
0/52

�

�

�

�

�

�

	

Coding Techniques

Andreas Zeller/Stephan Neuhaus
Lehrstuhl Softwaretechnik
Universität des Saarlandes, Saarbrücken

1/52

�

�

�

�

�

�

	

Today’s Specials

• KISS—Keep It Simple, Stupid

• Fail Safe and Fail Secure

• Locking Memory

• Sanitizing Memory

• Handles

2/52

�

�

�

�

�

�

	

Software Insecurity: Size

Software is big. Most interesting software systems consist of
tens of thousands, hundreds of thousands or even millions of
lines of code.

It is very difficult to make even small systems secure

Unforseen interactions between parts of the system can open
you to security problems

3/52

�

�

�

�

�

�

	

Tenex Password Hack (1)

• Tenex was an operating system for the DEC-10

• password checking on files

• passwords were stored unencrypted

• password check only through (un-debuggable) system call

4/52

�

�

�

�

�

�

	

Tenex Password Hack (2)

• Tenex also had paged memory

• when a process accessed a page that was currently paged
out to disk, a page fault occured

• feature that could notify a process whenever a page fault
occured

5/52

�

�

�

�

�

�

	

Tenex Password Hack (3)

Here is the routine to check for the right password:

extern const char* lookup password(const char* filename);
const int password length = 14;

int password equal(const char* a, const char* b) {
int i;

for (i = 0; i < 14; i++)
if (a[i] != b[i])

return 0;
return 1; 10

}

int check (const char* filename, const char *given password) {
const char *actual password = lookup password(filename);
return password equal(actual password, given password);

}

6/52

�

�

�

�

�

�

	

How to Get Tenex Passwords to File f

1. Start with a 14-character password of ‘a’s. Set i← 0 (The
invariant is that we know i characters of the password.)

6/52

�

�

�

�

�

�

	

How to Get Tenex Passwords to File f

1. Start with a 14-character password of ‘a’s. Set i← 0 (The
invariant is that we know i characters of the password.)

2. Lay out the password such that the first i+ 1 characters are
in one memory page p , and the rest are in the adjacent
page p′.

6/52

�

�

�

�

�

�

	

How to Get Tenex Passwords to File f

1. Start with a 14-character password of ‘a’s. Set i← 0 (The
invariant is that we know i characters of the password.)

2. Lay out the password such that the first i+ 1 characters are
in one memory page p , and the rest are in the adjacent
page p′.

3. Force p′ to be paged out.

6/52

�

�

�

�

�

�

	

How to Get Tenex Passwords to File f

1. Start with a 14-character password of ‘a’s. Set i← 0 (The
invariant is that we know i characters of the password.)

2. Lay out the password such that the first i+ 1 characters are
in one memory page p , and the rest are in the adjacent
page p′.

3. Force p′ to be paged out.

4. Ask the operating system to open f with the password.

6/52

�

�

�

�

�

�

	

How to Get Tenex Passwords to File f

1. Start with a 14-character password of ‘a’s. Set i← 0 (The
invariant is that we know i characters of the password.)

2. Lay out the password such that the first i+ 1 characters are
in one memory page p , and the rest are in the adjacent
page p′.

3. Force p′ to be paged out.

4. Ask the operating system to open f with the password.

5. If a positive answer comes back, you’re done. If a negative
answer comes back, check if a page fault has occurred. If
one has not occurred, increase the i+ 1-st character of the
password by 1 and try again at step 3. If a page fault has
occurred, increase i by 1 and try again at step 2.

7/52

�

�

�

�

�

�

	

Stealing Tenex Passwords

w a l t c a

w a l t d i s n e \0y

a a a a \0

Real password

Guessed password Page p Page p’

8/52

�

�

�

�

�

�

	

Stealing Tenex Passwords

w a l t c a

w a l t d i s n e \0y

a a a a \0

=

Real password

Guessed password Page p Page p’

9/52

�

�

�

�

�

�

	

Stealing Tenex Passwords

w a l t c a

w a l t d i s n e \0y

a a a a \0

= =

Real password

Guessed password Page p Page p’

10/52

�

�

�

�

�

�

	

