
0/44

�

�

�

�

�

�

	

Security Mechanisms and Policies

Andreas Zeller/Stephan Neuhaus
Lehrstuhl Softwaretechnik
Universität des Saarlandes, Saarbrücken

1/44

�

�

�

�

�

�

	

The Menu

• Mechanism and Policy

• setuid

• How to Regulate Access

• The K.I.S.S. Principle

2/44

�

�

�

�

�

�

	

Subjects and Objects

Most access control is concerned with (active) subjects getting
access to (passive) objects.

2/44

�

�

�

�

�

�

	

Subjects and Objects

Most access control is concerned with (active) subjects getting
access to (passive) objects.

Process No. 123 opens /etc/passwd.

2/44

�

�

�

�

�

�

	

Subjects and Objects

Most access control is concerned with (active) subjects getting
access to (passive) objects.

Process No. 123 opens /etc/passwd.

A web server, acting on behalf of user zeller, changes a row
in a database.

2/44

�

�

�

�

�

�

	

Subjects and Objects

Most access control is concerned with (active) subjects getting
access to (passive) objects.

Process No. 123 opens /etc/passwd.

A web server, acting on behalf of user zeller, changes a row
in a database.

An ATM, acting on behalf of you, reduces your account balance
by some amount. . .

2/44

�

�

�

�

�

�

	

Subjects and Objects

Most access control is concerned with (active) subjects getting
access to (passive) objects.

Process No. 123 opens /etc/passwd.

A web server, acting on behalf of user zeller, changes a row
in a database.

An ATM, acting on behalf of you, reduces your account balance
by some amount. . . and hopefully hands out some cash in the
process

3/44

�

�

�

�

�

�

	

Mechanism and Policy (1)

Mechanism tells us how access control is enforced.

3/44

�

�

�

�

�

�

	

Mechanism and Policy (1)

Mechanism tells us how access control is enforced.

Policy tells us which subjects get access to which objects.

3/44

�

�

�

�

�

�

	

Mechanism and Policy (1)

Mechanism tells us how access control is enforced.

Policy tells us which subjects get access to which objects.

The Unix concept of file access permissions is (for the most
part) a mechanism: it merely provides the method how to
decide whether a process gets access to a file.

3/44

�

�

�

�

�

�

	

Mechanism and Policy (1)

Mechanism tells us how access control is enforced.

Policy tells us which subjects get access to which objects.

The Unix concept of file access permissions is (for the most
part) a mechanism: it merely provides the method how to
decide whether a process gets access to a file.

The system administrator and the users implement the
corresponding policy, which is written down in /etc/passwd,
/etc/group and the permission bits on the individual objects.

3/44

�

�

�

�

�

�

	

Mechanism and Policy (1)

Mechanism tells us how access control is enforced.

Policy tells us which subjects get access to which objects.

The Unix concept of file access permissions is (for the most
part) a mechanism: it merely provides the method how to
decide whether a process gets access to a file.

The system administrator and the users implement the
corresponding policy, which is written down in /etc/passwd,
/etc/group and the permission bits on the individual objects.

Practical guideline: If it is (or should be) in code, it’s a
mechanism. If it is (or should be) in a config file, it’s a policy.

4/44

�

�

�

�

�

�

	

Mechanism and Policy (2)

It is important to separate mechanism and policy:

4/44

�

�

�

�

�

�

	

Mechanism and Policy (2)

It is important to separate mechanism and policy:

• Debug both separately

4/44

�

�

�

�

�

�

	

Mechanism and Policy (2)

It is important to separate mechanism and policy:

• Debug both separately

• Protect one from bugs in the other

4/44

�

�

�

�

�

�

	

Mechanism and Policy (2)

It is important to separate mechanism and policy:

• Debug both separately

• Protect one from bugs in the other

• Change the policy without having to change the mechanism

4/44

�

�

�

�

�

�

	

Mechanism and Policy (2)

It is important to separate mechanism and policy:

• Debug both separately

• Protect one from bugs in the other

• Change the policy without having to change the mechanism

It’s important to separate the two completely:

4/44

�

�

�

�

�

�

	

Mechanism and Policy (2)

It is important to separate mechanism and policy:

• Debug both separately

• Protect one from bugs in the other

• Change the policy without having to change the mechanism

It’s important to separate the two completely:

Negative example: Unix. The Superuser always gets access.

This part of the policy is hardcoded into most Unix kernels,
and becomes a de facto part of the mechanism.

That makes root omnipotent on a Unix system and that’s why
it is such an exposed account.

5/44

�

�

�

�

�

�

	

Access Control Matrix

View of access control mechanisms as matrix: row contains
active objects (users, processes, etc.), columns contain passive
objects (files etc.), matrix entry says what active object may do
with passive object.

root

neuhaus

zeller

cleve

passwd httpd.conf ls

r/w r/w r/w/x

r

r

r

r

r/w

r/w

r/x

r/x

r/x

Capability

ACL

Objects

Subjects

6/44

�

�

�

�

�

�

	

Full Access Control Matrix

A full access control matrix with n subjects and m objects has
nm entries.

6/44

�

�

�

�

�

�

	

Full Access Control Matrix

A full access control matrix with n subjects and m objects has
nm entries.

Typical Linux system has 100,000 files and directories in the
root filesystem (not counting home directories, devices, mail
spool etc.) and 30 entries in the password file ⇒ 3,000,000
entries, most of which are empty.

6/44

�

�

�

�

�

�

	

Full Access Control Matrix

A full access control matrix with n subjects and m objects has
nm entries.

Typical Linux system has 100,000 files and directories in the
root filesystem (not counting home directories, devices, mail
spool etc.) and 30 entries in the password file ⇒ 3,000,000
entries, most of which are empty.

Every new user adds 100,000 entries.

6/44

�

�

�

�

�

�

	

Full Access Control Matrix

A full access control matrix with n subjects and m objects has
nm entries.

Typical Linux system has 100,000 files and directories in the
root filesystem (not counting home directories, devices, mail
spool etc.) and 30 entries in the password file ⇒ 3,000,000
entries, most of which are empty.

Every new user adds 100,000 entries.

Solution 1: Store entries by row: capability

6/44

�

�

�

�

�

�

	

Full Access Control Matrix

A full access control matrix with n subjects and m objects has
nm entries.

Typical Linux system has 100,000 files and directories in the
root filesystem (not counting home directories, devices, mail
spool etc.) and 30 entries in the password file ⇒ 3,000,000
entries, most of which are empty.

