
0/49

�

�

�

�

�

�

	

YHQL YLGL YLFL — J. Caesar
Cryptography

Andreas Zeller/Stephan Neuhaus
Lehrstuhl Softwaretechnik
Universität des Saarlandes, Saarbrücken

1/49

�

�

�

�

�

�

	

The Menu

• Symmetric Crypto

1/49

�

�

�

�

�

�

	

The Menu

• Symmetric Crypto

• Asymmetric Crypto (aka Public-Key)

1/49

�

�

�

�

�

�

	

The Menu

• Symmetric Crypto

• Asymmetric Crypto (aka Public-Key)

• Hashes, MICs, and MACs

2/49

�

�

�

�

�

�

	

Cryptography

3/49

�

�

�

�

�

�

	

Terminology

Encryption transforms a message or plaintext into a
cryptogram or ciphertext under the control of a key.

3/49

�

�

�

�

�

�

	

Terminology

Encryption transforms a message or plaintext into a
cryptogram or ciphertext under the control of a key.

Plaintext will be denoted by P . Sometimes, plaintext is
available in blocks or other units; those units are then denoted
Pj or pj.

3/49

�

�

�

�

�

�

	

Terminology

Encryption transforms a message or plaintext into a
cryptogram or ciphertext under the control of a key.

Plaintext will be denoted by P . Sometimes, plaintext is
available in blocks or other units; those units are then denoted
Pj or pj.

Same for ciphertext: C, Cj, or cj.

3/49

�

�

�

�

�

�

	

Terminology

Encryption transforms a message or plaintext into a
cryptogram or ciphertext under the control of a key.

Plaintext will be denoted by P . Sometimes, plaintext is
available in blocks or other units; those units are then denoted
Pj or pj.

Same for ciphertext: C, Cj, or cj.

Same for key: K, and (although this is unusual) kj.

3/49

�

�

�

�

�

�

	

Terminology

Encryption transforms a message or plaintext into a
cryptogram or ciphertext under the control of a key.

Plaintext will be denoted by P . Sometimes, plaintext is
available in blocks or other units; those units are then denoted
Pj or pj.

Same for ciphertext: C, Cj, or cj.

Same for key: K, and (although this is unusual) kj.

C = EK(P); P = DK(C) cj = EK(pj); pj = DK(cj)

3/49

�

�

�

�

�

�

	

Terminology

Encryption transforms a message or plaintext into a
cryptogram or ciphertext under the control of a key.

Plaintext will be denoted by P . Sometimes, plaintext is
available in blocks or other units; those units are then denoted
Pj or pj.

Same for ciphertext: C, Cj, or cj.

Same for key: K, and (although this is unusual) kj.

C = EK(P); P = DK(C) cj = EK(pj); pj = DK(cj)

Avoid subscript k; easily confused with subscript K.

4/49

�

�

�

�

�

�

	

Secret-Key and Public-Key

• In secret-key or symmetric cryptography, the participants
share one key, which is used for encryption and decryption.

4/49

�

�

�

�

�

�

	

Secret-Key and Public-Key

• In secret-key or symmetric cryptography, the participants
share one key, which is used for encryption and decryption.

• Examples: DES, AES, IDEA, RC4, Blowfish, Twofish, . . .

4/49

�

�

�

�

�

�

	

Secret-Key and Public-Key

• In secret-key or symmetric cryptography, the participants
share one key, which is used for encryption and decryption.

• Examples: DES, AES, IDEA, RC4, Blowfish, Twofish, . . .

• In public-key or asymmetric cryptography, a participant’s
key is split in two parts: once is public and is used for
encryption, one is private and is used for decryption.

4/49

�

�

�

�

�

�

	

Secret-Key and Public-Key

• In secret-key or symmetric cryptography, the participants
share one key, which is used for encryption and decryption.

• Examples: DES, AES, IDEA, RC4, Blowfish, Twofish, . . .

• In public-key or asymmetric cryptography, a participant’s
key is split in two parts: once is public and is used for
encryption, one is private and is used for decryption.

• Examples: RSA, Elgamal, ECC

5/49

�

�

�

�

�

�

	

Block Ciphers

A block cipher is a function that takes a n-bit key K and a
m-bit bit string B and either encrypts or decrypts B into an
m-bit string B′.

5/49

�

�

�

�

�

�

	

Block Ciphers

A block cipher is a function that takes a n-bit key K and a
m-bit bit string B and either encrypts or decrypts B into an
m-bit string B′.

The numbers m and n are usually fixed for each block cipher,
but can vary between ciphers.

5/49

�

�

�

�

�

�

	

Block Ciphers

A block cipher is a function that takes a n-bit key K and a
m-bit bit string B and either encrypts or decrypts B into an
m-bit string B′.

The numbers m and n are usually fixed for each block cipher,
but can vary between ciphers.

Cipher n m
DES 56 64
IDEA 128 64
AES varies varies

5/49

�

�

�

�

�

�

	

Block Ciphers

A block cipher is a function that takes a n-bit key K and a
m-bit bit string B and either encrypts or decrypts B into an
m-bit string B′.

The numbers m and n are usually fixed for each block cipher,
but can vary between ciphers.

Cipher n m
DES 56 64
IDEA 128 64
AES varies varies
RSA varies varies

5/49

�

�

�

�

�

�

	

Block Ciphers

A block cipher is a function that takes a n-bit key K and a
m-bit bit string B and either encrypts or decrypts B into an
m-bit string B′.

The numbers m and n are usually fixed for each block cipher,
but can vary between ciphers.

Cipher n m
DES 56 64
IDEA 128 64
AES varies varies
RSA varies varies

With AES, you can choose m and n independently from
{128,160,192,224,256}.

6/49

�

�

�

�

�

�

	

Properties Of a Good Block Cipher

Two (of many) statistical properties (called “cascading”
properties):

6/49

�

�

�

�

�

�

	

Properties Of a Good Block Cipher

Two (of many) statistical properties (called “cascading”
properties):

• Change one key bit and about half of the output bits will
change.

6/49

�

�

�

�

�

�

	

Properties Of a Good Block Cipher

Two (of many) statistical properties (called “cascading”
properties):

• Change one key bit and about half of the output bits will
change.

• Change one plaintext bit and about half of the output bits
will change.

6/49

�

�

�

�

�

�

	

Properties Of a Good Block Cipher

Two (of many) statistical properties (called “cascading”
properties):

• Change one key bit and about half of the output bits will
change.

• Change one plaintext bit and about half of the output bits
will change.

One cryptanalytic property:

6/49

�

�

�

�

�

�

	

Properties Of a Good Block Cipher

Two (of many) statistical properties (called “cascading”
properties):

• Change one key bit and about half of the output bits will
change.

• Change one plaintext bit and about half of the output bits
will change.

One cryptanalytic property: There is no way to find an
unknown key except by trying all keys in some order and
stopping when the correct one has been found.

6/49

�

�

�

�

�

�

	

Properties Of a Good Block Cipher

Two (of many) statistical properties (called “cascading”
properties):

• Change one key bit and about half of the output bits will
change.

• Change one plaintext bit and about half of the output bits
will change.