Stealing Tenex Passwords

w a l t c a

w a l t d i s n e \0y

a a a a \0

= = =

Real password

Guessed password Page p Page p’

11/52

�

�

�

�

�

�

	

Stealing Tenex Passwords

w a l t c a

w a l t d i s n e \0y

a a a a \0

= = = =

Real password

Guessed password Page p Page p’

12/52

�

�

�

�

�

�

	

Stealing Tenex Passwords

w a l t c a

w a l t d i s n e \0y

a a a a \0

= = = = =

Real password

Guessed password Page p Page p’

13/52

�

�

�

�

�

�

	

Stealing Tenex Passwords

w a l t d a

w a l t d i s n e \0y

a a a a \0

= = = = =

Real password

Guessed password Page p Page p’

14/52

�

�

�

�

�

�

	

Stealing Tenex Passwords

w a l t d a

w a l t d i s n e \0y

a a a a \0

= = = = =

Real password

Guessed password Page p Page p’

=

Access causes page fault

15/52

�

�

�

�

�

�

	

Software Complexity: Configurability

There was a time when Email addresses weren’t so simple as
user@mydomain.com.

15/52

�

�

�

�

�

�

	

Software Complexity: Configurability

There was a time when Email addresses weren’t so simple as
user@mydomain.com.

Email addresses could be ‘user@mydomain.com’ (internet mail
address),

15/52

�

�

�

�

�

�

	

Software Complexity: Configurability

There was a time when Email addresses weren’t so simple as
user@mydomain.com.

Email addresses could be ‘user@mydomain.com’ (internet mail
address), ‘minnehaha!kremvax!gorbachev’ (“bang path
address”),

15/52

�

�

�

�

�

�

	

Software Complexity: Configurability

There was a time when Email addresses weren’t so simple as
user@mydomain.com.

Email addresses could be ‘user@mydomain.com’ (internet mail
address), ‘minnehaha!kremvax!gorbachev’ (“bang path
address”), ‘72223,10’ (CompuServe address) etc.

15/52

�

�

�

�

�

�

	

Software Complexity: Configurability

There was a time when Email addresses weren’t so simple as
user@mydomain.com.

Email addresses could be ‘user@mydomain.com’ (internet mail
address), ‘minnehaha!kremvax!gorbachev’ (“bang path
address”), ‘72223,10’ (CompuServe address) etc.

Email routing went via different paths (uucp dialup links, SMTP
internet connections, etc.)

15/52

�

�

�

�

�

�

	

Software Complexity: Configurability

There was a time when Email addresses weren’t so simple as
user@mydomain.com.

Email addresses could be ‘user@mydomain.com’ (internet mail
address), ‘minnehaha!kremvax!gorbachev’ (“bang path
address”), ‘72223,10’ (CompuServe address) etc.

Email routing went via different paths (uucp dialup links, SMTP
internet connections, etc.)

The knight to slay this dragon of complexity was sendmail.
Sendmail was configurable to handle all these addresses
through a generalized string rewriting framweork.

15/52

�

�

�

�

�

�

	

Software Complexity: Configurability

There was a time when Email addresses weren’t so simple as
user@mydomain.com.

Email addresses could be ‘user@mydomain.com’ (internet mail
address), ‘minnehaha!kremvax!gorbachev’ (“bang path
address”), ‘72223,10’ (CompuServe address) etc.

Email routing went via different paths (uucp dialup links, SMTP
internet connections, etc.)

The knight to slay this dragon of complexity was sendmail.
Sendmail was configurable to handle all these addresses
through a generalized string rewriting framweork.

The downside of it was that no-one wanted to write or debug
sendmail configuration files, because they were so complex.

16/52

�

�

�

�

�

�

	

Sendmail Example

S98
R$* < $m . > $# local $@ $1 deliver mail to our domain
R$* < $m > $# error $@ 4.5.1 can’t resolve domain?
R$* < $=w . $m . > $# local $@ $1 local hostname is OK

Who wants to write or debug this?

16/52

�

�

�

�

�

�

	

Sendmail Example

S98
R$* < $m . > $# local $@ $1 deliver mail to our domain
R$* < $m > $# error $@ 4.5.1 can’t resolve domain?
R$* < $=w . $m . > $# local $@ $1 local hostname is OK

Who wants to write or debug this?