Every new user adds 100,000 entries.

Solution 1: Store entries by row: capability

Solution 2: Store entries by column: access control list

6/44

�

�

�

�

�

�

	

Full Access Control Matrix

A full access control matrix with n subjects and m objects has
nm entries.

Typical Linux system has 100,000 files and directories in the
root filesystem (not counting home directories, devices, mail
spool etc.) and 30 entries in the password file ⇒ 3,000,000
entries, most of which are empty.

Every new user adds 100,000 entries.

Solution 1: Store entries by row: capability

Solution 2: Store entries by column: access control list

Solution 3: Store mostly columns, compute some rows:
hodgepodge :-)

7/44

�

�

�

�

�

�

	

Properties of Capabilities

Capability systems issue a capability to a subject. When the
subject wants to access an object, it presents the capability.
This capability could be encrypted or otherwise protected.

• Can be given to other subjects (which can be good or bad)

7/44

�

�

�

�

�

�

	

Properties of Capabilities

Capability systems issue a capability to a subject. When the
subject wants to access an object, it presents the capability.
This capability could be encrypted or otherwise protected.

• Can be given to other subjects (which can be good or bad)

• Can sometimes be computed on the fly (need not be stored)

7/44

�

�

�

�

�

�

	

Properties of Capabilities

Capability systems issue a capability to a subject. When the
subject wants to access an object, it presents the capability.
This capability could be encrypted or otherwise protected.

• Can be given to other subjects (which can be good or bad)

• Can sometimes be computed on the fly (need not be stored)

• Can be issued minimally, i.e., just enough capabilities to do
the job, but no more

7/44

�

�

�

�

�

�

	

Properties of Capabilities

Capability systems issue a capability to a subject. When the
subject wants to access an object, it presents the capability.
This capability could be encrypted or otherwise protected.

• Can be given to other subjects (which can be good or bad)

• Can sometimes be computed on the fly (need not be stored)

• Can be issued minimally, i.e., just enough capabilities to do
the job, but no more

• Revocation of capabilities and audit (who can do what)
tricky

7/44

�

�

�

�

�

�

	

Properties of Capabilities

Capability systems issue a capability to a subject. When the
subject wants to access an object, it presents the capability.
This capability could be encrypted or otherwise protected.

• Can be given to other subjects (which can be good or bad)

• Can sometimes be computed on the fly (need not be stored)

• Can be issued minimally, i.e., just enough capabilities to do
the job, but no more

• Revocation of capabilities and audit (who can do what)
tricky

• Dissemination not easily controllable.

7/44

�

�

�

�

�

�

	

Properties of Capabilities

Capability systems issue a capability to a subject. When the
subject wants to access an object, it presents the capability.
This capability could be encrypted or otherwise protected.

• Can be given to other subjects (which can be good or bad)

• Can sometimes be computed on the fly (need not be stored)

• Can be issued minimally, i.e., just enough capabilities to do
the job, but no more

• Revocation of capabilities and audit (who can do what)
tricky

• Dissemination not easily controllable.

Crude example: passwords (no fine-grained control)

8/44

�

�

�

�

�

�

	

Properties of ACLs

ACLs are dual to capabilities:

• ACLs cannot be transferred to other subjects (which can be
good or bad)

8/44

�

�

�

�

�

�

	

Properties of ACLs

ACLs are dual to capabilities:

• ACLs cannot be transferred to other subjects (which can be
good or bad)

• Must usually be stored with the object

8/44

�

�

�

�

�

�

	

Properties of ACLs

ACLs are dual to capabilities:

• ACLs cannot be transferred to other subjects (which can be
good or bad)

• Must usually be stored with the object

• Creating minimal ACLs is difficult

8/44

�

�

�

�

�

�

	

Properties of ACLs

ACLs are dual to capabilities:

• ACLs cannot be transferred to other subjects (which can be
good or bad)

• Must usually be stored with the object

• Creating minimal ACLs is difficult

• Revocation of access rights and audit easy

8/44

�

�

�

�

�

�

	

Properties of ACLs

ACLs are dual to capabilities:

• ACLs cannot be transferred to other subjects (which can be
good or bad)

• Must usually be stored with the object

• Creating minimal ACLs is difficult

• Revocation of access rights and audit easy

• Dissemination impossible ⇒ trivially controllable

8/44

�

�

�

�

�

�

	

Properties of ACLs

ACLs are dual to capabilities:

• ACLs cannot be transferred to other subjects (which can be
good or bad)

• Must usually be stored with the object

• Creating minimal ACLs is difficult

• Revocation of access rights and audit easy

• Dissemination impossible ⇒ trivially controllable

• Privilege-granting privilege cannot be constrained

8/44

�

�

�

�

�

�

	

Properties of ACLs

ACLs are dual to capabilities:

• ACLs cannot be transferred to other subjects (which can be
good or bad)

• Must usually be stored with the object

• Creating minimal ACLs is difficult

• Revocation of access rights and audit easy

• Dissemination impossible ⇒ trivially controllable

• Privilege-granting privilege cannot be constrained

Crude example: Unix permission bits (see below)

9/44

�

�

�

�

�

�

	

The Unix File Access Model

Unix file objects have an owner and a goup. They also have
nine bits associated with them (actually, there are twelve bits,
we’ll talk about the remaining three bits later).

w xr w xr w xr

Owner Group Others

r = read
w = write
x = execute

10/44

�

�

�

�

�

�

	

Meaning of Bits

The first group of three bits tell what the owner of the object
may do with it.

The second group of three bits tell what group members may
do with it.

The third group of three bits tell what all others may do with it.

Within a group, bit 0 means “execute permission” (on
directories: can change to this directory)

Bit 1 means “write permission” (on directories: can create new
files, delete files)

Bit 2 means “read permission” (on directories: can read
directory contents)

11/44

�

�

�

�

�

�

	

Access Control

When a file is opened (removed, renamed, executed, attributes
changed), the process requesting the operation makes a
system call.

The operating system examines the effective user ID (euid) and
effective group ID (egid) of the process making the call.

It also looks at the file’s (or directory’s) attributes and thereby
decides whether to perform the operation or not.

