
0/45

�

�

�

�

�

�

	

Care and Feeding of Passwords

Andreas Zeller/Stephan Neuhaus
Lehrstuhl Softwaretechnik
Universität des Saarlandes, Saarbrücken

1/45

�

�

�

�

�

�

	

The Menu

• Risks of Using Passwords

1/45

�

�

�

�

�

�

	

The Menu

• Risks of Using Passwords

• How to Steal ATM PINs

1/45

�

�

�

�

�

�

	

The Menu

• Risks of Using Passwords

• How to Steal ATM PINs

• Storing Passwords

1/45

�

�

�

�

�

�

	

The Menu

• Risks of Using Passwords

• How to Steal ATM PINs

• Storing Passwords

• Cracking Passwords, Brute-Force and Otherwise

1/45

�

�

�

�

�

�

	

The Menu

• Risks of Using Passwords

• How to Steal ATM PINs

• Storing Passwords

• Cracking Passwords, Brute-Force and Otherwise

• Back-of-Envelope Brute-Force Cost Calculation

1/45

�

�

�

�

�

�

	

The Menu

• Risks of Using Passwords

• How to Steal ATM PINs

• Storing Passwords

• Cracking Passwords, Brute-Force and Otherwise

• Back-of-Envelope Brute-Force Cost Calculation

• Defenses Against Atacks: Salting, Longer Passwords

1/45

�

�

�

�

�

�

	

The Menu

• Risks of Using Passwords

• How to Steal ATM PINs

• Storing Passwords

• Cracking Passwords, Brute-Force and Otherwise

• Back-of-Envelope Brute-Force Cost Calculation

• Defenses Against Atacks: Salting, Longer Passwords

• Passwords are Doomed

1/45

�

�

�

�

�

�

	

The Menu

• Risks of Using Passwords

• How to Steal ATM PINs

• Storing Passwords

• Cracking Passwords, Brute-Force and Otherwise

• Back-of-Envelope Brute-Force Cost Calculation

• Defenses Against Atacks: Salting, Longer Passwords

• Passwords are Doomed

• Eliminating Passwords

2/45

�

�

�

�

�

�

	

What is a Password?

A password is a piece of knowledge that you and another party
share

2/45

�

�

�

�

�

�

	

What is a Password?

A password is a piece of knowledge that you and another party
share

Whenever you want to communicate with that other party, you
divulge that shared secret

2/45

�

�

�

�

�

�

	

What is a Password?

A password is a piece of knowledge that you and another party
share

Whenever you want to communicate with that other party, you
divulge that shared secret

You are thereby authenticated

2/45

�

�

�

�

�

�

	

What is a Password?

A password is a piece of knowledge that you and another party
share

Whenever you want to communicate with that other party, you
divulge that shared secret

You are thereby authenticated

A password is an authenticator

3/45

�

�

�

�

�

�

	

Risks of Using Passwords (1)

If anyone but you gets your authenticators, your account no
longer belongs to you (this is true not only for passwords)

How to give away your password:

3/45

�

�

�

�

�

�

	

Risks of Using Passwords (1)

If anyone but you gets your authenticators, your account no
longer belongs to you (this is true not only for passwords)

How to give away your password:

• it could be observed during entry

3/45

�

�

�

�

�

�

	

Risks of Using Passwords (1)

If anyone but you gets your authenticators, your account no
longer belongs to you (this is true not only for passwords)

How to give away your password:

• it could be observed during entry

• you could give it away voluntarily

3/45

�

�

�

�

�

�

	

Risks of Using Passwords (1)

If anyone but you gets your authenticators, your account no
longer belongs to you (this is true not only for passwords)

How to give away your password:

• it could be observed during entry

• you could give it away voluntarily

• you could give it away because someone puts a gun to your
head

3/45

�

�

�

�

�

�

	

Risks of Using Passwords (1)

If anyone but you gets your authenticators, your account no
longer belongs to you (this is true not only for passwords)

How to give away your password:

• it could be observed during entry

• you could give it away voluntarily

• you could give it away because someone puts a gun to your
head

• you have written down the password somewhere and the
piece of paper gets stolen (or copied)

3/45

�

�

�

�

�

�

	

Risks of Using Passwords (1)

If anyone but you gets your authenticators, your account no
longer belongs to you (this is true not only for passwords)

How to give away your password:

• it could be observed during entry

• you could give it away voluntarily

• you could give it away because someone puts a gun to your
head

• you have written down the password somewhere and the
piece of paper gets stolen (or copied)

• it could be guessed if it is easily guessable

4/45

�

�

�

�

�

�

	

Risks of Using Passwords (2)

• it could be so short that an exhaustive search will quickly
find it

4/45

�

�

�

�

�

�

	

Risks of Using Passwords (2)

• it could be so short that an exhaustive search will quickly
find it

• the password could be stored somewhere in clear text and
this clear text copied

4/45

�

�

�

�

�

�

	

Risks of Using Passwords (2)

• it could be so short that an exhaustive search will quickly
find it

• the password could be stored somewhere in clear text and
this clear text copied

• the password could be stored encrypted but the encryption
might be breakable (or there might be other problems with
the encryption)

5/45

�

�

�

�

�

�

	

ATM PIN Fraud

The PIN entry terminals for ATMs are highly secure. Still, some
fraudsters managed to copy ATM cards and their associated
PINs without the victim being aware of that:

5/45

�

�

�

�

�

�

	

ATM PIN Fraud

The PIN entry terminals for ATMs are highly secure. Still, some
fraudsters managed to copy ATM cards and their associated
PINs without the victim being aware of that:

First, the fraudsters attached a small device to the side of the
ATM and observed the electromagnetic signals emanating
from it when the card was swiped through the card reader.
This was enough to create a copy of the card. Still, they
needed the PIN in order to impersonate the customer.