Towers of Hanoi
S49
RHANOI:$+ $:1 2 3$1
R$-$-$-$*[$+] $:$1$2$3$4
R$-$-$- $@$1$2$3
R$-$-$-@$* $:$>49 $1$3$2$4
R$-$-$-$* $:$>49 $2$3$1$4[Move Top Disk Of Peg $1 To Peg $3]
R$-$-$-$* $:$3$2$1@$4

It’s Turing-complete, but it’s not nice! (Same holds for
Intercal.)

17/52

�

�

�

�

�

�

	

What About It?

There was a time when this complexity was needed in order to
deliver mail.

17/52

�

�

�

�

�

�

	

What About It?

There was a time when this complexity was needed in order to
deliver mail.

This time is gone; email is now almost exclusively delivered via
the Internet and SMTP ⇒ complexity isn’t needed anymore.

17/52

�

�

�

�

�

�

	

What About It?

There was a time when this complexity was needed in order to
deliver mail.

This time is gone; email is now almost exclusively delivered via
the Internet and SMTP ⇒ complexity isn’t needed anymore.

New Mail Transfer Agents (MTAs) like qmail or postfix are
not that excessively configurable.

17/52

�

�

�

�

�

�

	

What About It?

There was a time when this complexity was needed in order to
deliver mail.

This time is gone; email is now almost exclusively delivered via
the Internet and SMTP ⇒ complexity isn’t needed anymore.

New Mail Transfer Agents (MTAs) like qmail or postfix are
not that excessively configurable.

Also smaller (no a single monolithic I-can-do-it-all application.)

17/52

�

�

�

�

�

�

	

What About It?

There was a time when this complexity was needed in order to
deliver mail.

This time is gone; email is now almost exclusively delivered via
the Internet and SMTP ⇒ complexity isn’t needed anymore.

New Mail Transfer Agents (MTAs) like qmail or postfix are
not that excessively configurable.

Also smaller (no a single monolithic I-can-do-it-all application.)

Designed for security: qmail offers “qmail security guarantee”:
First person to detect a security flaw in qmail gets $500. Offer
open since March 1997, still no takers as of today; no postfix
holes ever published.

18/52

�

�

�

�

�

�

	

Hints

• It’s easy to go overboard with configurability; the tendency
is to make software as general as possible.

18/52

�

�

�

�

�

�

	

Hints

• It’s easy to go overboard with configurability; the tendency
is to make software as general as possible.

• However, complexity is the natural enemy of security.

18/52

�

�

�

�

�

�

	

Hints

• It’s easy to go overboard with configurability; the tendency
is to make software as general as possible.

• However, complexity is the natural enemy of security.

• Therefore, make your software just as configurable as it
needs to be, but no more.

18/52

�

�

�

�

�

�

	

Hints

• It’s easy to go overboard with configurability; the tendency
is to make software as general as possible.

• However, complexity is the natural enemy of security.

• Therefore, make your software just as configurable as it
needs to be, but no more.

• For example, in a MTA, you must make relaying an option,
but not the format of Date: header lines (there is an RFC
for that).

18/52

�

�

�

�

�

�

	

Hints

• It’s easy to go overboard with configurability; the tendency
is to make software as general as possible.

• However, complexity is the natural enemy of security.

• Therefore, make your software just as configurable as it
needs to be, but no more.

• For example, in a MTA, you must make relaying an option,
but not the format of Date: header lines (there is an RFC
for that).

• Also, beware of featuritis: Does a mail reader really need
the capability to execute JavaScript or JScript code?

18/52

�

�

�

�

�

�

	

Hints

• It’s easy to go overboard with configurability; the tendency
is to make software as general as possible.

• However, complexity is the natural enemy of security.

• Therefore, make your software just as configurable as it
needs to be, but no more.

• For example, in a MTA, you must make relaying an option,
but not the format of Date: header lines (there is an RFC
for that).

• Also, beware of featuritis: Does a mail reader really need
the capability to execute JavaScript or JScript code?

• (The configuration needs of a software can change over
time.)

19/52

�

�

�

�

�

�

	

Fail Safe

To “fail safe” means that every failure must be checked for and
must lead to a controlled reaction.