12/44

�

�

�

�

�

�

	

Example (1)

Owner Permissions
Group Permissions
Other Permissions

File Type (- = regular file)

File name
Last Modified
Size (Bytes)

Group
Owner
Links

- 1 neuhaus secsoft 1873 Mar 9 10:11 exercise.texr-----rw-

PID 123 has euid zeller and egid secsoft ⇒ access granted

Process 234 has euid cleve and egid users ⇒ access denied

Process 345 has euid neuhaus ⇒ access granted

Process 1 has euid root ⇒ access granted

13/44

�

�

�

�

�

�

	

Numerical Modes

Since there are groups of three bits each, we can express a
mode in base 8:

Mode Binary Octal
rw-r--r-- 110100100 644
rw------- 110000000 600
rwxr-xr-x 111101101 755
rwxrwx--- 111111000 770
--x--x--x 001001001 111

14/44

�

�

�

�

�

�

	

Additional Bits (1): Sticky

Bit No. 10: Sticky bit. On regular files mostly without
semantics; on directories: only owner can delete file,
regardless of mode (used for temp directories)

Letter: t (if other x bit set) or T (if other x bit not set)

/tmp has mode 1777, /tmp/strange has mode 1770.

drwxrwxrwt 9 root root 16384 Mar 9 13:01 /tmp
drwxrwx--T 2 neuhaus users 4096 Mar 9 13:39 /tmp/strange

15/44

�

�

�

�

�

�

	

Additional Bits (2): Setgid

Bit No. 11: Set group ID bit. On regular non-executable files,
has mandatory file locking enabled (but don’t count on it). On
regular executable files, executes file with effective group id
changed to group. On directories: Files created in that
directory get group ID from directory, not from creating
process.

Letter: s (if group x bit also set) or S (if group x bit not set)

-rwxr-sr-x 1 root tty 9112 Jan 27 2002 /usr/bin/wall
drwxrwsr-x 8 zeller www 4096 Jan 20 10:51 /home/www/edu/sopra
-rw---S--- 1 neuhaus users 0 Mar 9 13:05 /tmp/lockme

16/44

�

�

�

�

�

�

	

Additional Bits (3): Setuid

Bit No. 12: Set user ID bit. On regular non-executable files
without meaning. On regular executable files, this executes
file with effective user id changed to owner of file, not owner
of creating process. On directories semantics are unclear.

Letter: s (if user x bit also set) or S (if user x bit not set)

-rwsr-xr-x 1 root root 23176 Apr 7 2002 /bin/su
-rwS------ 1 neuhaus users 0 Mar 9 13:25 /tmp/testme

17/44

�

�

�

�

�

�

	

Sideshow: setuid Explained (1)

Unix is a multi-user OS. Different users have different
numerical user IDs (called UIDs)

17/44

�

�

�

�

�

�

	

Sideshow: setuid Explained (1)

Unix is a multi-user OS. Different users have different
numerical user IDs (called UIDs) and can be members of
various groups, which also have different numerical group IDs
(called GIDs).

17/44

�

�

�

�

�

�

	

Sideshow: setuid Explained (1)

Unix is a multi-user OS. Different users have different
numerical user IDs (called UIDs) and can be members of
various groups, which also have different numerical group IDs
(called GIDs).

One user has ultimate power over a machine.

17/44

�

�

�

�

�

�

	

Sideshow: setuid Explained (1)

Unix is a multi-user OS. Different users have different
numerical user IDs (called UIDs) and can be members of
various groups, which also have different numerical group IDs
(called GIDs).

One user has ultimate power over a machine. This is the
superuser (aka root) which has UID 0.

17/44

�

�

�

�

�

�

	

Sideshow: setuid Explained (1)

Unix is a multi-user OS. Different users have different
numerical user IDs (called UIDs) and can be members of
various groups, which also have different numerical group IDs
(called GIDs).

One user has ultimate power over a machine. This is the
superuser (aka root) which has UID 0.

When a new process is created, it inherits its UID and GID from
the process that created it (the parent process).

The initial process (surprisingly called init) has UID 0.

17/44

�

�

�

�

�

�

	

Sideshow: setuid Explained (1)

Unix is a multi-user OS. Different users have different
numerical user IDs (called UIDs) and can be members of
various groups, which also have different numerical group IDs
(called GIDs).

One user has ultimate power over a machine. This is the
superuser (aka root) which has UID 0.

When a new process is created, it inherits its UID and GID from
the process that created it (the parent process).

The initial process (surprisingly called init) has UID 0.

In order to separate different users, a process running with
UID 0 can set its UID with a system call (called setuid()).
Once a program has given up its privileges, it can usually not
revert to its old ones.

17/44

�

�

�

�

�

�

	

Sideshow: setuid Explained (1)

Unix is a multi-user OS. Different users have different
numerical user IDs (called UIDs) and can be members of
various groups, which also have different numerical group IDs
(called GIDs).

One user has ultimate power over a machine. This is the
superuser (aka root) which has UID 0.

When a new process is created, it inherits its UID and GID from
the process that created it (the parent process).

The initial process (surprisingly called init) has UID 0.

In order to separate different users, a process running with
UID 0 can set its UID with a system call (called setuid()).
Once a program has given up its privileges, it can usually not
revert to its old ones. This is usually a good thing!

18/44

�

�

�

�

�

�

	

Sideshow: setuid Explained (2)

When a program is executed, it is loaded (e.g., from disk),
turned into a process, and started.

18/44

�

�

�

�

�

�

	

Sideshow: setuid Explained (2)

When a program is executed, it is loaded (e.g., from disk),
turned into a process, and started.

Some processes need more privileges than the parent process
has.

18/44

�

�

�

�

�

�

	

Sideshow: setuid Explained (2)

When a program is executed, it is loaded (e.g., from disk),
turned into a process, and started.

Some processes need more privileges than the parent process
has.

For example, a process that changes a user’s password needs
superuser privileges because only the superuser can write the
password file.

18/44

�

�

�

�

�

�

	

Sideshow: setuid Explained (2)

When a program is executed, it is loaded (e.g., from disk),
turned into a process, and started.

Some processes need more privileges than the parent process
has.

For example, a process that changes a user’s password needs
superuser privileges because only the superuser can write the
password file.

Some programs are therefore flagged with the additional
information that any processes created from them need to
have their UID changed to the owner of the program, and not
inherited from the parent process.

18/44

�

�

�

�

�

�

	

Sideshow: setuid Explained (2)

When a program is executed, it is loaded (e.g., from disk),
turned into a process, and started.