One cryptanalytic property: There is no way to find an
unknown key except by trying all keys in some order and
stopping when the correct one has been found.

That’s a bit difficult to attain in practice

6/49

�

�

�

�

�

�

	

Properties Of a Good Block Cipher

Two (of many) statistical properties (called “cascading”
properties):

• Change one key bit and about half of the output bits will
change.

• Change one plaintext bit and about half of the output bits
will change.

One cryptanalytic property: There is no way to find an
unknown key except by trying all keys in some order and
stopping when the correct one has been found.

That’s a bit difficult to attain in practice, because we can’t see
into the future!

7/49

�

�

�

�

�

�

	

Stream Ciphers

A stream cipher is a function that takes a n-bit key and a
(potentially infinite) bit stream as input and produces a
(potentially infinite) bit stream as output.

7/49

�

�

�

�

�

�

	

Stream Ciphers

A stream cipher is a function that takes a n-bit key and a
(potentially infinite) bit stream as input and produces a
(potentially infinite) bit stream as output.

In practice, the input and output bits are grouped into larger
blocks, but it’s still not a block cipher because encryption of
block j depends on the encryptions of blocks 1 through j − 1.

7/49

�

�

�

�

�

�

	

Stream Ciphers

A stream cipher is a function that takes a n-bit key and a
(potentially infinite) bit stream as input and produces a
(potentially infinite) bit stream as output.

In practice, the input and output bits are grouped into larger
blocks, but it’s still not a block cipher because encryption of
block j depends on the encryptions of blocks 1 through j − 1.

Most stream ciphers work by taking the key K and generating
a stream of key bits (or blocks) kj from it, and then setting

cj ←mj ⊕ kj.

7/49

�

�

�

�

�

�

	

Stream Ciphers

A stream cipher is a function that takes a n-bit key and a
(potentially infinite) bit stream as input and produces a
(potentially infinite) bit stream as output.

In practice, the input and output bits are grouped into larger
blocks, but it’s still not a block cipher because encryption of
block j depends on the encryptions of blocks 1 through j − 1.

Most stream ciphers work by taking the key K and generating
a stream of key bits (or blocks) kj from it, and then setting

cj ←mj ⊕ kj.

Decryption then generates the same key stream from K and
computes

7/49

�

�

�

�

�

�

	

Stream Ciphers

A stream cipher is a function that takes a n-bit key and a
(potentially infinite) bit stream as input and produces a
(potentially infinite) bit stream as output.

In practice, the input and output bits are grouped into larger
blocks, but it’s still not a block cipher because encryption of
block j depends on the encryptions of blocks 1 through j − 1.

Most stream ciphers work by taking the key K and generating
a stream of key bits (or blocks) kj from it, and then setting

cj ←mj ⊕ kj.

Decryption then generates the same key stream from K and
computes mj = cj ⊕ kj. Some stream ciphers calculate kj from
kj−1 and mj−1.

8/49

�

�

�

�

�

�

	

Electronic Codebook Mode (ECB)

K

P1

E

C1

D

C2

D

Encryption

Decryption

K

K

K

P1

P2

P2

E

9/49

�

�

�

�

�

�

	

Problems with ECB

A salary database contains salary records encrypted with a
64-bit block cipher in ECB mode.

9/49

�

�

�

�

�

�

	

Problems with ECB

A salary database contains salary records encrypted with a
64-bit block cipher in ECB mode.

Trudy knows her own record in plaintext; all the others are just
ciphertext:

Type Person Contents
Plain Trudy Trudy $20,000 Progr
Cipher Trudy a67sj*7k2mlz8m/>suwopslg
Cipher Boss kdndsuye;hfd7as/8endfuah

9/49

�

�

�

�

�

�

	

Problems with ECB

A salary database contains salary records encrypted with a
64-bit block cipher in ECB mode.

Trudy knows her own record in plaintext; all the others are just
ciphertext:

Type Person Contents
Plain Trudy Trudy $20,000 Progr
Cipher Trudy a67sj*7k2mlz8m/>suwopslg
Cipher Boss kdndsuye;hfd7as/8endfuah

Trudy wants to earn as much as her boss:

9/49

�

�

�

�

�

�

	

Problems with ECB

A salary database contains salary records encrypted with a
64-bit block cipher in ECB mode.

Trudy knows her own record in plaintext; all the others are just
ciphertext:

Type Person Contents
Plain Trudy Trudy $20,000 Progr
Cipher Trudy a67sj*7k2mlz8m/>suwopslg
Cipher Boss kdndsuye;hfd7as/8endfuah

Trudy wants to earn as much as her boss:

a67sj*7k;hfd7as/suwopslg

10/49

�

�

�

�

�

�

	

Other Problems With ECB

Person Record
Trudy a67sj*7k2mlz8m/>suwopslg
Boss kdndsuye;hfd7as/8endfuah
CEO asoiwq34;hfd7as/kjsd9kjq
Janitor epxn7mn-2mlz8m/>-m,39j,s
Alice kmeqw9ks;hfd7as/suwopslg

10/49

�

�

�

�

�

�

	

Other Problems With ECB

Person Record
Trudy a67sj*7k2mlz8m/>suwopslg
Boss kdndsuye;hfd7as/8endfuah
CEO asoiwq34;hfd7as/kjsd9kjq
Janitor epxn7mn-2mlz8m/>-m,39j,s
Alice kmeqw9ks;hfd7as/suwopslg

Identical plaintext blocks lead to identical ciphertext blocks.

10/49

�

�

�

�

�

�

	

Other Problems With ECB

Person Record
Trudy a67sj*7k2mlz8m/>suwopslg
Boss kdndsuye;hfd7as/8endfuah
CEO asoiwq34;hfd7as/kjsd9kjq
Janitor epxn7mn-2mlz8m/>-m,39j,s
Alice kmeqw9ks;hfd7as/suwopslg

Identical plaintext blocks lead to identical ciphertext blocks.

This makes it possible to find all employees with the same
salary as employee X. . .

10/49

�

�

�

�

�

�

	

Other Problems With ECB

Person Record
Trudy a67sj*7k2mlz8m/>suwopslg
Boss kdndsuye;hfd7as/8endfuah
CEO asoiwq34;hfd7as/kjsd9kjq
Janitor epxn7mn-2mlz8m/>-m,39j,s
Alice kmeqw9ks;hfd7as/suwopslg

Identical plaintext blocks lead to identical ciphertext blocks.

This makes it possible to find all employees with the same
salary as employee X. . .

. . . without breaking the encryption scheme.

11/49

�

�

�

�

�

�

	

Cipher Block Chaining (CBC)

K

P1

E

C1 C2

K

P2

E

C3

K

P3

E

K D K D K D

IV

P1 P2 P3

The “IV” is a random initialization vector that is sent
unencrypted with the message.

12/49

�

�

�

�

�

�

	

Features of CBC

If a ciphertext block is modified during the encryption, this will
affect only two decrypted plaintext blocks (see exercises).

12/49

�

�

�

�

�

�

	

Features of CBC

If a ciphertext block is modified during the encryption, this will
affect only two decrypted plaintext blocks (see exercises).