19/52

�

�

�

�

�

�

	

Fail Safe

To “fail safe” means that every failure must be checked for and
must lead to a controlled reaction.

That means:

19/52

�

�

�

�

�

�

	

Fail Safe

To “fail safe” means that every failure must be checked for and
must lead to a controlled reaction.

That means:

• Check every function call for errors.

19/52

�

�

�

�

�

�

	

Fail Safe

To “fail safe” means that every failure must be checked for and
must lead to a controlled reaction.

That means:

• Check every function call for errors.

• Yes, even those that “cannot fail”.

19/52

�

�

�

�

�

�

	

Fail Safe

To “fail safe” means that every failure must be checked for and
must lead to a controlled reaction.

That means:

• Check every function call for errors.

• Yes, even those that “cannot fail”.

• Do not remove this error checking code in production
versions (usually “for performance reasons”).

19/52

�

�

�

�

�

�

	

Fail Safe

To “fail safe” means that every failure must be checked for and
must lead to a controlled reaction.

That means:

• Check every function call for errors.

• Yes, even those that “cannot fail”.

• Do not remove this error checking code in production
versions (usually “for performance reasons”).

• Make sure that you still can make a controlled exit if an
error occurs: remember important variables etc.

19/52

�

�

�

�

�

�

	

Fail Safe

To “fail safe” means that every failure must be checked for and
must lead to a controlled reaction.

That means:

• Check every function call for errors.

• Yes, even those that “cannot fail”.

• Do not remove this error checking code in production
versions (usually “for performance reasons”).

• Make sure that you still can make a controlled exit if an
error occurs: remember important variables etc.

• Always explicitly free all resources (memory, files, . . .) on
termination; don’t rely on the operating system to do it for
you.

20/52

�

�

�

�

�

�

	

Fail Secure

To “fail secure” means that failures must not lead to insecure
behavior.

• If you encrypt data, don’t use fallback modes without
encryption if something goes wrong.

20/52

�

�

�

�

�

�

	

Fail Secure

To “fail secure” means that failures must not lead to insecure
behavior.

• If you encrypt data, don’t use fallback modes without
encryption if something goes wrong.

• Don’t offer debugging modes with extended privileges and
default passwords that are easily guessed.

20/52

�

�

�

�

�

�

	

Fail Secure

To “fail secure” means that failures must not lead to insecure
behavior.

• If you encrypt data, don’t use fallback modes without
encryption if something goes wrong.

• Don’t offer debugging modes with extended privileges and
default passwords that are easily guessed.

• Offer secure defaults (probably the most overlooked
recommendation of them all).

20/52

�

�

�

�

�

�

	

Fail Secure

To “fail secure” means that failures must not lead to insecure
behavior.

• If you encrypt data, don’t use fallback modes without
encryption if something goes wrong.

• Don’t offer debugging modes with extended privileges and
default passwords that are easily guessed.

• Offer secure defaults (probably the most overlooked
recommendation of them all).

• Don’t report success if success isn’t certain.

21/52

�

�

�

�

�

�

	

Reporting Success (1)

typedef enum { no error, write failed } write error t;

/* Writes a critical file. If this function returns with 0, the file
has been written and committed to stable storage. Returns -1 on
error. */

write error t write critical file() {
FILE *fp = fopen("file", "w");
const char* message = "This is a message";

if (fwrite(message, strlen(message) + 1, 1, fp) != strlen(message) + 1) { 10

error("Write failed"); return write failed;
}

fclose(fp);
return no error;

}

21/52

�

�

�

�

�

�

	

Reporting Success (1)

typedef enum { no error, write failed } write error t;

/* Writes a critical file. If this function returns with 0, the file
has been written and committed to stable storage. Returns -1 on
error. */

write error t write critical file() {
FILE *fp = fopen("file", "w");
const char* message = "This is a message";

if (fwrite(message, strlen(message) + 1, 1, fp) != strlen(message) + 1) { 10

error("Write failed"); return write failed;
}

fclose(fp);
return no error;

}

If the fclose(3) call fails, the file might not be on the disk!