How would you do it?

6/45

�

�

�

�

�

�

	

Methods to Get The PIN (1)

• Threaten the customer with a weapon (disadvantage: the
customer then knows that his PIN is no longer secure)

6/45

�

�

�

�

�

�

	

Methods to Get The PIN (1)

• Threaten the customer with a weapon (disadvantage: the
customer then knows that his PIN is no longer secure)

• Stand close behind the person when they’re entering their
PIN and observe the PIN directly.

6/45

�

�

�

�

�

�

	

Methods to Get The PIN (1)

• Threaten the customer with a weapon (disadvantage: the
customer then knows that his PIN is no longer secure)

• Stand close behind the person when they’re entering their
PIN and observe the PIN directly.

• A slight variation: mount a small camera so that it can view
the PIN entry terminal.

6/45

�

�

�

�

�

�

	

Methods to Get The PIN (1)

• Threaten the customer with a weapon (disadvantage: the
customer then knows that his PIN is no longer secure)

• Stand close behind the person when they’re entering their
PIN and observe the PIN directly.

• A slight variation: mount a small camera so that it can view
the PIN entry terminal.

• Wait for an elderly person to actually ask you to enter their
PIN for them (it happens).

7/45

�

�

�

�

�

�

	

Methods to Get The PIN (2)

• Prepare the keyboard of the PIN entry terminal with a
special dust that visibly changes its configuration when it’s
touched by something. (For example, try graphite.) That
gives you the digits.

7/45

�

�

�

�

�

�

	

Methods to Get The PIN (2)

• Prepare the keyboard of the PIN entry terminal with a
special dust that visibly changes its configuration when it’s
touched by something. (For example, try graphite.) That
gives you the digits.

In order to find out which of the 4! = 24 permutations is the
correct one, try two at a time, wait a month (why?), try
another two etc. until you find the right one. (Failed
attempts are logged, but the customer will be unaware of
them.)

7/45

�

�

�

�

�

�

	

Methods to Get The PIN (2)

• Prepare the keyboard of the PIN entry terminal with a
special dust that visibly changes its configuration when it’s
touched by something. (For example, try graphite.) That
gives you the digits.

In order to find out which of the 4! = 24 permutations is the
correct one, try two at a time, wait a month (why?), try
another two etc. until you find the right one. (Failed
attempts are logged, but the customer will be unaware of
them.)

• The above can also be (and has been) tried with infrared
cameras observing residual warmth on the keys. That will
also give you the correct permutation.

8/45

�

�

�

�

�

�

	

Giving the Password Away

Giving the password away, either voluntarily or involuntarily,
or having it stolen when it’s written down somewhere is really
outside the scope of this lecture.

The only defense against that is to educate your users and
having a good security policy in place that is consistently
enforced.

9/45

�

�

�

�

�

�

	

Summary So Far

• A password is an authenticator.

9/45

�

�

�

�

�

�

	

Summary So Far

• A password is an authenticator.

• It is a shared secret.

9/45

�

�

�

�

�

�

	

Summary So Far

• A password is an authenticator.

• It is a shared secret.

• Therefore, both parties (the authenticating service and the
authenticated person) must make sure to keep the
password safe.

9/45

�

�

�

�

�

�

	

Summary So Far

• A password is an authenticator.

• It is a shared secret.

• Therefore, both parties (the authenticating service and the
authenticated person) must make sure to keep the
password safe.

• Educate your users to choose good passwords and keep
them safe.

10/45

�

�

�

�

�

�

	

How to Keep Passwords Safe

• Choose good, unguessable passwords

10/45

�

�

�

�

�

�

	

How to Keep Passwords Safe

• Choose good, unguessable passwords

• Protect them during entry

10/45

�

�

�

�

�

�

	

How to Keep Passwords Safe

• Choose good, unguessable passwords

• Protect them during entry

• Store them in encrypted form (but do it right)

11/45

�

�

�

�

�

�

	

Password Storage: Turning Echo Off (1)

“Local Echo” is the name for the process of printing the
character that you have just typed to the screen. For obvious
reasons, local echo should be disabled when entering
passwords.

Under Unix (Linux), using bash or in a boune-shell script:

stty -echo # Turn echo off
stty echo # Turn echo back on
read -s somevar # Read variable "somevar" without echo

12/45

�

�

�

�

�

�

	

Password Storage: Turning Echo Off (2)

Under Linux, in C, using ioctl(2):

#include <sys/ioctl.h>
#include <sys/types.h>

void echo off(int fd) {
struct sgttyb tdata;

if (ioctl (fd, TIOCGETP, &tdata) == −1)
error ("can’t get terminal parameters");

tdata.sg flags &= ˜ECHO; /* Use |= ECHO to turn echo back on. */ 10

/* tdata.sg flags |= CBREAK; */

if (ioctl (fd, TIOCSETP, &tdata) == −1)
error ("can’t set terminal parameters");

}

13/45

�

�

�

�

�

�

	

Password Storage: Turning Echo Off (3)

Under Linux, in C, using tcgetattr(3):

#include <termios.h>
#include <unistd.h>

void echo off(int fd) {
struct termios ios;

if (tcgetattr(fd, &ios) == −1)
error ("can’t get terminal parameters");

ios.c lflag &= ˜ECHO; 10

if (tcsetattr(fd, &ios) == −1)
error ("can’t set terminal parameters");

}

14/45

�

�

�

�

�

�

	

Password Storage: Cleartext

Storing passwords in clear text is never advised.

