and NFS: Solution (2)

The process can then proceed as usual.



37/54

�

�

�

�

�

�

	

Lock Files and NFS: Solution (2)

The process can then proceed as usual.

Why the funny stuff with the stat(2)? After all, the link(2) call is
atomic and so either succeeds completely or fails without side
effects.



37/54

�

�

�

�

�

�

	

Lock Files and NFS: Solution (2)

The process can then proceed as usual.

Why the funny stuff with the stat(2)? After all, the link(2) call is
atomic and so either succeeds completely or fails without side
effects.

Because NFS is supposed to be stateless, i.e., the server has no
memory of outstanding client requests.



37/54

�

�

�

�

�

�

	

Lock Files and NFS: Solution (2)

The process can then proceed as usual.

Why the funny stuff with the stat(2)? After all, the link(2) call is
atomic and so either succeeds completely or fails without side
effects.

Because NFS is supposed to be stateless, i.e., the server has no
memory of outstanding client requests.

This is so that the server can continue to operate even if any
component crashes and remoots in the middle of an operation.



38/54

�

�

�

�

�

�

	

Link System Call on NFS: Scenario 1



39/54

�

�

�

�

�

�

	

Link System Call on NFS: Scenario 1

1 NFS link request: link("a", "b")



40/54

�

�

�

�

�

�

	

Link System Call on NFS: Scenario 1

1 NFS link request: link("a", "b")

2

2: Filesystem link request: link("a", "b")



41/54

�

�

�

�

�

�

	

Link System Call on NFS: Scenario 1

1 NFS link request: link("a", "b")

2 3

2: Filesystem link request: link("a", "b")

3: Filesystem link reply: success



42/54

�

�

�

�

�

�

	

Link System Call on NFS: Scenario 1

1 NFS link request: link("a", "b")

4 NFS link reply: success

2 3

2: Filesystem link request: link("a", "b")

3: Filesystem link reply: success



43/54

�

�

�

�

�

�

	

Link System Call on NFS: Scenario 2



44/54

�

�

�

�

�

�

	

Link System Call on NFS: Scenario 2

1 NFS link request: link("a", "b")



45/54

�

�

�

�

�

�

	

Link System Call on NFS: Scenario 2

1 NFS link request: link("a", "b")

2

2: Filesystem link request: link("a", "b")



46/54

�

�

�

�

�

�

	

Link System Call on NFS: Scenario 2

1 NFS link request: link("a", "b")

2 3

2: Filesystem link request: link("a", "b")

3: Filesystem link reply: success



47/54

�

�

�

�

�

�

	

Link System Call on NFS: Scenario 2

1 NFS link request: link("a", "b")

2 3

2: Filesystem link request: link("a", "b")

3: Filesystem link reply: success

4: NFS server crashes



48/54

�

�

�

�

�

�

	

Link System Call on NFS: Scenario 2

1 NFS link request: link("a", "b")

2 3

2: Filesystem link request: link("a", "b")

3: Filesystem link reply: success

4: NFS server crashes

5

5: NFS client retransmits while server down



49/54

�

�

�

�

�

�

	

Link System Call on NFS: Scenario 2

1 NFS link request: link("a", "b")

2 3

2: Filesystem link request: link("a", "b")

3: Filesystem link reply: success

4: NFS server crashes

5

5: NFS client retransmits while server down

6: NFS client retransmits after server reboots

6



50/54

�

�

�

�

�

�

	

Link System Call on NFS: Scenario 2

1 NFS link request: link("a", "b")

2 3

2: Filesystem link request: link("a", "b")

3: Filesystem link reply: success

4: NFS server crashes

5

5: NFS client retransmits while server down

6: NFS client retransmits after server reboots

6

7

7: Filesystem link request: link("a", "b")



51/54

�

�

�

�

�

�

	

Link System Call on NFS: Scenario 2

1 NFS link request: link("a", "b")

2 3

2: Filesystem link request: link("a", "b")

3: Filesystem link reply: success

4: NFS server crashes

5

5: NFS client retransmits while server down

6: NFS client retransmits after server reboots

6

7

7: Filesystem link request: link("a", "b")

8

8: Filesystem link reply: failure



52/54

�

�

�

�

�

�

	

Link System Call on NFS: Scenario 2

1 NFS link request: link("a", "b")

2 3

2: Filesystem link request: link("a", "b")

3: Filesystem link reply: success

4: NFS server crashes

5

5: NFS client retransmits while server down

6: NFS client retransmits after server reboots

6

7

7: Filesystem link request: link("a", "b")

8

8: Filesystem link reply: failure

9 NFS link reply: failure



53/54

�

�

�

�

�

�

	

Summary

• What is a Race Condition?

• Examples

• File Access

• Temporary Files

• Locking

• Obscure NFS semantics (necessary for evaluating security)

• Distributed applications extremely hard to debug (out of
principle, and because of obscure application “features”)



54/54

�

�

�

�

�

�

	

References

Matt Bishop, How Attackers Break Programs, and How to Write
More Secure Programs, http://nob.cs.ucdavis.edu/
˜bishop/secprog/sans2002/index.html

Carol Hurwitz, Scott McPeak, Abolish Root Daemons!,
http://www.cs.berkeley.edu/˜smcpeak/cs261/paper.ps,
February 2001

Viega, McGraw, Building Secure Software, Addison-Wesley,
2001.

http://nob.cs.ucdavis.edu/~bishop/secprog/sans2002/index.html
http://nob.cs.ucdavis.edu/~bishop/secprog/sans2002/index.html
http://www.cs.berkeley.edu/~smcpeak/cs261/paper.ps

	The Menu
	What is a Race Condition
	In the Meantime…
	Broken passwd Command
	Passwd Operation
	Passwd Operation
	Passwd Operation
	Passwd Operation
	Passwd Operation
	The .rhosts File
	Stealing a .rhosts File
	Stealing a .rhosts File
	Stealing a .rhosts File
	Stealing a .rhosts File
	Stealing a .rhosts File
	Stealing a .rhosts File
	Stealing a .rhosts File
	Stealing a .rhosts File
	Stealing a .rhosts File
	Avoiding TOCTOU
	Dropping Privileges (1)
	UIDs in POSIX
	setuid in POSIX
	Opening Files
	Opening Files: Solution
	O_EXCL And NFS
	Temporary Files: Problem
	Temporary Files: Recommendation
	File Locking
	Lock Files
	Excursion: Unix File System (1)
	Excursion: Unix File System (2)
	Excursion: Unix File System (2)
	Interpreting ls -il
	Lock Files and NFS: Solution (1)
	Lock Files and NFS: Solution (2)
	Link System Call on NFS: Scenario 1
	Link System Call on NFS: Scenario 1
	Link System Call on NFS: Scenario 1
	Link System Call on NFS: Scenario 1
	Link System Call on NFS: Scenario 1
	Link System Call on NFS: Scenario 2
	Link System Call on NFS: Scenario 2
	Link System Call on NFS: Scenario 2
	Link System Call on NFS: Scenario 2
	Link System Call on NFS: Scenario 2
	Link System Call on NFS: Scenario 2
	Link System Call on NFS: Scenario 2
	Link System Call on NFS: Scenario 2
	Link System Call on NFS: Scenario 2
	Link System Call on NFS: Scenario 2
	Summary
	References