22/52

�

�

�

�

�

�

	

Reporting Success (2)

typedef enum { no error, write failed, close failed } write error t;

write error t write critical file() {
FILE *fp = fopen("file", "w");
const char* message = "This is a message";

if (fwrite(message, strlen(message) + 1, 1, fp) != strlen(message) + 1) {
error("Write failed"); return write failed;

}
10

if (fclose(fp) != 0) { error("Close failed"); return close failed; }

return no error;
}

22/52

�

�

�

�

�

�

	

Reporting Success (2)

typedef enum { no error, write failed, close failed } write error t;

write error t write critical file() {
FILE *fp = fopen("file", "w");
const char* message = "This is a message";

if (fwrite(message, strlen(message) + 1, 1, fp) != strlen(message) + 1) {
error("Write failed"); return write failed;

}
10

if (fclose(fp) != 0) { error("Close failed"); return close failed; }

return no error;
}

File might be in kernel buffers even if fclose(3) succeeds.

23/52

�

�

�

�

�

�

	

Reporting Success (3)

typedef enum { no error, write failed, close failed, sync failed } write error t;

write error t write critical file() {
FILE *fp = fopen("file", "w");
const char* message = "This is a message";

if (fwrite(message, strlen(message) + 1, 1, fp) != strlen(message) + 1) {
error("Write failed"); return write failed;

}
10

if (fclose(fp) != 0) { error("Close failed"); return close failed; }

if (fsync(fileno(fp)) != 0) { error("Sync failed"); return sync failed; }

return no error;
}

23/52

�

�

�

�

�

�

	

Reporting Success (3)

typedef enum { no error, write failed, close failed, sync failed } write error t;

write error t write critical file() {
FILE *fp = fopen("file", "w");
const char* message = "This is a message";

if (fwrite(message, strlen(message) + 1, 1, fp) != strlen(message) + 1) {
error("Write failed"); return write failed;

}
10

if (fclose(fp) != 0) { error("Close failed"); return close failed; }

if (fsync(fileno(fp)) != 0) { error("Sync failed"); return sync failed; }

return no error;
}

Problem: invent a good strategy what to do if fclose(3) or
fsync(3) fail. (Just reporting an error is often no good.)

24/52

�

�

�

�

�

�

	

A Little Puzzle

Check the following code:

unsigned char*
encrypt file(const char* file name, const char* user) {

key t* secret key = lookup secret key(user);
unsigned char* plaintext = read file(file name);
unsigned char* ciphertext = encrypt(plaintext, secret key);

free(secret key);
free(plaintext);
return ciphertext;

} 10

Looks good, doesn’t it?

24/52

�

�

�

�

�

�

	

A Little Puzzle

Check the following code:

unsigned char*
encrypt file(const char* file name, const char* user) {

key t* secret key = lookup secret key(user);
unsigned char* plaintext = read file(file name);
unsigned char* ciphertext = encrypt(plaintext, secret key);

free(secret key);
free(plaintext);
return ciphertext;

} 10

Looks good, doesn’t it?

It small, it has no buffer overflows or memory leaks. . .

24/52

�

�

�

�

�

�

	

A Little Puzzle

Check the following code:

unsigned char*
encrypt file(const char* file name, const char* user) {

key t* secret key = lookup secret key(user);
unsigned char* plaintext = read file(file name);
unsigned char* ciphertext = encrypt(plaintext, secret key);

free(secret key);
free(plaintext);
return ciphertext;

} 10

Looks good, doesn’t it?

It small, it has no buffer overflows or memory leaks. . .

What could be wrong with it?

24/52

�

�

�

�

�

�

	

A Little Puzzle

Check the following code:

unsigned char*
encrypt file(const char* file name, const char* user) {

key t* secret key = lookup secret key(user);
unsigned char* plaintext = read file(file name);
unsigned char* ciphertext = encrypt(plaintext, secret key);

free(secret key);
free(plaintext);
return ciphertext;

} 10

Looks good, doesn’t it?

It small, it has no buffer overflows or memory leaks. . .

What could be wrong with it?

Well, what could be wrong with it?

25/52

�

�

�

�

�

�

	

Handling Sensitive Data

A secret key (or any other sensitive piece of data) must not
ever be outside your control in unencrypted form!