Passwords should be stored encrypted, but don’t do this:

#include <string.h>

typedef unsigned char key t[8];

extern key t lookup master key(void);
extern char *decrypt(char *ciphertext, key t key);

bool check password(const char *given password,
const char *encrypted password) {

key t master key = look up master key(); 10

char *plaintext password = decrypt(encrypted password, master key);

return strcmp(plaintext password, given password) == 0;
}

14/45

�

�

�

�

�

�

	

Password Storage: Cleartext

Storing passwords in clear text is never advised.

Passwords should be stored encrypted, but don’t do this:

#include <string.h>

typedef unsigned char key t[8];

extern key t lookup master key(void);
extern char *decrypt(char *ciphertext, key t key);

bool check password(const char *given password,
const char *encrypted password) {

key t master key = look up master key(); 10

char *plaintext password = decrypt(encrypted password, master key);

return strcmp(plaintext password, given password) == 0;
}

This needs the master key in plaintext stored somewhere

15/45

�

�

�

�

�

�

	

Storing Encrypted Passwords (1)

Don’t use the password as the data to en/decrypt, use it as the
key to encrypt a known plaintext block:

#include <string.h>

typedef unsigned char key t[8];

extern key t make key(const char* key material);
extern char *encrypt(char *plaintext, key t key);

static const char *block = "AAAAAAAA";

bool check password(const char *given password, 10

const char *encrypted password) {
key t key = make key(given password);
char *encrypted given password = encrypt(block, key);

return strcmp(encrypted given password, encrypted password) == 0;
}

16/45

�

�

�

�

�

�

	

Storing Encrypted Passwords (2)

The following encryption algorithm appears in Microsoft SQL
Server:

1. Convert the password to UTF-16, an encoding of Unicode.
Because of some peculiarities of UTF-16 and Unicode, the
effect is the same as as putting each ASCII character
right-justified into a 16-bit field. The must significant 8 bits
will be zero.

16/45

�

�

�

�

�

�

	

Storing Encrypted Passwords (2)

The following encryption algorithm appears in Microsoft SQL
Server:

1. Convert the password to UTF-16, an encoding of Unicode.
Because of some peculiarities of UTF-16 and Unicode, the
effect is the same as as putting each ASCII character
right-justified into a 16-bit field. The must significant 8 bits
will be zero.

2. For each byte b of the password, swap the most significant
nibble (four bits) with the least significant nibble.

16/45

�

�

�

�

�

�

	

Storing Encrypted Passwords (2)

The following encryption algorithm appears in Microsoft SQL
Server:

1. Convert the password to UTF-16, an encoding of Unicode.
Because of some peculiarities of UTF-16 and Unicode, the
effect is the same as as putting each ASCII character
right-justified into a 16-bit field. The must significant 8 bits
will be zero.

2. For each byte b of the password, swap the most significant
nibble (four bits) with the least significant nibble.

3. Set b ← b ⊕ 0xa5.

16/45

�

�

�

�

�

�

	

Storing Encrypted Passwords (2)

The following encryption algorithm appears in Microsoft SQL
Server:

1. Convert the password to UTF-16, an encoding of Unicode.
Because of some peculiarities of UTF-16 and Unicode, the
effect is the same as as putting each ASCII character
right-justified into a 16-bit field. The must significant 8 bits
will be zero.

2. For each byte b of the password, swap the most significant
nibble (four bits) with the least significant nibble.

3. Set b ← b ⊕ 0xa5.

Now, since there is no secret involved, this is at most an
encoding, but not an encryption. It is totally reversible without
knowing any secrets.

17/45

�

�

�

�

�

�

	

Storing Encrypted Passwords (3)

If the encryption method is good (Unix used 25 rounds of the
DES which is about as good as they come), the password file
can be stolen without ill effects

17/45

�

�

�

�

�

�

	

Storing Encrypted Passwords (3)

If the encryption method is good (Unix used 25 rounds of the
DES which is about as good as they come), the password file
can be stolen without ill effects

Therefore, this is a secure method of storing passwords

17/45

�

�

�

�

�

�

	

Storing Encrypted Passwords (3)

If the encryption method is good (Unix used 25 rounds of the
DES which is about as good as they come), the password file
can be stolen without ill effects

Therefore, this is a secure method of storing passwords

Right?

17/45

�

�

�

�

�

�

	

Storing Encrypted Passwords (3)

If the encryption method is good (Unix used 25 rounds of the
DES which is about as good as they come), the password file
can be stolen without ill effects

Therefore, this is a secure method of storing passwords

Right? Right?!

18/45

�

�

�

�

�

�

	

Passwords: Some Simple Theory

Let Σ be an alphabet. For example, Σ could be the set of
printable seven-bit ASCII characters, or the set of lower-case
alphabetic ASCII characters. Let the maximum length of a
password be n.

7-bit ASCII subsection Range |Σ|
All printable 32 (‘ ’) to 126 (‘˜’) 95
Letters and digits 48 (‘0’) to 57 (‘9’);

65 (‘A’) to 90 (‘Z’);
97 (‘a’) to 122 (‘z’); 62

Letters 65 (‘A’) to 90 (‘Z’);
97 (‘a’) to 122 (‘z’); 52

Lowercase letters 97 (‘a’) to 122 (‘z’); 26

19/45

�

�

�

�

�

�

	

Number of Passwords

There are |Σ|k possible strings of length k made out of
characters of Σ (0 ≤ k ≤ n).