If ciphertext bits (not blocks!) are deleted or added, it will
affect the rest of the message (will come out as garbage as
long as block synchronization is lost).

12/49

�

�

�

�

�

�

	

Features of CBC

If a ciphertext block is modified during the encryption, this will
affect only two decrypted plaintext blocks (see exercises).

If ciphertext bits (not blocks!) are deleted or added, it will
affect the rest of the message (will come out as garbage as
long as block synchronization is lost).

In most cases, security is not weakened by choosing a constant
IV for each message, but there are exceptions (see exercises).

13/49

�

�

�

�

�

�

	

Problems With CBC (1)

Assume the plaintext is “Trudy R&D $20000 ”

The character 2 has the bit representation 00110010. 3 is
00110011. Can Trudy force this single bit to change?

13/49

�

�

�

�

�

�

	

Problems With CBC (1)

Assume the plaintext is “Trudy R&D $20000 ”

The character 2 has the bit representation 00110010. 3 is
00110011. Can Trudy force this single bit to change?

C1 C2

K D K D

IV

P1 P2Garbage

Bit
Flipped

Trudy flips
Bit C3

K D

P3

If Trudy flips the last bit of C1, block 1 will decrypt as garbage,
but C2 will decrypt as R&D $2⊕ 1 = R&D $3, a 50%
increase in Trudy’s salary!

14/49

�

�

�

�

�

�

	

Problems With CBC (2)

In CBC, pi = ci−1 ⊕DK(ci) where c0 is the IV. Hence,
D(ci) = ci−1 ⊕ pi.

14/49

�

�

�

�

�

�

	

Problems With CBC (2)

In CBC, pi = ci−1 ⊕DK(ci) where c0 is the IV. Hence,
D(ci) = ci−1 ⊕ pi.
Therefore, if you know all the plaintext blocks and all the
ciphertext blocks, you can rearrange the ciphertext blocks
and know what the new encrypted message will decrypt to.

14/49

�

�

�

�

�

�

	

Problems With CBC (2)

In CBC, pi = ci−1 ⊕DK(ci) where c0 is the IV. Hence,
D(ci) = ci−1 ⊕ pi.
Therefore, if you know all the plaintext blocks and all the
ciphertext blocks, you can rearrange the ciphertext blocks
and know what the new encrypted message will decrypt to.

Arrangement Decryption
c0|c1|c2|c3 p1|p2|p3

c1|c0|c2|c3 c1 ⊕D(c0)|c0 ⊕D(c1)|p3

c0|c1|c2|c2 p1|p2|c2 ⊕D(c2) = p3 ⊕D(c3)⊕D(c2)

It is improbable that rearranged messages will decrypt to
something useful, but it’s still a threat.

15/49

�

�

�

�

�

�

	

Feedback Modes (CFB, OFB)

IV

K E

discard

m1

c1

K E

discard

m2

c2

CFB

OFB

k bits

k bits

k bits

k bits

k bits

k bits

k bits

k bits

16/49

�

�

�

�

�

�

	

Feedback Modes Explained

OFB and CFB generate a one-time pad consisting of
pseudo-random numbers from an IV and a key: ci = pi ⊕ ki,
where ki is the key stream generated by the IV and K.

16/49

�

�

�

�

�

�

	

Feedback Modes Explained

OFB and CFB generate a one-time pad consisting of
pseudo-random numbers from an IV and a key: ci = pi ⊕ ki,
where ki is the key stream generated by the IV and K.

OFB CFB
Uses only key and IV to ge-
nerate key stream

Also uses message

Encryption pad can be com-
puted beforehand

Must wait for plaintext

Can generate ciphertext as
fast as the plaintext appears

Can generate ciphertext as
fast as plaintext appears if
block sizes match

17/49

�

�

�

�

�

�

	

Effect of Transmission Errors and Attacks

Error OFB Decryption CFB Decryption
Garbled bits Garbles rest of mes-

sage
Garbles only these
bits

Added ciphertext Garbles rest of mes-
sage

Will re-synchronize

If Trudy knows the one-time pad, she can alter the ciphertext
to say anything she wants:

17/49

�

�

�

�

�

�

	

Effect of Transmission Errors and Attacks

Error OFB Decryption CFB Decryption
Garbled bits Garbles rest of mes-

sage
Garbles only these
bits

Added ciphertext Garbles rest of mes-
sage

Will re-synchronize

If Trudy knows the one-time pad, she can alter the ciphertext
to say anything she wants:

Since pi = ci ⊕ ki, we must substitute p′i ⊕ ki for ci if we want
the i-th ciphertext character to decrypt to p′i.

18/49

�

�

�

�

�

�

	

Counter Mode (CTR)

K

IV

E

m1

c1

k bits

k bits

K

IV+1

E

m2

c2

k bits

k bits

K

IV+2

E

m3

c3

k bits

k bits

k bits k bits k bits

discard discard discard

Key stream can again be precomputed (like OFB) and
decryption can start at any point (not just at the beginning).

19/49

�

�

�

�

�

�

	

Advice

Encrypt What Recommendation
Files CBC with a random IV (especially

if you want to access the file non-
sequentially). Also use a good Messa-
ge Integrity Code (MIC) in order to de-
tect modification of the ciphertext.

Net Sessions CFB or OFB with a random IV or native
stream cipher like RC4. Protect each
packet with a MIC.

Short Database Fields CBC with random IV and MIC.
Encryption Keys ECB with MIC.

20/49

�

�

�

�

�

�

	

Advice on Algorithms and Key Sizes

Do not use DES (key size too short).

20/49

�

�

�

�

�

�

	

Advice on Algorithms and Key Sizes

Do not use DES (key size too short).

If you must use DES (and only then), do use 3DES (using three
keys of 56 bits) or 2Key-3DES (using only two). Both(!) have an
effective key size of 112 bits.

20/49

�

�

�

�

�

�

	

Advice on Algorithms and Key Sizes

Do not use DES (key size too short).

If you must use DES (and only then), do use 3DES (using three
keys of 56 bits) or 2Key-3DES (using only two). Both(!) have an
effective key size of 112 bits.

Do not just encrypt twice with DES to get longer keys!

20/49

�

�

�

�

�

�

	

Advice on Algorithms and Key Sizes

Do not use DES (key size too short).

If you must use DES (and only then), do use 3DES (using three
keys of 56 bits) or 2Key-3DES (using only two). Both(!) have an
effective key size of 112 bits.

Do not just encrypt twice with DES to get longer keys!

Do choose key sizes of at least 112 bits.

20/49

�

�

�

�

�

�

	

Advice on Algorithms and Key Sizes

Do not use DES (key size too short).

If you must use DES (and only then), do use 3DES (using three
keys of 56 bits) or 2Key-3DES (using only two). Both(!) have an
effective key size of 112 bits.

Do not just encrypt twice with DES to get longer keys!

Do choose key sizes of at least 112 bits.

Do use one of these algorithms; they are probably OK: IDEA,
AES, RC4, RC5, Blowfish, Twofish.

20/49

�

�

�

�

�

�

	

Advice on Algorithms and Key Sizes

Do not use DES (key size too short).