25/52

�

�

�

�

�

�

	

Handling Sensitive Data

A secret key (or any other sensitive piece of data) must not
ever be outside your control in unencrypted form!

That’s so important that we’ll repeat it:

A secret key (or any other sensitive piece of data) must not
ever be outside your control in unencrypted form!

25/52

�

�

�

�

�

�

	

Handling Sensitive Data

A secret key (or any other sensitive piece of data) must not
ever be outside your control in unencrypted form!

That’s so important that we’ll repeat it:

A secret key (or any other sensitive piece of data) must not
ever be outside your control in unencrypted form!

Ways to accomplish this:

• Keep the key in memory, sanitize it afterwards

25/52

�

�

�

�

�

�

	

Handling Sensitive Data

A secret key (or any other sensitive piece of data) must not
ever be outside your control in unencrypted form!

That’s so important that we’ll repeat it:

A secret key (or any other sensitive piece of data) must not
ever be outside your control in unencrypted form!

Ways to accomplish this:

• Keep the key in memory, sanitize it afterwards

• Encrypt it before storing it

26/52

�

�

�

�

�

�

	

Keeping Data in Memeory

So the memory gets paged out to disk. What’s the deal?

26/52

�

�

�

�

�

�

	

Keeping Data in Memeory

So the memory gets paged out to disk. What’s the deal?

The deal is that

26/52

�

�

�

�

�

�

	

Keeping Data in Memeory

So the memory gets paged out to disk. What’s the deal?

The deal is that

• A secret key (or any other sensitive piece of data) must
not ever be outside your control in unencrypted form!
(thought I’d repeat that, just for good measure)

26/52

�

�

�

�

�

�

	

Keeping Data in Memeory

So the memory gets paged out to disk. What’s the deal?

The deal is that

• A secret key (or any other sensitive piece of data) must
not ever be outside your control in unencrypted form!
(thought I’d repeat that, just for good measure)

• Someone with access to the disk can get the secret

26/52

�

�

�

�

�

�

	

Keeping Data in Memeory

So the memory gets paged out to disk. What’s the deal?

The deal is that

• A secret key (or any other sensitive piece of data) must
not ever be outside your control in unencrypted form!
(thought I’d repeat that, just for good measure)

• Someone with access to the disk can get the secret (and
that’s not an academic threat!)

26/52

�

�

�

�

�

�

	

Keeping Data in Memeory

So the memory gets paged out to disk. What’s the deal?

The deal is that

• A secret key (or any other sensitive piece of data) must
not ever be outside your control in unencrypted form!
(thought I’d repeat that, just for good measure)

• Someone with access to the disk can get the secret (and
that’s not an academic threat!)

• Even if the data is officially erased (by overwriting it), it can
still be restored (the phenomenon is called “remanence”)

26/52

�

�

�

�

�

�

	

Keeping Data in Memeory

So the memory gets paged out to disk. What’s the deal?

The deal is that

• A secret key (or any other sensitive piece of data) must
not ever be outside your control in unencrypted form!
(thought I’d repeat that, just for good measure)

• Someone with access to the disk can get the secret (and
that’s not an academic threat!)

• Even if the data is officially erased (by overwriting it), it can
still be restored (the phenomenon is called “remanence”)

• It’s very difficult to erase data from a disk

27/52

�

�

�

�

�

�

	

Keeping Data in Memory

#include <sys/mman.h>

/* Warning! mlock calls don’t stack! */
key t* lookup secret key(const char* user) {

key t* ret = (key t*) malloc(sizeof(key t));
if (ret != 0) {

/* Must be root for this to succeed */
if (mlock(ret, sizeof(ret)) == 0) {

/* Proceed */
} else { 10

/* Handle error */
}

}
return ret;

}

int release (const void* buf, size t len) {
free(buf);
/* Must be root for this to succeed */
return munlock(buf, len); 20

}

28/52

�

�

�

�

�

�

	

How mlock(2) works

Can be paged to disk

Locked in memory

29/52

�

�

�

�

�

�

	

How mlock(2) works

buf

5000 bytes

Can be paged to disk

Locked in memory

30/52

�

�

�

�

�

�

	

How mlock(2) works

mlock (buf, 5000)

5000 bytes

Can be paged to disk

Locked in memory

31/52

�

�

�

�

�

�

	

mlock(2) Calls Don’t Stack!

buf

5000 bytes

Can be paged to disk

Locked in memory

mlock (buf1, 1000)

1000

32/52

�

�

�

�

�

�

	

mlock(2) Calls Don’t Stack!

buf

5000 bytes

Can be paged to disk

Locked in memory

munlock (buf1, 1000)

1000

Shouldn’t be pageable, but is

33/52

�

�

�

�

�

�

	

mlock(2) Calls Don’t Stack!