There are
∑n
k=0 |Σ|k = (|Σ|n+1 − 1

)/
(|Σ| − 1) possible

passwords of length at most n. Unix used to have n = 8:

ASCII subsection Number of Passwords Fraction
All printable 6704780954517121 1.0
Letters and digits 221919451578091 0.033
Letters 54507958502661 0.00813
Lowercase letters 217180147159 0.0000324
Lowercase words(*) 96099 0.0000000000143

(*) Number of words in a word list made from Webster’s that
are eight characters or less. Webster’s has 311141 words total.

20/45

�

�

�

�

�

�

	

Attacking the Encrypted Scheme

We are somehow in posession of a file containing user names
and encrypted passwords. The cryptographic algorithm (that
we know) is so strong that we cannot break the encryption.
How can we still try to get the plaintext passwords?

20/45

�

�

�

�

�

�

	

Attacking the Encrypted Scheme

We are somehow in posession of a file containing user names
and encrypted passwords. The cryptographic algorithm (that
we know) is so strong that we cannot break the encryption.
How can we still try to get the plaintext passwords?

By trying all possible plaintext passwords, encrypting them
and seeing if any of our encrypted passwords match.

20/45

�

�

�

�

�

�

	

Attacking the Encrypted Scheme

We are somehow in posession of a file containing user names
and encrypted passwords. The cryptographic algorithm (that
we know) is so strong that we cannot break the encryption.
How can we still try to get the plaintext passwords?

By trying all possible plaintext passwords, encrypting them
and seeing if any of our encrypted passwords match.

If no special precautions are taken, we can do this offline and
thus precompute a dictionary of encrypted passwords
(Dictionary Attack).

21/45

�

�

�

�

�

�

	

Storage Estimate for Dictionary Attack

Assume that both the plaintext password and the
corresponding encrypted password each need eight bytes to
store. With 6704780954517121 plain/ciphertext pairs, that
would be 107276495272273936 bytes, or about 253 bytes
(about 8000 Terabytes).

This would be just about feasible for a really large
organization or government today.

But for everone else, this would be out of reach.

21/45

�

�

�

�

�

�

	

Storage Estimate for Dictionary Attack

Assume that both the plaintext password and the
corresponding encrypted password each need eight bytes to
store. With 6704780954517121 plain/ciphertext pairs, that
would be 107276495272273936 bytes, or about 253 bytes
(about 8000 Terabytes).

This would be just about feasible for a really large
organization or government today.

But for everone else, this would be out of reach.

So this attack is not feasible and passwords are secure from
this attack.

21/45

�

�

�

�

�

�

	

Storage Estimate for Dictionary Attack

Assume that both the plaintext password and the
corresponding encrypted password each need eight bytes to
store. With 6704780954517121 plain/ciphertext pairs, that
would be 107276495272273936 bytes, or about 253 bytes
(about 8000 Terabytes).

This would be just about feasible for a really large
organization or government today.

But for everone else, this would be out of reach.

So this attack is not feasible and passwords are secure from
this attack.

Right?

21/45

�

�

�

�

�

�

	

Storage Estimate for Dictionary Attack

Assume that both the plaintext password and the
corresponding encrypted password each need eight bytes to
store. With 6704780954517121 plain/ciphertext pairs, that
would be 107276495272273936 bytes, or about 253 bytes
(about 8000 Terabytes).

This would be just about feasible for a really large
organization or government today.

But for everone else, this would be out of reach.

So this attack is not feasible and passwords are secure from
this attack.

Right? Right?!

22/45

�

�

�

�

�

�

	

Password Quality (1)

First Study by Robert T. Morris (once head scientist at the NSA)
and Thompson (co-inventor of Unix) in Communications of the
ACM 22(11), November 1979, pp. 594–597.

They tested 3289 passwords and here is what they found:

22/45

�

�

�

�

�

�

	

Password Quality (1)

First Study by Robert T. Morris (once head scientist at the NSA)
and Thompson (co-inventor of Unix) in Communications of the
ACM 22(11), November 1979, pp. 594–597.

They tested 3289 passwords and here is what they found:

15 (0.5%) were a single ASCII character

22/45

�

�

�

�

�

�

	

Password Quality (1)

First Study by Robert T. Morris (once head scientist at the NSA)
and Thompson (co-inventor of Unix) in Communications of the
ACM 22(11), November 1979, pp. 594–597.

They tested 3289 passwords and here is what they found:

15 (0.5%) were a single ASCII character
72 (2.2%) were strings of two ASCII characters

22/45

�

�

�

�

�

�

	

Password Quality (1)

First Study by Robert T. Morris (once head scientist at the NSA)
and Thompson (co-inventor of Unix) in Communications of the
ACM 22(11), November 1979, pp. 594–597.

They tested 3289 passwords and here is what they found:

15 (0.5%) were a single ASCII character
72 (2.2%) were strings of two ASCII characters

464 (14.1%) were strings of three ASCII characters

22/45

�

�

�

�

�

�

	

Password Quality (1)

First Study by Robert T. Morris (once head scientist at the NSA)
and Thompson (co-inventor of Unix) in Communications of the
ACM 22(11), November 1979, pp. 594–597.