Some processes need more privileges than the parent process
has.

For example, a process that changes a user’s password needs
superuser privileges because only the superuser can write the
password file.

Some programs are therefore flagged with the additional
information that any processes created from them need to
have their UID changed to the owner of the program, and not
inherited from the parent process.

This privilege elevation (and sometimes demotion) is handled
by the kernel.

19/44

�

�

�

�

�

�

	

Mapping Unix to Access Matrix

The Unix permissions are (mostly) associated with objects

19/44

�

�

�

�

�

�

	

Mapping Unix to Access Matrix

The Unix permissions are (mostly) associated with objects

It is therefore (mostly) an ACL-like system.

19/44

�

�

�

�

�

�

	

Mapping Unix to Access Matrix

The Unix permissions are (mostly) associated with objects

It is therefore (mostly) an ACL-like system.

The Access Control List then contains the owner explicitly, and
the members of the file’s group and everybody else implicitly.

19/44

�

�

�

�

�

�

	

Mapping Unix to Access Matrix

The Unix permissions are (mostly) associated with objects

It is therefore (mostly) an ACL-like system.

The Access Control List then contains the owner explicitly, and
the members of the file’s group and everybody else implicitly.

Windows NT (and, by extension, XP and 2003) have real ACLs,
where every object has a list of subjects and its permissions

20/44

�

�

�

�

�

�

	

Reference Monitors

The reference monitor is that piece of software that performs
the access decision.

Subjects

Users
Processes
Threads Reference

Monitor

Objects

Files
Sockets

Database Rows

Reference Monitor Database
(contains policy information)

request access

access granted
or denied

query objects

It implements the mechanism.

21/44

�

�

�

�

�

�

	

Properties of Reference Monitors

• Mediate every access

21/44

�

�

�

�

�

�

	

Properties of Reference Monitors

• Mediate every access

• Tamper-proof

21/44

�

�

�

�

�

�

	

Properties of Reference Monitors

• Mediate every access

• Tamper-proof

• Simple enough to be analyzed comprehensively

22/44

�

�

�

�

�

�

	

Example: Unix File Manipulation

Remember: when a file is opened (removed, renamed,
executed, attributes changed), the process requesting the
operation makes a system call.

22/44

�

�

�

�

�

�

	

Example: Unix File Manipulation

Remember: when a file is opened (removed, renamed,
executed, attributes changed), the process requesting the
operation makes a system call.

The system call goes through (a subsystem of) the kernel, who
then decides whether to grant access or not.

22/44

�

�

�

�

�

�

	

Example: Unix File Manipulation

Remember: when a file is opened (removed, renamed,
executed, attributes changed), the process requesting the
operation makes a system call.

The system call goes through (a subsystem of) the kernel, who
then decides whether to grant access or not.

• Mediates every access?

22/44

�

�

�

�

�

�

	

Example: Unix File Manipulation

Remember: when a file is opened (removed, renamed,
executed, attributes changed), the process requesting the
operation makes a system call.

The system call goes through (a subsystem of) the kernel, who
then decides whether to grant access or not.

• Mediates every access? Yes

22/44

�

�

�

�

�

�

	

Example: Unix File Manipulation

Remember: when a file is opened (removed, renamed,
executed, attributes changed), the process requesting the
operation makes a system call.

The system call goes through (a subsystem of) the kernel, who
then decides whether to grant access or not.

• Mediates every access? Yes

• Tamper-proof?

22/44

�

�

�

�

�

�

	

Example: Unix File Manipulation

Remember: when a file is opened (removed, renamed,
executed, attributes changed), the process requesting the
operation makes a system call.

The system call goes through (a subsystem of) the kernel, who
then decides whether to grant access or not.

• Mediates every access? Yes

• Tamper-proof? No, but protected

22/44

�

�

�

�

�

�

	

Example: Unix File Manipulation

Remember: when a file is opened (removed, renamed,
executed, attributes changed), the process requesting the
operation makes a system call.

The system call goes through (a subsystem of) the kernel, who
then decides whether to grant access or not.

• Mediates every access? Yes

• Tamper-proof? No, but protected

• Simple enough to be analyzed comprehensively?

22/44

�

�

�

�

�

�

	

Example: Unix File Manipulation

Remember: when a file is opened (removed, renamed,
executed, attributes changed), the process requesting the
operation makes a system call.

The system call goes through (a subsystem of) the kernel, who
then decides whether to grant access or not.

• Mediates every access? Yes

• Tamper-proof? No, but protected

• Simple enough to be analyzed comprehensively? Not really

23/44

�

�

�

�

�

�

	

Security Policies

Definition: “The security policy of a system is a statement of
the restrictions on access to objects and/or information
transfer that a reference monitor is intended to enforce.”

23/44

�

�

�

�

�

�

	

Security Policies

Definition: “The security policy of a system is a statement of
the restrictions on access to objects and/or information
transfer that a reference monitor is intended to enforce.”

More generally: “The security policy of a system is any formal
statement of that system’s confidentiality, authenticity, and
integrity (CIA) requirements.”

23/44

�

�

�

�

�

�

	

Security Policies

Definition: “The security policy of a system is a statement of
the restrictions on access to objects and/or information
transfer that a reference monitor is intended to enforce.”

More generally: “The security policy of a system is any formal
statement of that system’s confidentiality, authenticity, and
integrity (CIA) requirements.”

Example: The Unix password and group files are part of a Unix
system’s security policy, because they determine

• when a user has successfully authenticated itself (A);

23/44

�

�

�

�

�

�

	

Security Policies

Definition: “The security policy of a system is a statement of
the restrictions on access to objects and/or information
transfer that a reference monitor is intended to enforce.”

More generally: “The security policy of a system is any formal
statement of that system’s confidentiality, authenticity, and
integrity (CIA) requirements.”

Example: The Unix password and group files are part of a Unix
system’s security policy, because they determine

• when a user has successfully authenticated itself (A);

• which files the user can access (C)

24/44

�

�

�

�

�

�

	

Bell-LaPadula

Was designed in 1973 to codify existing military practices.

24/44

�

�

�

�

�

�

	

Bell-LaPadula

Was designed in 1973 to codify existing military practices.

The system assigns a fixed numerical security level to each
subject and object.

24/44

�

�

�

�

�

�

	

Bell-LaPadula

Was designed in 1973 to codify existing military practices.

The system assigns a fixed numerical security level to each
subject and object.