Solution:

• For every locked page, maintain a counter that says how
many buffers are in that page.

33/52

�

�

�

�

�

�

	

mlock(2) Calls Don’t Stack!

Solution:

• For every locked page, maintain a counter that says how
many buffers are in that page.

• After freeing the memory allocated to a buffer, decrement
the counter of each page the buffer is in by 1.

33/52

�

�

�

�

�

�

	

mlock(2) Calls Don’t Stack!

Solution:

• For every locked page, maintain a counter that says how
many buffers are in that page.

• After freeing the memory allocated to a buffer, decrement
the counter of each page the buffer is in by 1.

• When a counter reaches 0, there are no more buffers in the
page, which can then be unlocked.

33/52

�

�

�

�

�

�

	

mlock(2) Calls Don’t Stack!

Solution:

• For every locked page, maintain a counter that says how
many buffers are in that page.

• After freeing the memory allocated to a buffer, decrement
the counter of each page the buffer is in by 1.

• When a counter reaches 0, there are no more buffers in the
page, which can then be unlocked.

It’s probably easiest to combine that with the memory
allocation functions.

34/52

�

�

�

�

�

�

	

Another Little Puzzle

unsigned char* encrypt file(const char* file name, const char* user) {
key t* secret key = lookup secret key(user); /* Uses mlock(2)! */
unsigned char* plaintext = read file(file name); /* Uses mlock(2)! */
unsigned char* ciphertext = encrypt(plaintext, secret key);

release(secret key); release(plaintext);
return ciphertext;

}

int release (const void* buf, size t len) { 10

free(buf);
update page counts(buf, len);
if (page counts are zero(buf, len)) return munlock(buf, len); else return 0;

}

Looks good, doesn’t it?

34/52

�

�

�

�

�

�

	

Another Little Puzzle

unsigned char* encrypt file(const char* file name, const char* user) {
key t* secret key = lookup secret key(user); /* Uses mlock(2)! */
unsigned char* plaintext = read file(file name); /* Uses mlock(2)! */
unsigned char* ciphertext = encrypt(plaintext, secret key);

release(secret key); release(plaintext);
return ciphertext;

}

int release (const void* buf, size t len) { 10

free(buf);
update page counts(buf, len);
if (page counts are zero(buf, len)) return munlock(buf, len); else return 0;

}

Looks good, doesn’t it?

It small, uses mlock(2) . . .

34/52

�

�

�

�

�

�

	

Another Little Puzzle

unsigned char* encrypt file(const char* file name, const char* user) {
key t* secret key = lookup secret key(user); /* Uses mlock(2)! */
unsigned char* plaintext = read file(file name); /* Uses mlock(2)! */
unsigned char* ciphertext = encrypt(plaintext, secret key);

release(secret key); release(plaintext);
return ciphertext;

}

int release (const void* buf, size t len) { 10

free(buf);
update page counts(buf, len);
if (page counts are zero(buf, len)) return munlock(buf, len); else return 0;

}

Looks good, doesn’t it?

It small, uses mlock(2) . . .

What could be wrong with it?

34/52

�

�

�

�

�

�

	

Another Little Puzzle

unsigned char* encrypt file(const char* file name, const char* user) {
key t* secret key = lookup secret key(user); /* Uses mlock(2)! */
unsigned char* plaintext = read file(file name); /* Uses mlock(2)! */
unsigned char* ciphertext = encrypt(plaintext, secret key);

release(secret key); release(plaintext);
return ciphertext;

}

int release (const void* buf, size t len) { 10

free(buf);
update page counts(buf, len);
if (page counts are zero(buf, len)) return munlock(buf, len); else return 0;

}

Looks good, doesn’t it?