They tested 3289 passwords and here is what they found:

15 (0.5%) were a single ASCII character
72 (2.2%) were strings of two ASCII characters

464 (14.1%) were strings of three ASCII characters
477 (14.5%) were strings of four alphanumerics

22/45

�

�

�

�

�

�

	

Password Quality (1)

First Study by Robert T. Morris (once head scientist at the NSA)
and Thompson (co-inventor of Unix) in Communications of the
ACM 22(11), November 1979, pp. 594–597.

They tested 3289 passwords and here is what they found:

15 (0.5%) were a single ASCII character
72 (2.2%) were strings of two ASCII characters

464 (14.1%) were strings of three ASCII characters
477 (14.5%) were strings of four alphanumerics
706 (21.4%) were five letters, all upper-case or all lower-case

22/45

�

�

�

�

�

�

	

Password Quality (1)

First Study by Robert T. Morris (once head scientist at the NSA)
and Thompson (co-inventor of Unix) in Communications of the
ACM 22(11), November 1979, pp. 594–597.

They tested 3289 passwords and here is what they found:

15 (0.5%) were a single ASCII character
72 (2.2%) were strings of two ASCII characters

464 (14.1%) were strings of three ASCII characters
477 (14.5%) were strings of four alphanumerics
706 (21.4%) were five letters, all upper-case or all lower-case
605 (18.3%) were six letters, all lower-case

22/45

�

�

�

�

�

�

	

Password Quality (1)

First Study by Robert T. Morris (once head scientist at the NSA)
and Thompson (co-inventor of Unix) in Communications of the
ACM 22(11), November 1979, pp. 594–597.

They tested 3289 passwords and here is what they found:

15 (0.5%) were a single ASCII character
72 (2.2%) were strings of two ASCII characters

464 (14.1%) were strings of three ASCII characters
477 (14.5%) were strings of four alphanumerics
706 (21.4%) were five letters, all upper-case or all lower-case
605 (18.3%) were six letters, all lower-case

2339 (71.0%) were easily guessable passwords

23/45

�

�

�

�

�

�

	

Password Quality (2)

Additionally, 492 passwords appeared in various dictionaries
and word lists. All in all, 2831 or 86% of all passwords fell
into these classes! (There was overlap between the word lists
and the exhaustive tests)

How bad is that?

24/45

�

�

�

�

�

�

	

Cost of Dictionary Attack (1)

There are

95 single ASCII characters
9025 strings of two ASCII characters

100000 English words
857375 strings of three ASCII characters

14776336 strings of four alphanumerics
23762752 were five letters, all upper-case or all lower-case

308915776 were six letters, all lower-case
348421359 Total

A conservative estimate is that you can do 1,000,000 crypto
operations per second on a current machine. Compared with
the time to write that to a disk, the time to encrypt is
negligible.

25/45

�

�

�

�

�

�

	

Cost of Dictionary Attack (2)

Assume disk write speeds of just 1MB/s (much too low!). We
assume that we can encrypt data faster than we can write it.

25/45

�

�

�

�

�

�

	

Cost of Dictionary Attack (2)

Assume disk write speeds of just 1MB/s (much too low!). We
assume that we can encrypt data faster than we can write it.

We need to write 5574741744 bytes or about 5 Gigabytes of
storage (easily available these days). This takes about 5000
seconds, or about 1.5 hours.

25/45

�

�

�

�

�

�

	

Cost of Dictionary Attack (2)

Assume disk write speeds of just 1MB/s (much too low!). We
assume that we can encrypt data faster than we can write it.

We need to write 5574741744 bytes or about 5 Gigabytes of
storage (easily available these days). This takes about 5000
seconds, or about 1.5 hours.

With a hour and a half of precomputation and five Gigs of hard
disk space, you could crack about 85% of all Unix passwords in
1979 just by an O(1) lookup operation for each.

25/45

�

�

�

�

�

�

	

Cost of Dictionary Attack (2)

Assume disk write speeds of just 1MB/s (much too low!). We
assume that we can encrypt data faster than we can write it.

We need to write 5574741744 bytes or about 5 Gigabytes of
storage (easily available these days). This takes about 5000
seconds, or about 1.5 hours.

With a hour and a half of precomputation and five Gigs of hard
disk space, you could crack about 85% of all Unix passwords in
1979 just by an O(1) lookup operation for each.

If that’s not bad, I don’t know what is!

25/45

�

�

�

�

�

�

	

Cost of Dictionary Attack (2)

Assume disk write speeds of just 1MB/s (much too low!). We
assume that we can encrypt data faster than we can write it.

We need to write 5574741744 bytes or about 5 Gigabytes of
storage (easily available these days). This takes about 5000
seconds, or about 1.5 hours.

With a hour and a half of precomputation and five Gigs of hard
disk space, you could crack about 85% of all Unix passwords in
1979 just by an O(1) lookup operation for each.

If that’s not bad, I don’t know what is!

But that was 1979; the situation has markedly improved since
then, of course.

25/45

�

�

�

�

�

�

	

Cost of Dictionary Attack (2)

Assume disk write speeds of just 1MB/s (much too low!). We
assume that we can encrypt data faster than we can write it.

We need to write 5574741744 bytes or about 5 Gigabytes of
storage (easily available these days). This takes about 5000
seconds, or about 1.5 hours.

With a hour and a half of precomputation and five Gigs of hard
disk space, you could crack about 85% of all Unix passwords in
1979 just by an O(1) lookup operation for each.

If that’s not bad, I don’t know what is!

But that was 1979; the situation has markedly improved since
then, of course.

Really?

25/45

�

�

�

�

�

�

	

Cost of Dictionary Attack (2)

Assume disk write speeds of just 1MB/s (much too low!). We
assume that we can encrypt data faster than we can write it.