Needs a reference monitor that enforces two properties:

24/44

�

�

�

�

�

�

	

Bell-LaPadula

Was designed in 1973 to codify existing military practices.

The system assigns a fixed numerical security level to each
subject and object.

Needs a reference monitor that enforces two properties:

• The Simple Security Property: a subject may read only
objects that are at its own security level, or lower (“no read
up”);

24/44

�

�

�

�

�

�

	

Bell-LaPadula

Was designed in 1973 to codify existing military practices.

The system assigns a fixed numerical security level to each
subject and object.

Needs a reference monitor that enforces two properties:

• The Simple Security Property: a subject may read only
objects that are at its own security level, or lower (“no read
up”);

• The *-Property (“Star Property”): a subject may write only
objects that are at its own security level, or higher (“no
write down”)

25/44

�

�

�

�

�

�

	

Origins of Bell-LaPadula

Written to address the “confinement problem”, i.e., the
unwanted dissemination of information by Trojan Horse
programs.

25/44

�

�

�

�

�

�

	

Origins of Bell-LaPadula

Written to address the “confinement problem”, i.e., the
unwanted dissemination of information by Trojan Horse
programs.

Threat model: Trojan Horse program reads data on a multiuser
mainframe and writes it to a location where an outsider can
read it.

25/44

�

�

�

�

�

�

	

Origins of Bell-LaPadula

Written to address the “confinement problem”, i.e., the
unwanted dissemination of information by Trojan Horse
programs.

Threat model: Trojan Horse program reads data on a multiuser
mainframe and writes it to a location where an outsider can
read it.

That’s too oldfashioned? OK:

25/44

�

�

�

�

�

�

	

Origins of Bell-LaPadula

Written to address the “confinement problem”, i.e., the
unwanted dissemination of information by Trojan Horse
programs.

Threat model: Trojan Horse program reads data on a multiuser
mainframe and writes it to a location where an outsider can
read it.

That’s too oldfashioned? OK: a Word macro virus steals your
sensitive data and uses Outlook express to send it over the
Internet.

26/44

�

�

�

�

�

�

	

Example

Confidential

Top Secret

Confidential

read/write

write write

read

Unclassified

Secret

27/44

�

�

�

�

�

�

	

Practical Problems with Bell-LaPadula

Information tends to flow upward to the highest security level.

27/44

�

�

�

�

�

�

	

Practical Problems with Bell-LaPadula

Information tends to flow upward to the highest security level.

• Can’t move down again because of *-property

27/44

�

�

�

�

�

�

	

Practical Problems with Bell-LaPadula

Information tends to flow upward to the highest security level.

• Can’t move down again because of *-property

• Once a document is accessed at level n, it can’t be returned
to level m < n.

27/44

�

�

�

�

�

�

	

Practical Problems with Bell-LaPadula

Information tends to flow upward to the highest security level.

• Can’t move down again because of *-property

• Once a document is accessed at level n, it can’t be returned
to level m < n.

• Users tend to have multiple copies at different levels.

27/44

�

�

�

�

�

�

	

Practical Problems with Bell-LaPadula

Information tends to flow upward to the highest security level.

• Can’t move down again because of *-property

• Once a document is accessed at level n, it can’t be returned
to level m < n.

• Users tend to have multiple copies at different levels.

• Also bad for integrity: Writes can’t be verified.

27/44

�

�

�

�

�

�

	

Practical Problems with Bell-LaPadula

Information tends to flow upward to the highest security level.

• Can’t move down again because of *-property

• Once a document is accessed at level n, it can’t be returned
to level m < n.

• Users tend to have multiple copies at different levels.

• Also bad for integrity: Writes can’t be verified.

Problems with Email and related services:

27/44

�

�

�

�

�

�

	

Practical Problems with Bell-LaPadula

Information tends to flow upward to the highest security level.

• Can’t move down again because of *-property

• Once a document is accessed at level n, it can’t be returned
to level m < n.

• Users tend to have multiple copies at different levels.

• Also bad for integrity: Writes can’t be verified.

Problems with Email and related services:

• A user level m isn’t made aware of email messages at level
n >m.

27/44

�

�

�

�

�

�

	

Practical Problems with Bell-LaPadula

Information tends to flow upward to the highest security level.

• Can’t move down again because of *-property

• Once a document is accessed at level n, it can’t be returned
to level m < n.

• Users tend to have multiple copies at different levels.

• Also bad for integrity: Writes can’t be verified.

Problems with Email and related services:

• A user level m isn’t made aware of email messages at level
n >m.

• A user at level n can see messages at level m < n, but
can’t reply to them

28/44

�

�

�

�

�

�

	

Clark-Wilson Model

How would a model look that is more concerned with integrity
instead of confidentiality?

28/44

�

�

�

�

�

�

	

Clark-Wilson Model

How would a model look that is more concerned with integrity
instead of confidentiality?

User

Document

UDI
(Unconstrained

Data Item)

Integrity
Verification

Procedure (IVP)

Document

CDI
(Constrained
Data Item)

Transformation
Procedure (TP)

Document

Log
Transformation
Procedure (TP)

Document

29/44

�

�

�

�

�

�

	

Chinese Wall Model

User

Conflict Class A
(Banks)

Conflict Class B
(Oil Companies)

1 Access granted

2 Access granted

3 Access denied

30/44

�

�

�

�

�

�

	

Chinese Wall Explained

Object groups are partitioned into distinct conflict classes.

30/44

�

�

�

�

�

�

	

Chinese Wall Explained

Object groups are partitioned into distinct conflict classes.

“Partitioned” means that an object group belongs to exactly
one conflict class.

30/44

�

�

�

�

�

�

	

Chinese Wall Explained

Object groups are partitioned into distinct conflict classes.

“Partitioned” means that an object group belongs to exactly
one conflict class.

A subject can get access to any object in any group, provided
that it does not already have access to objects in another
object group in the same conflict class.

30/44

�

�

�

�

�

�

	

Chinese Wall Explained

Object groups are partitioned into distinct conflict classes.

“Partitioned” means that an object group belongs to exactly
one conflict class.

A subject can get access to any object in any group, provided
that it does not already have access to objects in another
object group in the same conflict class.

Access to objects within an object group is unrestricted.

30/44

�

�

�

�

�

�

	

Chinese Wall Explained

Object groups are partitioned into distinct conflict classes.

“Partitioned” means that an object group belongs to exactly
one conflict class.