If you must use DES (and only then), do use 3DES (using three
keys of 56 bits) or 2Key-3DES (using only two). Both(!) have an
effective key size of 112 bits.

Do not just encrypt twice with DES to get longer keys!

Do choose key sizes of at least 112 bits.

Do use one of these algorithms; they are probably OK: IDEA,
AES, RC4, RC5, Blowfish, Twofish.

Do not deploy any algorithm without checking whether it has
been broken in the meantime. It happens.

21/49

�

�

�

�

�

�

	

More Advice on Algorithms

Do not use these ciphers; they are broken: GDES, DESX, (and
most other DES variants), Bass-O-Matic, Khufu, Khafre, FEAL,
Akelarre, SPEED, Enigma 2000, JEL, StreamBuddy, and many
many more.

21/49

�

�

�

�

�

�

	

More Advice on Algorithms

Do not use these ciphers; they are broken: GDES, DESX, (and
most other DES variants), Bass-O-Matic, Khufu, Khafre, FEAL,
Akelarre, SPEED, Enigma 2000, JEL, StreamBuddy, and many
many more.

N.B.: DES is an excellent cipher; it has withstood about 30
years of cryptanalysis. The best way of attacking DES is brute
force. The problem with DES is that brute force is too easy.

22/49

�

�

�

�

�

�

	

Why Isn’t He Showing Source Code?

Never roll your own crypto algorithms!

22/49

�

�

�

�

�

�

	

Why Isn’t He Showing Source Code?

Never roll your own crypto algorithms!

It’s very, very difficult to create a good crypto algorithm.
Without proper education (and probably years of experience),
you can’t do it. The ciphertext might look “random” to you, but
an experienced cryptographer can probably break it.

22/49

�

�

�

�

�

�

	

Why Isn’t He Showing Source Code?

Never roll your own crypto algorithms!

It’s very, very difficult to create a good crypto algorithm.
Without proper education (and probably years of experience),
you can’t do it. The ciphertext might look “random” to you, but
an experienced cryptographer can probably break it.

Never write your own crypto code!

22/49

�

�

�

�

�

�

	

Why Isn’t He Showing Source Code?

Never roll your own crypto algorithms!

It’s very, very difficult to create a good crypto algorithm.
Without proper education (and probably years of experience),
you can’t do it. The ciphertext might look “random” to you, but
an experienced cryptographer can probably break it.

Never write your own crypto code!

Even when using algorithms that are known to be good, it’s
still bloody difficult to write correct crypto code.

22/49

�

�

�

�

�

�

	

Why Isn’t He Showing Source Code?

Never roll your own crypto algorithms!

It’s very, very difficult to create a good crypto algorithm.
Without proper education (and probably years of experience),
you can’t do it. The ciphertext might look “random” to you, but
an experienced cryptographer can probably break it.

Never write your own crypto code!

Even when using algorithms that are known to be good, it’s
still bloody difficult to write correct crypto code.

Example: I’ve seen an application that fed the plaintext back
instead of the ciphertext, turning CFB into “PFB”, which
exposes patterns in the input. (Code change: one identifier.)

23/49

�

�

�

�

�

�

	

Shortest Possible Intro to Public Key

• A public key pair consists of a public encryption key e and
a private decryption or signature key d that can’t easily be
computed from e.

23/49

�

�

�

�

�

�

	

Shortest Possible Intro to Public Key

• A public key pair consists of a public encryption key e and
a private decryption or signature key d that can’t easily be
computed from e.

• Each key defines a function associated with that key. For
the key pair belonging to Alice, we’ll write {·}Alice for the
public encryption function and [·]Alice for the private
decryption function.

23/49

�

�

�

�

�

�

	

Shortest Possible Intro to Public Key

• A public key pair consists of a public encryption key e and
a private decryption or signature key d that can’t easily be
computed from e.

• Each key defines a function associated with that key. For
the key pair belonging to Alice, we’ll write {·}Alice for the
public encryption function and [·]Alice for the private
decryption function.

• For every message M in the domain of {·}Alice, we have
[{M}Alice]Alice = M (if {M}Alice is in the domain of [·])

23/49

�

�

�

�

�

�

	

Shortest Possible Intro to Public Key

• A public key pair consists of a public encryption key e and
a private decryption or signature key d that can’t easily be
computed from e.

• Each key defines a function associated with that key. For
the key pair belonging to Alice, we’ll write {·}Alice for the
public encryption function and [·]Alice for the private
decryption function.

• For every message M in the domain of {·}Alice, we have
[{M}Alice]Alice = M (if {M}Alice is in the domain of [·]), and
for every message M′ in the domain of [·]Alice, we have
{[M′]Alice}Alice = M′.

23/49

�

�

�

�

�

�

	

Shortest Possible Intro to Public Key

• A public key pair consists of a public encryption key e and
a private decryption or signature key d that can’t easily be
computed from e.

• Each key defines a function associated with that key. For
the key pair belonging to Alice, we’ll write {·}Alice for the
public encryption function and [·]Alice for the private
decryption function.

• For every message M in the domain of {·}Alice, we have
[{M}Alice]Alice = M (if {M}Alice is in the domain of [·]), and
for every message M′ in the domain of [·]Alice, we have
{[M′]Alice}Alice = M′.

• It is not necessary that {M}Alice be in the domain of [·]Alice.
(Signature without encryption.)

24/49

�

�

�

�

�

�

	

Best Known Public-Key Algorithm: RSA

“The obvious mathematical breakthrough would be
development of an easy way to factor large prime
numbers.” Bill Gates, The Road Ahead

24/49

�

�

�

�

�

�

	

Best Known Public-Key Algorithm: RSA

“The obvious mathematical breakthrough would be
development of an easy way to factor large prime
numbers.” Bill Gates, The Road Ahead

RSA works because it is difficult (under certain circumstances)
to factor large numbers that are the product of two large
primes.

24/49

�

�

�

�

�

�

	

Best Known Public-Key Algorithm: RSA

“The obvious mathematical breakthrough would be
development of an easy way to factor large prime
numbers.” Bill Gates, The Road Ahead

RSA works because it is difficult (under certain circumstances)
to factor large numbers that are the product of two large
primes. We think.

24/49

�

�

�

�

�

�

	

Best Known Public-Key Algorithm: RSA

“The obvious mathematical breakthrough would be
development of an easy way to factor large prime
numbers.” Bill Gates, The Road Ahead

RSA works because it is difficult (under certain circumstances)
to factor large numbers that are the product of two large
primes. We think.

RSA is a variable-length block cipher

24/49

�

�

�

�

�

�

	

Best Known Public-Key Algorithm: RSA

“The obvious mathematical breakthrough would be
development of an easy way to factor large prime
numbers.” Bill Gates, The Road Ahead

RSA works because it is difficult (under certain circumstances)
to factor large numbers that are the product of two large
primes. We think.

RSA is a variable-length block cipher, where it makes no sense
to employ any mode other than ECB!

24/49

�

�

�

�

�

�

	

Best Known Public-Key Algorithm: RSA

“The obvious mathematical breakthrough would be
development of an easy way to factor large prime
numbers.” Bill Gates, The Road Ahead

RSA works because it is difficult (under certain circumstances)
to factor large numbers that are the product of two large
primes. We think.