We need to write 5574741744 bytes or about 5 Gigabytes of
storage (easily available these days). This takes about 5000
seconds, or about 1.5 hours.

With a hour and a half of precomputation and five Gigs of hard
disk space, you could crack about 85% of all Unix passwords in
1979 just by an O(1) lookup operation for each.

If that’s not bad, I don’t know what is!

But that was 1979; the situation has markedly improved since
then, of course.

Really? Really?!

26/45

�

�

�

�

�

�

	

Defense Against Precomputation: Salting

Store, together with each password, a small integer (up to a
few thousand) in the clear. This integer is called the salt. For
Unix, the salt is a 12-bit value.

In order to check a password, the salt is used to perturb the
encryption algorithm (for example, by prepending the salt to
the given password prior to encryption). =⇒ the same
password with two different salts will encrypt to different
strings.

Same passwords no longer appear related in the password file
and a precomputed dictionary attack is made more difficult.
For Unix, a dictionary would have to be 212 or 4096 times as
large.

27/45

�

�

�

�

�

�

	

Unix crypt() (1)

The Unix password file contains seven fields:

neuhaus:abf/31kl&1@fe:7006:100:Stephan Neuhaus:/home/neuhaus:/bin/bash

The second field is the password field. The password contains
the salt in the first two characters, and the encrypted password
in the following characters.

The eight seven-bit characters of the password are used to
form a 56-bit DES key.

The salt is used to change the E table in DES that expands a
32-bit intermediate result to 48 bits

The DES is called 25 times on a 64-bit block of zeroes.

The result is expanded into 11 7-bit ASCII characters and
prepended with the salt.

28/45

�

�

�

�

�

�

	

Unix crypt() Function (2)

0 0 0 0 0 0 0 0

25x DES

Eight-character password

56-bit key

64-bit block of zeroes

64-bit encrypted result

s s
12-bit salt (two characters)

E

11-character coded password

xxxxxxxx

yyyyyyyyyyys s

29/45

�

�

�

�

�

�

	

Unix crypt() Function (3)

Is this a good password encryption function?

• Not reversible (that we know)

• Salted

29/45

�

�

�

�

�

�

	

Unix crypt() Function (3)

Is this a good password encryption function?

• Not reversible (that we know)

• Salted

But. . .

29/45

�

�

�

�

�

�

	

Unix crypt() Function (3)

Is this a good password encryption function?

• Not reversible (that we know)

• Salted

But. . .

Still can’t make good passwords from bad ones!

30/45

�

�

�

�

�

�

	

State of the Passwords in 1989/1993

David C. Feldmeier, Philip R. Karn, Unix Password Security -
Ten Years Later, Proceedings of CRYPTO ’89, pp. 44–63.

Walter Belgers, Unix Password Security, Technical Report,
Technische Universiteit Eindhoven, December 1993.

Very fast crypt(3) functions tuned especially for cracking many
passwords

Cracked 11% of all accounts (10.7% of accounts with shell) in
about 25 hours of wall clock (not CPU) time using 11 Sun ELCs
(25 MHz Sparc processors, 16–24 MB main memory).

31/45

�

�

�

�

�

�

	

State of the Passwords in 2004

• Hash functions instead of crypt(3) allow passwords longer
than eight characters

• New password algorithm allows longer salt

31/45

�

�

�

�

�

�

	

State of the Passwords in 2004

• Hash functions instead of crypt(3) allow passwords longer
than eight characters

• New password algorithm allows longer salt

But. . .

31/45

�

�

�

�

�

�

	

State of the Passwords in 2004

• Hash functions instead of crypt(3) allow passwords longer
than eight characters

• New password algorithm allows longer salt

But. . . still can’t make good passwords from bad ones!

31/45

�

�

�

�

�

�

	

State of the Passwords in 2004

• Hash functions instead of crypt(3) allow passwords longer
than eight characters

• New password algorithm allows longer salt

But. . . still can’t make good passwords from bad ones!

• Computers have gotten so fast that you can easily do
2,000,000 crypts/second on a machine that’s not top of
the line

• People just don’t choose longer passwords:

31/45

�

�

�

�

�

�

	

State of the Passwords in 2004

• Hash functions instead of crypt(3) allow passwords longer
than eight characters

• New password algorithm allows longer salt

But. . . still can’t make good passwords from bad ones!

• Computers have gotten so fast that you can easily do
2,000,000 crypts/second on a machine that’s not top of
the line

• People just don’t choose longer passwords: older people
remember the eight-character limit

31/45

�

�

�

�

�

�

	

State of the Passwords in 2004

• Hash functions instead of crypt(3) allow passwords longer
than eight characters

• New password algorithm allows longer salt

But. . . still can’t make good passwords from bad ones!

• Computers have gotten so fast that you can easily do
2,000,000 crypts/second on a machine that’s not top of
the line

• People just don’t choose longer passwords: older people
remember the eight-character limit and the younger ones
are just too lazy :-)

=⇒ Passwords are probably not more difficult to crack now
than they were in 1993.

32/45

�

�

�

�

�

�

	

How to Choose Good Passwords? (1)

Generate passwords by machine (and live with the fact that
they’ll be written down)

Attempt to crack a password when it’s set and dismiss those
that can be cracked (there are libraries that plug into the
password program that do precisely this). A good password
should be at least seven characters, have uppercase and
lowercase letters and some punctuation.

33/45

�

�

�

�

�

�

	

How to Choose Good Passwords? (2)

Here are some bad passwords for a user ‘neuhaus’. They
should be rejected by a password entry program.