A subject can get access to any object in any group, provided
that it does not already have access to objects in another
object group in the same conflict class.

Access to objects within an object group is unrestricted.

Under these conditions, a conflict of interests cannot occur.

30/44

�

�

�

�

�

�

	

Chinese Wall Explained

Object groups are partitioned into distinct conflict classes.

“Partitioned” means that an object group belongs to exactly
one conflict class.

A subject can get access to any object in any group, provided
that it does not already have access to objects in another
object group in the same conflict class.

Access to objects within an object group is unrestricted.

Under these conditions, a conflict of interests cannot occur.

Practical problems abound; see exercises.

31/44

�

�

�

�

�

�

	

Problems with Policy Models

It turns out that all these above policy models are equivalent to
Bell-LaPadula. (We won’t prove this.)

31/44

�

�

�

�

�

�

	

Problems with Policy Models

It turns out that all these above policy models are equivalent to
Bell-LaPadula. (We won’t prove this.)

“These basic models were intended to be used as
general-purpose models and policies, applicable to all
situtaions in which they were appropriate. Like other flexible
objects such as rubber screwdrivers and foam rubber cricket
bats, they give up some utility and practicality in exchange for
their flexibility, and in practice tend to be extremely difficult to
work with.” — Peter Gutmann

31/44

�

�

�

�

�

�

	

Problems with Policy Models

It turns out that all these above policy models are equivalent to
Bell-LaPadula. (We won’t prove this.)

“These basic models were intended to be used as
general-purpose models and policies, applicable to all
situtaions in which they were appropriate. Like other flexible
objects such as rubber screwdrivers and foam rubber cricket
bats, they give up some utility and practicality in exchange for
their flexibility, and in practice tend to be extremely difficult to
work with.” — Peter Gutmann

Solution: Apply policy models only to small and specific parts
of the entire system.

31/44

�

�

�

�

�

�

	

Problems with Policy Models

It turns out that all these above policy models are equivalent to
Bell-LaPadula. (We won’t prove this.)

“These basic models were intended to be used as
general-purpose models and policies, applicable to all
situtaions in which they were appropriate. Like other flexible
objects such as rubber screwdrivers and foam rubber cricket
bats, they give up some utility and practicality in exchange for
their flexibility, and in practice tend to be extremely difficult to
work with.” — Peter Gutmann

Solution: Apply policy models only to small and specific parts
of the entire system. Don’t look for a silver bullet!

32/44

�

�

�

�

�

�

	

Implementation of Mechanisms

Implementation is very specific; therefore we will analyze a
particluar implementation.

32/44

�

�

�

�

�

�

	

Implementation of Mechanisms

Implementation is very specific; therefore we will analyze a
particluar implementation.

Implementation is that of cryptlib, a cryptography toolkit
written by Peter Gutmann.

32/44

�

�

�

�

�

�

	

Implementation of Mechanisms

Implementation is very specific; therefore we will analyze a
particluar implementation.

Implementation is that of cryptlib, a cryptography toolkit
written by Peter Gutmann.

Design goals:

• Must run on many architectures (VAX, IBM mainframes,
embedded systems);

• Must support crypto hardware

• Must support many good crypto algorithms under a single
unified interface

• Must present a secure interface to the user, one that is
impossible to use in an insecure manner.

33/44

�

�

�

�

�

�

	

Why cryptlib?

• It’s there to be analyzed (free for academic use)

33/44

�

�

�

�

�

�

	

Why cryptlib?

• It’s there to be analyzed (free for academic use)

• Was designed with explicit goals in mind (not a
hodgepodge of useful routines with questionable code
quality like OpenSSL)

33/44

�

�

�

�

�

�

	

Why cryptlib?

• It’s there to be analyzed (free for academic use)

• Was designed with explicit goals in mind (not a
hodgepodge of useful routines with questionable code
quality like OpenSSL)

• It’s secure (has had zero(!) security problems since its
inception in 1992)

33/44

�

�

�

�

�

�

	

Why cryptlib?

• It’s there to be analyzed (free for academic use)

• Was designed with explicit goals in mind (not a
hodgepodge of useful routines with questionable code
quality like OpenSSL)

• It’s secure (has had zero(!) security problems since its
inception in 1992)

• It’s well documented (comes with 300+ page user manual
and tutorial; design and implementation are described in
Gutmann’s 300+ page Ph.D. thesis)

34/44

�

�

�

�

�

�

	

Cryptlib Mechanism Architecture

How to verify the implementation? The entire implementation
(C source and header files) is about 215,000 lines of code. . .

34/44

�

�

�

�

�

�

	

Cryptlib Mechanism Architecture

How to verify the implementation? The entire implementation
(C source and header files) is about 215,000 lines of code. . .

Answer: by decomposing the system such that the
components have no direct interaction or interact only with
similar components.

34/44

�

�

�

�

�

�

	

Cryptlib Mechanism Architecture

How to verify the implementation? The entire implementation
(C source and header files) is about 215,000 lines of code. . .

Answer: by decomposing the system such that the
components have no direct interaction or interact only with
similar components.

This is in contrast to a typical object-oriented decomposition
where objects have interaction with all manner of other
objects.

34/44

�

�

�

�

�

�

	

Cryptlib Mechanism Architecture

How to verify the implementation? The entire implementation
(C source and header files) is about 215,000 lines of code. . .

Answer: by decomposing the system such that the
components have no direct interaction or interact only with
similar components.

This is in contrast to a typical object-oriented decomposition
where objects have interaction with all manner of other
objects.

This architecture is more like a virtually distributed system:
The objects are not really distributed, but they could be.

34/44

�

�

�

�

�

�

	

Cryptlib Mechanism Architecture

How to verify the implementation? The entire implementation
(C source and header files) is about 215,000 lines of code. . .

Answer: by decomposing the system such that the
components have no direct interaction or interact only with
similar components.

This is in contrast to a typical object-oriented decomposition
where objects have interaction with all manner of other
objects.

This architecture is more like a virtually distributed system:
The objects are not really distributed, but they could be.

Access to objects is mediated through a trusted security
kernel that forms (part of) the trusted computing base

35/44

�

�

�

�

�

�

	

Brief Sideshow: TCB

The Trusted Computing Base (TCB) of a system is that part of it
that must be able to make certain security guarantees in order
for the entire system to be secure.