RSA is a variable-length block cipher, where it makes no sense
to employ any mode other than ECB!

There are crypto libraries out there that are so orthogonal that
they allow you to specify RSA with CBC, but that’s nonsense!

24/49

�

�

�

�

�

�

	

Best Known Public-Key Algorithm: RSA

“The obvious mathematical breakthrough would be
development of an easy way to factor large prime
numbers.” Bill Gates, The Road Ahead

RSA works because it is difficult (under certain circumstances)
to factor large numbers that are the product of two large
primes. We think.

RSA is a variable-length block cipher, where it makes no sense
to employ any mode other than ECB!

There are crypto libraries out there that are so orthogonal that
they allow you to specify RSA with CBC, but that’s nonsense!

It’s even more important than in the case with symmetric
crypto not to write your own RSA package, because there are
even more things that can go wrong when you don’t do it right.

25/49

�

�

�

�

�

�

	

RSA Key Generation

The number of positive integers that are relatively prime to
some positive integer x (and less than it) is written φ(x), aka
Euler’s Totient Function.

25/49

�

�

�

�

�

�

	

RSA Key Generation

The number of positive integers that are relatively prime to
some positive integer x (and less than it) is written φ(x), aka
Euler’s Totient Function.

RSA works because of one of Euler’s theorems which says that
aφ(n) ≡ 1 (mod n) if gcd(a,n) = 1.

25/49

�

�

�

�

�

�

	

RSA Key Generation

The number of positive integers that are relatively prime to
some positive integer x (and less than it) is written φ(x), aka
Euler’s Totient Function.

RSA works because of one of Euler’s theorems which says that
aφ(n) ≡ 1 (mod n) if gcd(a,n) = 1.

Let p and q be two different odd primes. Let n = pq. We have
φ(n) = (p − 1)(q − 1). Choose e such that gcd(e, p − 1) = 1
and gcd(e, q − 1) = 1. Note that this means that
gcd

(
e,φ(n)

)
= 1.

25/49

�

�

�

�

�

�

	

RSA Key Generation

The number of positive integers that are relatively prime to
some positive integer x (and less than it) is written φ(x), aka
Euler’s Totient Function.

RSA works because of one of Euler’s theorems which says that
aφ(n) ≡ 1 (mod n) if gcd(a,n) = 1.

Let p and q be two different odd primes. Let n = pq. We have
φ(n) = (p − 1)(q − 1). Choose e such that gcd(e, p − 1) = 1
and gcd(e, q − 1) = 1. Note that this means that
gcd

(
e,φ(n)

)
= 1.

Compute d such that ed ≡ 1 (mod φ(n)).

25/49

�

�

�

�

�

�

	

RSA Key Generation

The number of positive integers that are relatively prime to
some positive integer x (and less than it) is written φ(x), aka
Euler’s Totient Function.

RSA works because of one of Euler’s theorems which says that
aφ(n) ≡ 1 (mod n) if gcd(a,n) = 1.

Let p and q be two different odd primes. Let n = pq. We have
φ(n) = (p − 1)(q − 1). Choose e such that gcd(e, p − 1) = 1
and gcd(e, q − 1) = 1. Note that this means that
gcd

(
e,φ(n)

)
= 1.

Compute d such that ed ≡ 1 (mod φ(n)).

The public key is (e,n); the private key is (d,n).

25/49

�

�

�

�

�

�

	

RSA Key Generation

The number of positive integers that are relatively prime to
some positive integer x (and less than it) is written φ(x), aka
Euler’s Totient Function.

RSA works because of one of Euler’s theorems which says that
aφ(n) ≡ 1 (mod n) if gcd(a,n) = 1.

Let p and q be two different odd primes. Let n = pq. We have
φ(n) = (p − 1)(q − 1). Choose e such that gcd(e, p − 1) = 1
and gcd(e, q − 1) = 1. Note that this means that
gcd

(
e,φ(n)

)
= 1.

Compute d such that ed ≡ 1 (mod φ(n)).

The public key is (e,n); the private key is (d,n).

Some choices of p and q are better than others! Beware!

26/49

�

�

�

�

�

�

	

RSA Encryption/Decryption

To encrypt a message 0 < P < n, compute C = P e mod n. To
decrypt a message, compute P ′ = Cd mod n.

26/49

�

�

�

�

�

�

	

RSA Encryption/Decryption

To encrypt a message 0 < P < n, compute C = P e mod n. To
decrypt a message, compute P ′ = Cd mod n.

Cd ≡ (P e mod n)d

26/49

�

�

�

�

�

�

	

RSA Encryption/Decryption

To encrypt a message 0 < P < n, compute C = P e mod n. To
decrypt a message, compute P ′ = Cd mod n.

Cd ≡ (P e mod n)d ≡ P ed

26/49

�

�

�

�

�

�

	

RSA Encryption/Decryption

To encrypt a message 0 < P < n, compute C = P e mod n. To
decrypt a message, compute P ′ = Cd mod n.

Cd ≡ (P e mod n)d ≡ P ed ≡ Pkφ(n)+1

26/49

�

�

�

�

�

�

	

RSA Encryption/Decryption

To encrypt a message 0 < P < n, compute C = P e mod n. To
decrypt a message, compute P ′ = Cd mod n.

Cd ≡ (P e mod n)d ≡ P ed ≡ Pkφ(n)+1 ≡ Pkφ(n) · P

26/49

�

�

�

�

�

�

	

RSA Encryption/Decryption

To encrypt a message 0 < P < n, compute C = P e mod n. To
decrypt a message, compute P ′ = Cd mod n.

Cd ≡ (P e mod n)d ≡ P ed ≡ Pkφ(n)+1 ≡ Pkφ(n) · P ≡ P (mod n).

26/49

�

�

�

�

�

�

	

RSA Encryption/Decryption

To encrypt a message 0 < P < n, compute C = P e mod n. To
decrypt a message, compute P ′ = Cd mod n.

Cd ≡ (P e mod n)d ≡ P ed ≡ Pkφ(n)+1 ≡ Pkφ(n) · P ≡ P (mod n).

When P is a multiple of p or q, things also work out. (Having
P = kp would expose p, because gcd(P e mod n,n) = p, but
that is just as likely as correctly guessing p or q.)

27/49

�

�

�

�

�

�

	

RSA Pitfalls: Small Encryption Exponent

You want to send a message P to three participants with public
keys (3, n1), (3, n2), and (3, n3). Encryption is:

Cj = P3 mod nj for 1 ≤ j ≤ 3.

By the Chinese Remainder Theorem, we can compute some x
with Cj = x mod nj (1 ≤ j ≤ 3), if the nj are pairwise relatively
prime (very likely).

This x is unique modulo n1n2n3. We compute the smallest
nonnegative such x.

Since P < nj for 1 ≤ j ≤ 3, we have x = P3.

=⇒ Compute x, take cube root, get P .

27/49

�

�

�

�

�

�

	

RSA Pitfalls: Small Encryption Exponent

You want to send a message P to three participants with public
keys (3, n1), (3, n2), and (3, n3). Encryption is:

Cj = P3 mod nj for 1 ≤ j ≤ 3.