Bad password Reason
neuhaus Same as user name
neuhaus! Derived from user name
NeUhAuS Also derived from user name
suahuen Also derived from user name
tree In word list
eert Derived from word in word list
qwerty Simple keyboard pattern
Bessie Name of user’s cat(*)

(*) I don’t know how the password program could know this,
but it should reject the password anyway!

34/45

�

�

�

�

�

�

	

How to Choose Good Passwords? (3)

Here are some more bad passwords.

Bad password Reason
fuck In wordlist
Frodo Well-known password
Joshua Also a well-known password(*)
agnitfom Also a well-known password(*)
redrum Also a well-known password(*)

(*) Name the source and win a prize!

35/45

�

�

�

�

�

�

	

How to Choose Good Passwords? (3)

Take a sentence that you can easily remember. Use the first
letter of each word, preserving case, and including
punctuation. For example, “My name is Ozymandias, king of
kings!” becomes “MniO,kok!”.

Take care that you don’t misremember the sentence as, e.g., “I
am Ozymandias. . . ” I have lost several passwords and
passphrases this way!

“One Ring to rule them, one Ring to find them” ⇒
“1R2rt,1R2ft”; “If this be error and upon me proved, I never
writ and no man ever loved” ⇒ “Itbeaump,Inwanmel.”; “Call me
Ishmael. Some years ago - never mind how long precisely -
having little or no money in my purse,” ⇒ “CmI.
Sya-nmhlp-hlonmimp,” (Name the sources and win prizes).

36/45

�

�

�

�

�

�

	

How to Choose Good Passwords? (4)

For a variation, take the last letter or the second letter of each
word. For example, “My name is Ozymandias, king of kings!”
becomes “yess,gfs!”.

Or: “One Ring to rule them, one Ring to find them” ⇒
“niouh,nioih”; “If this be error and upon me proved, I never writ
and no man ever loved” ⇒ “Iibonome,Ieinnaee.”; “Call me
Ishmael. Some years ago - never mind how long precisely -
having little or no money in my purse,” ⇒
“CeI.oyg-nihop-alrnoiyp,”

Don’t choose any of these examples any more!

Thease passwords can still be brute-forced (see exercises).

37/45

�

�

�

�

�

�

	

More Bad News: Replay Attacks

Passwords are often used to authenticate yourself over some
network.

37/45

�

�

�

�

�

�

	

More Bad News: Replay Attacks

Passwords are often used to authenticate yourself over some
network.

If that network is packet-switched (e.g., IP), the information
travels through many hosts on the way from source to
destination

37/45

�

�

�

�

�

�

	

More Bad News: Replay Attacks

Passwords are often used to authenticate yourself over some
network.

If that network is packet-switched (e.g., IP), the information
travels through many hosts on the way from source to
destination

If the password is (a) reusable and (b) sent in the clear, an
eavesdropper can sniff the password and impersonate you.

This is known as a replay attack.

37/45

�

�

�

�

�

�

	

More Bad News: Replay Attacks

Passwords are often used to authenticate yourself over some
network.

If that network is packet-switched (e.g., IP), the information
travels through many hosts on the way from source to
destination

If the password is (a) reusable and (b) sent in the clear, an
eavesdropper can sniff the password and impersonate you.

This is known as a replay attack.

Normal passwords are very much vulnerable to this attack.

37/45

�

�

�

�

�

�

	

More Bad News: Replay Attacks

Passwords are often used to authenticate yourself over some
network.

If that network is packet-switched (e.g., IP), the information
travels through many hosts on the way from source to
destination

If the password is (a) reusable and (b) sent in the clear, an
eavesdropper can sniff the password and impersonate you.

This is known as a replay attack.

Normal passwords are very much vulnerable to this attack.

Defense: Use One-time passwords (later in this lecture) and/or
encrypt passwords (e.g., ssh, later lecture), or eliminate
passwords altogether (below).

38/45

�

�

�

�

�

�

	

Eliminate Passwords Altogether

A password is of the type you are what you know.

If others know the shared secret, they can impersonate you.
There is no way around that.

Therefore:

38/45

�

�

�

�

�

�

	

Eliminate Passwords Altogether

A password is of the type you are what you know.

If others know the shared secret, they can impersonate you.
There is no way around that.

Therefore: Eliminate reusable passwords altogether

38/45

�

�

�

�

�

�

	

Eliminate Passwords Altogether

A password is of the type you are what you know.

If others know the shared secret, they can impersonate you.
There is no way around that.

Therefore: Eliminate reusable passwords altogether

Augment them with you are what you have-type (security
tokens) or biometric authenticators.

Biometric authenticators are problematic:

38/45

�

�

�

�

�

�

	

Eliminate Passwords Altogether

A password is of the type you are what you know.

If others know the shared secret, they can impersonate you.
There is no way around that.

Therefore: Eliminate reusable passwords altogether

Augment them with you are what you have-type (security
tokens) or biometric authenticators.

Biometric authenticators are problematic:

• lawful storage of biometric features

38/45

�

�

�

�

�

�

	

Eliminate Passwords Altogether

A password is of the type you are what you know.

If others know the shared secret, they can impersonate you.
There is no way around that.

Therefore: Eliminate reusable passwords altogether

Augment them with you are what you have-type (security
tokens) or biometric authenticators.

Biometric authenticators are problematic:

• lawful storage of biometric features

• liability: what if the retina-scan laser makes some people
blind?

38/45

�

�

�

�

�

�

	

Eliminate Passwords Altogether

A password is of the type you are what you know.