35/44

�

�

�

�

�

�

	

Brief Sideshow: TCB

The Trusted Computing Base (TCB) of a system is that part of it
that must be able to make certain security guarantees in order
for the entire system to be secure.

Like an axiom in mathematics.

35/44

�

�

�

�

�

�

	

Brief Sideshow: TCB

The Trusted Computing Base (TCB) of a system is that part of it
that must be able to make certain security guarantees in order
for the entire system to be secure.

Like an axiom in mathematics.

Typical components of of the TCB: Hardware (processor, RAM
etc.)

35/44

�

�

�

�

�

�

	

Brief Sideshow: TCB

The Trusted Computing Base (TCB) of a system is that part of it
that must be able to make certain security guarantees in order
for the entire system to be secure.

Like an axiom in mathematics.

Typical components of of the TCB: Hardware (processor, RAM
etc.)

Operating System

35/44

�

�

�

�

�

�

	

Brief Sideshow: TCB

The Trusted Computing Base (TCB) of a system is that part of it
that must be able to make certain security guarantees in order
for the entire system to be secure.

Like an axiom in mathematics.

Typical components of of the TCB: Hardware (processor, RAM
etc.)

Operating System (ouch!)

35/44

�

�

�

�

�

�

	

Brief Sideshow: TCB

The Trusted Computing Base (TCB) of a system is that part of it
that must be able to make certain security guarantees in order
for the entire system to be secure.

Like an axiom in mathematics.

Typical components of of the TCB: Hardware (processor, RAM
etc.)

Operating System (ouch!)

Is Linux verifiable?

35/44

�

�

�

�

�

�

	

Brief Sideshow: TCB

The Trusted Computing Base (TCB) of a system is that part of it
that must be able to make certain security guarantees in order
for the entire system to be secure.

Like an axiom in mathematics.

Typical components of of the TCB: Hardware (processor, RAM
etc.)

Operating System (ouch!)

Is Linux verifiable? Windows?

35/44

�

�

�

�

�

�

	

Brief Sideshow: TCB

The Trusted Computing Base (TCB) of a system is that part of it
that must be able to make certain security guarantees in order
for the entire system to be secure.

Like an axiom in mathematics.

Typical components of of the TCB: Hardware (processor, RAM
etc.)

Operating System (ouch!)

Is Linux verifiable? Windows? Certainly not!

36/44

�

�

�

�

�

�

	

Security Requirements

• The kernel must enforce the security of the system as a
whole without requiring its components to cooperate
towards that end.

36/44

�

�

�

�

�

�

	

Security Requirements

• The kernel must enforce the security of the system as a
whole without requiring its components to cooperate
towards that end.

• No input or output to or from any object can interfere with
any input ot output to or from any other object

36/44

�

�

�

�

�

�

	

Security Requirements

• The kernel must enforce the security of the system as a
whole without requiring its components to cooperate
towards that end.

• No input or output to or from any object can interfere with
any input ot output to or from any other object

• Policy: A subject can only access objects that it owns. (Any
active entity can be a subject in this system, not just users.)

36/44

�

�

�

�

�

�

	

Security Requirements

• The kernel must enforce the security of the system as a
whole without requiring its components to cooperate
towards that end.

• No input or output to or from any object can interfere with
any input ot output to or from any other object

• Policy: A subject can only access objects that it owns. (Any
active entity can be a subject in this system, not just users.)

⇒ No concept of object sharing

36/44

�

�

�

�

�

�

	

Security Requirements

• The kernel must enforce the security of the system as a
whole without requiring its components to cooperate
towards that end.

• No input or output to or from any object can interfere with
any input ot output to or from any other object

• Policy: A subject can only access objects that it owns. (Any
active entity can be a subject in this system, not just users.)

⇒ No concept of object sharing

⇒ No concept of security levels

37/44

�

�

�

�

�

�

	

Separation Kernel

Subject 1 Subject 2

Separation Kernel

1

3
2

4 5
6

access impossible

38/44

�

�

�

�

�

�

	

Access Mechanism

With a separation kernel, the access mechanism becomes
almost trivial:

38/44

�

�

�

�

�

�

	

Access Mechanism

With a separation kernel, the access mechanism becomes
almost trivial:

Any object is labeled with the id of the (unique) subject
that owns it. If any subject wants to access any object,
the subject’s ID is compared to the object’s owner ID. If
they are equal, the subject is granted access, otherwise
access is denied.

All accesses to objects by subjects is also mediated by the
kernel ⇒ easy to enforce the policy.

38/44

�

�

�

�

�

�

	

Access Mechanism

With a separation kernel, the access mechanism becomes
almost trivial:

Any object is labeled with the id of the (unique) subject
that owns it. If any subject wants to access any object,
the subject’s ID is compared to the object’s owner ID. If
they are equal, the subject is granted access, otherwise
access is denied.

All accesses to objects by subjects is also mediated by the
kernel ⇒ easy to enforce the policy.

An easy formal proof is also possible.

“[A] lot of security problems just vanish and others are
considerably simplified” (John Rushby)

38/44

�

�

�

�

�

�

	

Access Mechanism

With a separation kernel, the access mechanism becomes
almost trivial:

Any object is labeled with the id of the (unique) subject
that owns it. If any subject wants to access any object,
the subject’s ID is compared to the object’s owner ID. If
they are equal, the subject is granted access, otherwise
access is denied.

All accesses to objects by subjects is also mediated by the
kernel ⇒ easy to enforce the policy.

An easy formal proof is also possible.

“[A] lot of security problems just vanish and others are
considerably simplified” (John Rushby)

39/44

�

�

�

�

�

�

	

Additional Policies

• No ability to run user code. Simplifies implementation and
verification.

39/44

�

�

�

�

�

�

	

Additional Policies

• No ability to run user code. Simplifies implementation and
verification.

• Single-level object security: No information sharing
between subjects; no multi-level security. Simplifies
implementation and verification.

39/44

�

�

�

�

�

�

	

Additional Policies

• No ability to run user code. Simplifies implementation and
verification.

• Single-level object security: No information sharing
between subjects; no multi-level security. Simplifies
implementation and verification.

• Multilevel object attribute and object usage security: uses
ACLs to react to messages that modify an object’s state.

39/44

�

�

�

�

�

�

	

Additional Policies

• No ability to run user code. Simplifies implementation and
verification.

• Single-level object security: No information sharing
between subjects; no multi-level security. Simplifies
implementation and verification.