By the Chinese Remainder Theorem, we can compute some x
with Cj = x mod nj (1 ≤ j ≤ 3), if the nj are pairwise relatively
prime (very likely).

This x is unique modulo n1n2n3. We compute the smallest
nonnegative such x.

Since P < nj for 1 ≤ j ≤ 3, we have x = P3.

=⇒ Compute x, take cube root, get P .

Solution: Choose e = 65537.

28/49

�

�

�

�

�

�

	

RSA Pitfalls: No Padding/Small Message

If e = 3 (many still are!), and if the message P is so small that
P3 < n, then you can simply take the e-th root of the
ciphertext to get P back.

Most messages are indeed small (112-bit or 128-bit encryption
keys, for example), where there’s a chance that this will
happen.

28/49

�

�

�

�

�

�

	

RSA Pitfalls: No Padding/Small Message

If e = 3 (many still are!), and if the message P is so small that
P3 < n, then you can simply take the e-th root of the
ciphertext to get P back.

Most messages are indeed small (112-bit or 128-bit encryption
keys, for example), where there’s a chance that this will
happen.

Solution: Pad the message on the left with nonzero (or
random) bits, such that P e > n.

28/49

�

�

�

�

�

�

	

RSA Pitfalls: No Padding/Small Message

If e = 3 (many still are!), and if the message P is so small that
P3 < n, then you can simply take the e-th root of the
ciphertext to get P back.

Most messages are indeed small (112-bit or 128-bit encryption
keys, for example), where there’s a chance that this will
happen.

Solution: Pad the message on the left with nonzero (or
random) bits, such that P e > n.

These are just two of the easier pitfalls. There are many more
(for example, the exact form of the factors p and q etc.).
Therefore:

28/49

�

�

�

�

�

�

	

RSA Pitfalls: No Padding/Small Message

If e = 3 (many still are!), and if the message P is so small that
P3 < n, then you can simply take the e-th root of the
ciphertext to get P back.

Most messages are indeed small (112-bit or 128-bit encryption
keys, for example), where there’s a chance that this will
happen.

Solution: Pad the message on the left with nonzero (or
random) bits, such that P e > n.

These are just two of the easier pitfalls. There are many more
(for example, the exact form of the factors p and q etc.).
Therefore:

Never roll your own RSA routines!

29/49

�

�

�

�

�

�

	

RSA Pitfalls: Timing Attacks

If you implement xa mod n, you’ll very probably use a
technique that doesn’t always take the same time for every a.

29/49

�

�

�

�

�

�

	

RSA Pitfalls: Timing Attacks

If you implement xa mod n, you’ll very probably use a
technique that doesn’t always take the same time for every a.

Some of the most common multiplication algorithms can be
expolited simply by measuring how long it takes to compute
xa mod n when a isn’t known.

29/49

�

�

�

�

�

�

	

RSA Pitfalls: Timing Attacks

If you implement xa mod n, you’ll very probably use a
technique that doesn’t always take the same time for every a.

Some of the most common multiplication algorithms can be
expolited simply by measuring how long it takes to compute
xa mod n when a isn’t known.

That way, a (or even some bits of a) can be recovered
indirectly.

29/49

�

�

�

�

�

�

	

RSA Pitfalls: Timing Attacks

If you implement xa mod n, you’ll very probably use a
technique that doesn’t always take the same time for every a.

Some of the most common multiplication algorithms can be
expolited simply by measuring how long it takes to compute
xa mod n when a isn’t known.

That way, a (or even some bits of a) can be recovered
indirectly.

Therefore:

29/49

�

�

�

�

�

�

	

RSA Pitfalls: Timing Attacks

If you implement xa mod n, you’ll very probably use a
technique that doesn’t always take the same time for every a.

Some of the most common multiplication algorithms can be
expolited simply by measuring how long it takes to compute
xa mod n when a isn’t known.

That way, a (or even some bits of a) can be recovered
indirectly.

Therefore:

Never roll your own RSA routines!

30/49

�

�

�

�

�

�

	

MACs and MICs

They are cryptographic checksums:

• They map an arbitrarily long byte sequence to a fixed (and
usually rather small) number of bytes.

30/49

�

�

�

�

�

�

	

MACs and MICs

They are cryptographic checksums:

• They map an arbitrarily long byte sequence to a fixed (and
usually rather small) number of bytes.

• Given a checksum, it is infeasible to find a message that
has this checksum.

30/49

�

�

�

�

�

�

	

MACs and MICs

They are cryptographic checksums:

• They map an arbitrarily long byte sequence to a fixed (and
usually rather small) number of bytes.

• Given a checksum, it is infeasible to find a message that
has this checksum.

• Given a message, it is infeasible to find another message
with the same checksum.

30/49

�

�

�

�

�

�

	

MACs and MICs

They are cryptographic checksums:

• They map an arbitrarily long byte sequence to a fixed (and
usually rather small) number of bytes.

• Given a checksum, it is infeasible to find a message that
has this checksum.

• Given a message, it is infeasible to find another message
with the same checksum.

• They depend on a key such that the checksum will be
different when different keys are used and that the
checksum can’t be predicted without knowing the key.

30/49

�

�

�

�

�

�

	

MACs and MICs

They are cryptographic checksums:

• They map an arbitrarily long byte sequence to a fixed (and
usually rather small) number of bytes.

• Given a checksum, it is infeasible to find a message that
has this checksum.

• Given a message, it is infeasible to find another message
with the same checksum.

• They depend on a key such that the checksum will be
different when different keys are used and that the
checksum can’t be predicted without knowing the key.

All but the last requirements are also required of hash
functions.

31/49

�

�

�

�

�

�

	

Computing a MAC: CBC Residue

K

P1

E

C1 MAC

K

P2

E

IV

32/49

�

�

�

�

�

�

	

Privacy And Integrity (1)

Can we get encryption and integrity protection at the same
time?

K

P1

E

C1 C2

K

P2

E

IV MAC

33/49

�

�

�

�

�

�

	

Privacy And Integrity (2)

K

P1

E

C1 C2

K

P2

E

MAC

K

C2

E

IV

34/49

�

�

�

�

�

�

	

Privacy And Integrity (3)

K

P1

E

C1 C2

K

P2

E

MAC

K

CRC

E

IV

35/49

�

�

�

�

�

�

	

The Moral

You might be able to get integrity and privacy protection in
one pass over the data, but how to do that is still under active
research.

35/49

�

�

�

�

�

�

	

The Moral

You might be able to get integrity and privacy protection in
one pass over the data, but how to do that is still under active
research.

Your best best will be to do two passes over the data; the first
pass should compute a hash (or keyed hash; later), and the
second pass should encrypt.

35/49

�

�

�

�

�

�

	

The Moral

You might be able to get integrity and privacy protection in
one pass over the data, but how to do that is still under active
research.

Your best best will be to do two passes over the data; the first
pass should compute a hash (or keyed hash; later), and the
second pass should encrypt.

If you use a hash function, the hash should be encrypted, too.
A keyed hash can be transmitted in the clear, if the keys used
for hashing and encryption are different.