If others know the shared secret, they can impersonate you.
There is no way around that.

Therefore: Eliminate reusable passwords altogether

Augment them with you are what you have-type (security
tokens) or biometric authenticators.

Biometric authenticators are problematic:

• lawful storage of biometric features

• liability: what if the retina-scan laser makes some people
blind?

• acceptance: “Please deposit urine sample here”

39/45

�

�

�

�

�

�

	

Cryptographic Tokens (1)

The RSA SecurID token contains a secret cryptographic key and
a clock that changes the display every minute.

The corresponding server software also contains the key.

The key and the time-of-day together make a unique code with
a lifetime of 60 seconds.

When you authenticate, you enter your user ID and the code on
your SecurID token. The server also generates a token from the
time-of-day and its copy of the key. If they match, you’re in.

40/45

�

�

�

�

�

�

	

Cryptographic Tokens (1)

This can be combined with a PIN pad.

Therefore the user is identified by a combination of what they
have (the token) and what they know (the PIN)

41/45

�

�

�

�

�

�

	

Advantages

Authentication is not only by what you know

41/45

�

�

�

�

�

�

	

Advantages

Authentication is not only by what you know

Authentication token changes quickly =⇒ no replay atack
possible

41/45

�

�

�

�

�

�

	

Advantages

Authentication is not only by what you know

Authentication token changes quickly =⇒ no replay atack
possible

With additional PIN, stealing only the device is useless

42/45

�

�

�

�

�

�

	

Problems

What happens when the clock inside the token and the clock
inside the server don’t agree?

Recommended solution:

• Keep server clocks in check using the Network Time
Protocol (NTP)

• Periodically re-synchronize the tokens on the server

What if the token goes out of sync on a Friday evening?

43/45

�

�

�

�

�

�

	

Summary (1)

The problem with passwords is typical of security design
problems:

How to ensure Confidentiality, Integrity, and Authenticity?

44/45

�

�

�

�

�

�

	

Summary (2)

• Risks of Using Passwords

44/45

�

�

�

�

�

�

	

Summary (2)

• Risks of Using Passwords

• How to Steal ATM PINs

44/45

�

�

�

�

�

�

	

Summary (2)

• Risks of Using Passwords

• How to Steal ATM PINs

• Storing Passwords

44/45

�

�

�

�

�

�

	

Summary (2)

• Risks of Using Passwords

• How to Steal ATM PINs

• Storing Passwords

• Cracking Passwords, Brute-Force and Otherwise

44/45

�

�

�

�

�

�

	

Summary (2)

• Risks of Using Passwords

• How to Steal ATM PINs

• Storing Passwords

• Cracking Passwords, Brute-Force and Otherwise

• Back-of-Envelope Brute-Force Cost Calculation

44/45

�

�

�

�

�

�

	

Summary (2)

• Risks of Using Passwords

• How to Steal ATM PINs

• Storing Passwords

• Cracking Passwords, Brute-Force and Otherwise

• Back-of-Envelope Brute-Force Cost Calculation

• Defenses Against Atacks: Salting, Longer Passwords

44/45

�

�

�

�

�

�

	

Summary (2)

• Risks of Using Passwords

• How to Steal ATM PINs

• Storing Passwords

• Cracking Passwords, Brute-Force and Otherwise

• Back-of-Envelope Brute-Force Cost Calculation

• Defenses Against Atacks: Salting, Longer Passwords

• Passwords are Doomed

44/45

�

�

�

�

�

�

	

Summary (2)

• Risks of Using Passwords

• How to Steal ATM PINs

• Storing Passwords

• Cracking Passwords, Brute-Force and Otherwise

• Back-of-Envelope Brute-Force Cost Calculation

• Defenses Against Atacks: Salting, Longer Passwords

• Passwords are Doomed

• Eliminating Passwords

45/45

�

�

�

�

�

�

	

References

Ross Anderson, Security Engineering, Wiley

Viega, McGraw, Building Secure Software, Addison-Wesley

	The Menu
	What is a Password?
	Risks of Using Passwords (1)
	Risks of Using Passwords (2)
	ATM PIN Fraud
	Methods to Get The PIN (1)
	Methods to Get The PIN (2)
	Giving the Password Away
	Summary So Far
	How to Keep Passwords Safe
	Password Storage: Turning Echo Off (1)
	Password Storage: Turning Echo Off (2)
	Password Storage: Turning Echo Off (3)
	Password Storage: Cleartext
	Storing Encrypted Passwords (1)
	Storing Encrypted Passwords (2)
	Storing Encrypted Passwords (3)
	Passwords: Some Simple Theory
	Number of Passwords
	Attacking the Encrypted Scheme
	Storage Estimate for Dictionary Attack
	Password Quality (1)
	Password Quality (2)
	Cost of Dictionary Attack (1)
	Cost of Dictionary Attack (2)
	Defense Against Precomputation: Salting
	Unix crypt() (1)
	Unix crypt() Function (2)
	Unix crypt() Function (3)
	State of the Passwords in 1989/1993
	State of the Passwords in 2004
	How to Choose Good Passwords? (1)
	How to Choose Good Passwords? (2)
	How to Choose Good Passwords? (3)
	How to Choose Good Passwords? (3)
	How to Choose Good Passwords? (4)
	More Bad News: Replay Attacks
	Eliminate Passwords Altogether
	Cryptographic Tokens (1)
	Cryptographic Tokens (1)
	Advantages
	Problems
	Summary (1)
	Summary (2)
	References