• Multilevel object attribute and object usage security: uses
ACLs to react to messages that modify an object’s state.

• Serialization of operations. Lets kernel mandate when
messages can be passed to objects; no need to check in
each object’s implementation.

39/44

�

�

�

�

�

�

	

Additional Policies

• No ability to run user code. Simplifies implementation and
verification.

• Single-level object security: No information sharing
between subjects; no multi-level security. Simplifies
implementation and verification.

• Multilevel object attribute and object usage security: uses
ACLs to react to messages that modify an object’s state.

• Serialization of operations. Lets kernel mandate when
messages can be passed to objects; no need to check in
each object’s implementation.

• Object usage controls: control purpose, number of uses
etc., so that e.g. a signing key can be used to create exactly
one signature.

40/44

�

�

�

�

�

�

	

The K.I.S.S. Principle

In other words:

40/44

�

�

�

�

�

�

	

The K.I.S.S. Principle

In other words:

Keep it Simple, Stupid!

40/44

�

�

�

�

�

�

	

The K.I.S.S. Principle

In other words:

Keep it Simple, Stupid!

Simple systems are easier to analyze and understand than
complicated systems.

40/44

�

�

�

�

�

�

	

The K.I.S.S. Principle

In other words:

Keep it Simple, Stupid!

Simple systems are easier to analyze and understand than
complicated systems.

Complicated systems are more prone to errors: “I have found
that I can trust only code that is easy to understand; the bugs
are almost always in places where I try to be clever.” (Wietse
Venema, author of postfix)

40/44

�

�

�

�

�

�

	

The K.I.S.S. Principle

In other words:

Keep it Simple, Stupid!

Simple systems are easier to analyze and understand than
complicated systems.

Complicated systems are more prone to errors: “I have found
that I can trust only code that is easy to understand; the bugs
are almost always in places where I try to be clever.” (Wietse
Venema, author of postfix)

“There are two ways to design a system. One is to
make it so simple that there are obviously no
deficiencies.

40/44

�

�

�

�

�

�

	

The K.I.S.S. Principle

In other words:

Keep it Simple, Stupid!

Simple systems are easier to analyze and understand than
complicated systems.

Complicated systems are more prone to errors: “I have found
that I can trust only code that is easy to understand; the bugs
are almost always in places where I try to be clever.” (Wietse
Venema, author of postfix)

“There are two ways to design a system. One is to
make it so simple that there are obviously no
deficiencies. The other is to make it so complex that
there are no obvious deficiencies” —C.A.R. Hoare

41/44

�

�

�

�

�

�

	

Why Enforce Policies?

Why enforce policies in the kernel? Why not write the individual
subjects so that the policies are never violated?

41/44

�

�

�

�

�

�

	

Why Enforce Policies?

Why enforce policies in the kernel? Why not write the individual
subjects so that the policies are never violated?

Because then all the policy decisions are all over the place and
cannot be easily verified.

41/44

�

�

�

�

�

�

	

Why Enforce Policies?

Why enforce policies in the kernel? Why not write the individual
subjects so that the policies are never violated?

Because then all the policy decisions are all over the place and
cannot be easily verified.

Also, a malicious subject could subvert the controls.

42/44

�

�

�

�

�

�

	

Collaborative Security Code

Can secure code be written in the style of typical open-source
projects?

“Many eyes make all bugs shallow” (Eric S. Raymond)

42/44

�

�

�

�

�

�

	

Collaborative Security Code

Can secure code be written in the style of typical open-source
projects?

“Many eyes make all bugs shallow” (Eric S. Raymond)

“Hmm, I could [review other’s code] but I doubt I’d be able to
be anywhere near as thorough as on my own code. I also know
what my code is supposed to do and what to expect, whereas
[other person]’s code will have his own security design and
expectations, so I guess we could end up checking a lot of
stuff that doesn’t really need to be checked.” (Peter Gutmann)

42/44

�

�

�

�

�

�

	

Collaborative Security Code

Can secure code be written in the style of typical open-source
projects?

“Many eyes make all bugs shallow” (Eric S. Raymond)

“Hmm, I could [review other’s code] but I doubt I’d be able to
be anywhere near as thorough as on my own code. I also know
what my code is supposed to do and what to expect, whereas
[other person]’s code will have his own security design and
expectations, so I guess we could end up checking a lot of
stuff that doesn’t really need to be checked.” (Peter Gutmann)

43/44

�

�

�

�

�

�

	

Summary

• Access Control

• Access Control Lists/Capabilities

• Bell-LaPadula

• Chinese Wall

• The cryptlib Separation Kernel

• Trusted Computing Base

• The K.I.S.S. Principle

44/44

�

�

�

�

�

�

	

Resources

• Peter Gutmann, Cryptographic Security Architecture,
Springer

http://www.cs.auckland.ac.nz/~pgut001/cryptlib/

44/44

�

�

�

�

�

�

	

Resources

• Peter Gutmann, Cryptographic Security Architecture,
Springer

• Peter Gutmann, cryptlib Encryption Toolkit,
http://www.cs.auckland.ac.nz/˜pgut001/cryptlib/

http://www.cs.auckland.ac.nz/~pgut001/cryptlib/

	The Menu
	Subjects and Objects
	Mechanism and Policy (1)
	Mechanism and Policy (2)
	Access Control Matrix
	Full Access Control Matrix
	Properties of Capabilities
	Properties of ACLs
	The Unix File Access Model
	Meaning of Bits
	Access Control
	Example (1)
	Numerical Modes
	Additional Bits (1): Sticky
	Additional Bits (2): Setgid
	Additional Bits (3): Setuid
	Sideshow: setuid Explained (1)
	Sideshow: setuid Explained (2)
	Mapping Unix to Access Matrix
	Reference Monitors
	Properties of Reference Monitors
	Example: Unix File Manipulation
	Security Policies
	Bell-LaPadula
	Origins of Bell-LaPadula
	Example
	Practical Problems with Bell-LaPadula
	Clark-Wilson Model
	Chinese Wall Model
	Chinese Wall Explained
	Problems with Policy Models
	Implementation of Mechanisms
	Why cryptlib?
	Cryptlib Mechanism Architecture
	Brief Sideshow: TCB
	Security Requirements
	Separation Kernel
	Access Mechanism
	Additional Policies
	The K.I.S.S. Principle
	Why Enforce Policies?
	Collaborative Security Code
	Summary
	Resources