35/49

�

�

�

�

�

�

	

The Moral

You might be able to get integrity and privacy protection in
one pass over the data, but how to do that is still under active
research.

Your best best will be to do two passes over the data; the first
pass should compute a hash (or keyed hash; later), and the
second pass should encrypt.

If you use a hash function, the hash should be encrypted, too.
A keyed hash can be transmitted in the clear, if the keys used
for hashing and encryption are different.

Do not try to take shortcuts in crypto!

36/49

�

�

�

�

�

�

	

Cryptographic Hash Functions

Cryptograhic hash functions have the following properties:

• They map an arbitrarily long byte sequence to a fixed (and
usually rather small) number of bytes, called a hash or
message digest.

36/49

�

�

�

�

�

�

	

Cryptographic Hash Functions

Cryptograhic hash functions have the following properties:

• They map an arbitrarily long byte sequence to a fixed (and
usually rather small) number of bytes, called a hash or
message digest.

• Given a checksum, it is infeasible to find a message that
has this checksum.

36/49

�

�

�

�

�

�

	

Cryptographic Hash Functions

Cryptograhic hash functions have the following properties:

• They map an arbitrarily long byte sequence to a fixed (and
usually rather small) number of bytes, called a hash or
message digest.

• Given a checksum, it is infeasible to find a message that
has this checksum.

• Given a message, it is infeasible to find another message
with the same checksum.

36/49

�

�

�

�

�

�

	

Cryptographic Hash Functions

Cryptograhic hash functions have the following properties:

• They map an arbitrarily long byte sequence to a fixed (and
usually rather small) number of bytes, called a hash or
message digest.

• Given a checksum, it is infeasible to find a message that
has this checksum.

• Given a message, it is infeasible to find another message
with the same checksum.

Note that it cannot be impossible to find collisions, because of
the pigeonhole principle: If you have infinitely many messages,
but only finitely many hashes, some messages must hash to
the same value.

37/49

�

�

�

�

�

�

	

How Infeasible is Finding a Collision?

Let’s say the hash function is cryptographically strong, but I
still want to crack it. I follow the following algorithm:

1. Set S ←∅.

2. Generate a new, random message m and its hash h(m).

3. If
(
m,h(m)

)
∈ S, terminate the algorithm. Otherwise, set

S ← S ∪
(
m,h(m)

)
and repeat step 2.

How often will step 2 have to be executed before the algorithm
terminates? (We may assume that the messages that are
generated contain no duplicates.)

38/49

�

�

�

�

�

�

	

Collision Probability (1)

Assume that the hash function maps messages to n-bit
digests. We model the problem of finding a collision as follows:

38/49

�

�

�

�

�

�

	

Collision Probability (1)

Assume that the hash function maps messages to n-bit
digests. We model the problem of finding a collision as follows:

We have an urn containing 2n numbered balls. We draw balls
from the urn, note the number on them and replace them.
How often must we draw balls before a number appears that is
already on our list?

38/49

�

�

�

�

�

�

	

Collision Probability (1)

Assume that the hash function maps messages to n-bit
digests. We model the problem of finding a collision as follows:

We have an urn containing 2n numbered balls. We draw balls
from the urn, note the number on them and replace them.
How often must we draw balls before a number appears that is
already on our list?

What’s the probability that the first k draws are all distinct? Set
N = 2n.

38/49

�

�

�

�

�

�

	

Collision Probability (1)

Assume that the hash function maps messages to n-bit
digests. We model the problem of finding a collision as follows:

We have an urn containing 2n numbered balls. We draw balls
from the urn, note the number on them and replace them.
How often must we draw balls before a number appears that is
already on our list?

What’s the probability that the first k draws are all distinct? Set
N = 2n.

P(k) = N
N
· N − 1

N
· · ·N − k+ 1

N
=
k−1∏
j=0

(
1− j

N

)

Now we want to know the first k for which P(k) < 0.5.

39/49

�

�

�

�

�

�

	

Collision Probability (2)

k−1∏
j=0

(
1− j

N

)
<
(

1
k

k−1∑
j=0

(
1− j

N

))k

=
(

1− k− 1
2N

)k
≈
(

1− k
2N

)k
< exp(−k2/2N).

To find k for which P(k) < 0.5, we solve exp(−k2/2N) < 0.5
for k to yield k > λ

√
N where λ =

√
2 ln 2 ≈ 1.18.

If N = 2n, and if n is even,
√
N = 2n/2. We’ll leave out the

factor of λ (since it’s so close to 1).

40/49

�

�

�

�

�

�

	

Collision Probability (3)

For an n-bit hash, we have to hash about
2n/2 messages before we can expect a
collision with probability at least 1/2.

That means that

40/49

�

�

�

�

�

�

	

Collision Probability (3)

For an n-bit hash, we have to hash about
2n/2 messages before we can expect a
collision with probability at least 1/2.

That means that

Any hash function that has less than 128
bits of hash should be considered insecure

and weak and should not be used.

41/49

�

�

�

�

�

�

	

Well-Known Hash Functions

For some reason, it seems to be easier to create good hash
functions than to create good encryption schemes. Some good
hash functions are:

Name Bits Comment
MD5 128 Less fast than predecessor MD4 (*)
SHA-1 160 Standard (*)
RIPEMD-160 160

(*) Length limited to be less than 264 bits; but “If you can’t say
something in 264 bits, you probably shouldn’t say it at all”.

If we could hash one Terabyte per second (which we can’t),
hashing the entire 264 bits would take about 550,000 years to
compute.

42/49

�

�

�

�

�

�

	

Computing MACs With Hashes

A hash function is collision resistant, so we can compute
hash(m) for a message m and send that as the MAC.

42/49

�

�

�

�

�

�

	

Computing MACs With Hashes

A hash function is collision resistant, so we can compute
hash(m) for a message m and send that as the MAC.

No, we can’t, because of the fourth requirement for MACs:

42/49

�

�

�

�

�

�

	

Computing MACs With Hashes

A hash function is collision resistant, so we can compute
hash(m) for a message m and send that as the MAC.

No, we can’t, because of the fourth requirement for MACs:

They depend on a key such that the checksum will be
different when different keys are used and that the
checksum can’t be predicted without knowing the key.

42/49

�

�

�

�

�

�

	

Computing MACs With Hashes

A hash function is collision resistant, so we can compute
hash(m) for a message m and send that as the MAC.

No, we can’t, because of the fourth requirement for MACs:

They depend on a key such that the checksum will be
different when different keys are used and that the
checksum can’t be predicted without knowing the key.

How can we add a key to the message digest algorithm?

43/49

�

�

�

�

�

�

	

MACs With Hashes And Keys (1)

Alice and Bob agree on a shared secret KAB. If Alice sends a
message m to Bob, she concatenates KAB and m and sends
hash(KAB|m) as the MAC.

43/49

�

�

�

�

�

�

	

MACs With Hashes And Keys (1)

Alice and Bob agree on a shared secret KAB. If Alice sends a
message m to Bob, she concatenates KAB and m and sends
hash(KAB|m) as the MAC.

This way, the message digest depends on the secret and Eve
cannot send a message that will be accepted as authentic.

43/49

�

�

�

�

�

�

	

MACs With Hashes And Keys (1)

Alice and Bob agree on a shared secret KAB. If Alice sends a
message m to Bob, she concatenates KAB and m and sends
hash(KAB|m) as the MAC.

This way, the message digest depends on the secret and Eve
cannot send a message that will be accepted as authentic.

Wrong.

43/49

�

�

�

�

�

�

	

MACs With Hashes And Keys (1)

Alice and Bob agree on a shared secret KAB. If Alice sends a
message m to Bob, she concatenates KAB and m and sends
hash(KAB|m) as the MAC.

This way, the message digest depends on the secret and Eve
cannot send a message that will be accepted as authentic.

Wrong.

The key to the attack is that it’s possible to compute
hash(x|y) if you know hash(x) and y.

43/49

�

�

�

�

�

�

	

MACs With Hashes And Keys (1)

Alice and Bob agree on a shared secret KAB. If Alice sends a
message m to Bob, she concatenates KAB and m and sends
hash(KAB|m) as the MAC.

This way, the message digest depends on the secret and Eve
cannot send a message that will be accepted as authentic.

Wrong.

The key to the attack is that it’s possible to compute
hash(x|y) if you know hash(x) and y.

That means that if Eve sees hash(KAB|m), she can compute

hash(KAB|m|Romeo must die)

44/49

�

�

�

�

�

�

	

MACs With Hashes And Keys (2)

Solution: HMAC, which is becoming the standard MAC.

44/49

�

�

�

�

�

�

	

MACs With Hashes And Keys (2)

Solution: HMAC, which is becoming the standard MAC.

HMAC is provably “secure” if the underlying hash algorithm is
“secure”:

44/49

�

�

�

�

�

�

	

MACs With Hashes And Keys (2)

Solution: HMAC, which is becoming the standard MAC.

HMAC is provably “secure” if the underlying hash algorithm is
“secure”:

• It has collision resistance

44/49

�

�

�

�

�

�

	

MACs With Hashes And Keys (2)

Solution: HMAC, which is becoming the standard MAC.

HMAC is provably “secure” if the underlying hash algorithm is
“secure”:

• It has collision resistance; and

• if the attacker doesn’t know the key K, he cannot compute
MAC(K,x) even if he sees arbitrarly many MAC(K,y)
values.

45/49

�

�

�

�

�

�

	

HMAC

Key 0

Message

HMAC(Key, Message)

Const1Const2

hash

hash

46/49

�

�

�

�

�

�

	

Libraries: OpenSSL and cryptlib (1)

OpenSSL cryptlib
Author Eric Young, OpenSSL

Project Team
Peter Gutmann

Since 1990’s 1990’s
Vuln’s several none
Scope wide, many OSS pro-

jects
wide, mostly non-OSS
projects

Approach bunch of functions application support
Runs on mostly Unix and Win-

dows
tons of stuff: mainfra-
mes to embedded sy-
stems

License OSS OSS
Free? all use noncommercial use

47/49

�

�

�

�

�

�

	

Libraries: OpenSSL and cryptlib (2)

Additionally, cryptlib supports hardware encryption, PGP data
formats, S/MIME enveloping, LDAP, RDBMS and ODBC
keystores, and CRL checking.

47/49

�

�

�

�

�

�

	

Libraries: OpenSSL and cryptlib (2)

Additionally, cryptlib supports hardware encryption, PGP data
formats, S/MIME enveloping, LDAP, RDBMS and ODBC
keystores, and CRL checking.

It is difficult to use cryptlib in an insecure way; cryptlib checks
on each operation whether it is meaningful for the
participating objects.

47/49

�

�

�

�

�

�

	

Libraries: OpenSSL and cryptlib (2)

Additionally, cryptlib supports hardware encryption, PGP data
formats, S/MIME enveloping, LDAP, RDBMS and ODBC
keystores, and CRL checking.

It is difficult to use cryptlib in an insecure way; cryptlib checks
on each operation whether it is meaningful for the
participating objects.

Has many secure defaults.

47/49

�

�

�

�

�

�

	

Libraries: OpenSSL and cryptlib (2)

Additionally, cryptlib supports hardware encryption, PGP data
formats, S/MIME enveloping, LDAP, RDBMS and ODBC
keystores, and CRL checking.

It is difficult to use cryptlib in an insecure way; cryptlib checks
on each operation whether it is meaningful for the
participating objects.

Has many secure defaults.

Once it’s set up, encrypting an email message is a matter of
three lines, including S/MIME enveloping.

48/49

�

�

�

�

�

�

	

Summary

• Symmetric Crypto

48/49

�

�

�

�

�

�

	

Summary

• Symmetric Crypto

• Asymmetric Crypto (aka Public-Key)

48/49

�

�

�

�

�

�

	

Summary

• Symmetric Crypto

• Asymmetric Crypto (aka Public-Key)

• Hashes, MICs, and MACs

49/49

�

�

�

�

�

�

	

References

• The OpenSSL Project, http://www.openssl.org.

• Cryptlib, http://www.cryptlib.com.

• Bruce Schneier, Applied Cryptography, John Wiley & Sons

http://www.openssl.org
http://www.cryptlib.com

49/49

�

�

�

�

�

�

	

References

• The OpenSSL Project, http://www.openssl.org.

• Cryptlib, http://www.cryptlib.com.

• Bruce Schneier, Applied Cryptography, John Wiley & Sons

• Charlie Kaufman, Radia Perlman, Mike Speciner, Network
Security, Prentice-Hall

http://www.openssl.org
http://www.cryptlib.com

	The Menu
	Cryptography
	Terminology
	Secret-Key and Public-Key
	Block Ciphers
	Properties Of a Good Block Cipher
	Stream Ciphers
	Electronic Codebook Mode (ECB)
	Problems with ECB
	Other Problems With ECB
	Cipher Block Chaining (CBC)
	Features of CBC
	Problems With CBC (1)
	Problems With CBC (2)
	Feedback Modes (CFB, OFB)
	Feedback Modes Explained
	Effect of Transmission Errors and Attacks
	Counter Mode (CTR)
	Advice
	Advice on Algorithms and Key Sizes
	More Advice on Algorithms
	Why Isn't He Showing Source Code?
	Shortest Possible Intro to Public Key
	Best Known Public-Key Algorithm: RSA
	RSA Key Generation
	RSA Encryption/Decryption
	RSA Pitfalls: Small Encryption Exponent
	RSA Pitfalls: No Padding/Small Message
	RSA Pitfalls: Timing Attacks
	MACs and MICs
	Computing a MAC: CBC Residue
	Privacy And Integrity (1)
	Privacy And Integrity (2)
	Privacy And Integrity (3)
	The Moral
	Cryptographic Hash Functions
	How Infeasible is Finding a Collision?
	Collision Probability (1)
	Collision Probability (2)
	Collision Probability (3)
	Well-Known Hash Functions
	Computing MACs With Hashes
	MACs With Hashes And Keys (1)
	MACs With Hashes And Keys (2)
	HMAC
	Libraries: OpenSSL and cryptlib (1)
	Libraries: OpenSSL and cryptlib (2)
	Summary
	References