It small, uses mlock(2) . . .

What could be wrong with it?

35/52

�

�

�

�

�

�

	

Allocating Memory

36/52

�

�

�

�

�

�

	

Allocating Memory

secret_buf = malloc(1000)

Secret Data!

37/52

�

�

�

�

�

�

	

Allocating Memory

free(secret_buf)

Secret Data!

38/52

�

�

�

�

�

�

	

Allocating Memory

Secret Data!

39/52

�

�

�

�

�

�

	

Allocating Memory

Secret Data!

public_buf = malloc(1000)

Public buffer now contains secret data!

40/52

�

�

�

�

�

�

	

Zeroing Memory

1. Allocate 1000 bytes

40/52

�

�

�

�

�

�

	

Zeroing Memory

1. Allocate 1000 bytes

2. Fill 1000 bytes with secret key material

40/52

�

�

�

�

�

�

	

Zeroing Memory

1. Allocate 1000 bytes

2. Fill 1000 bytes with secret key material

3. Use key material, then release buffer

40/52

�

�

�

�

�

�

	

Zeroing Memory

1. Allocate 1000 bytes

2. Fill 1000 bytes with secret key material

3. Use key material, then release buffer

4. Allocate 1000 bytes for new buffer

40/52

�

�

�

�

�

�

	

Zeroing Memory

1. Allocate 1000 bytes

2. Fill 1000 bytes with secret key material

3. Use key material, then release buffer

4. Allocate 1000 bytes for new buffer

5. Fill only 500 bytes with harmless message

40/52

�

�

�

�

�

�

	

Zeroing Memory

1. Allocate 1000 bytes

2. Fill 1000 bytes with secret key material

3. Use key material, then release buffer

4. Allocate 1000 bytes for new buffer

5. Fill only 500 bytes with harmless message

6. Write 1000 bytes to file

40/52

�

�

�

�

�

�

	

Zeroing Memory

1. Allocate 1000 bytes

2. Fill 1000 bytes with secret key material

3. Use key material, then release buffer

4. Allocate 1000 bytes for new buffer

5. Fill only 500 bytes with harmless message

6. Write 1000 bytes to file

7. Release buffer

Result: 500 bytes of secret key material leaked

40/52

�

�

�

�

�

�

	

Zeroing Memory

1. Allocate 1000 bytes

2. Fill 1000 bytes with secret key material

3. Use key material, then release buffer

4. Allocate 1000 bytes for new buffer

5. Fill only 500 bytes with harmless message

6. Write 1000 bytes to file

7. Release buffer

Result: 500 bytes of secret key material leaked

Happens quickly: Difference between length and size of a
buffer often not well understood.

40/52

�

�

�

�

�

�

	

Zeroing Memory

1. Allocate 1000 bytes

2. Fill 1000 bytes with secret key material

3. Use key material, then release buffer

4. Allocate 1000 bytes for new buffer

5. Fill only 500 bytes with harmless message

6. Write 1000 bytes to file

7. Release buffer

Result: 500 bytes of secret key material leaked

Happens quickly: Difference between length and size of a
buffer often not well understood.

Better nip that problem in the bud!

41/52

�

�

�

�

�

�

	

So You Think It Can’t Happen?

Happened to Ethernet driver in Linux.

41/52

�

�

�

�

�

�

	

So You Think It Can’t Happen?

Happened to Ethernet driver in Linux.

When a very small ICMP Echo (ping) packet was received, the
return packet was incompletely initialized.

41/52

�

�

�

�

�

�

	

So You Think It Can’t Happen?

Happened to Ethernet driver in Linux.

When a very small ICMP Echo (ping) packet was received, the
return packet was incompletely initialized.

Result: interesting information from the kernel’s memory was
leaked.

41/52

�

�

�

�

�

�

	

So You Think It Can’t Happen?

Happened to Ethernet driver in Linux.

When a very small ICMP Echo (ping) packet was received, the
return packet was incompletely initialized.

Result: interesting information from the kernel’s memory was
leaked.

Could have been everything from Mom’s shopping list to
passwords.

42/52

�

�

�

�

�

�

	

How to Avoid This Problem

#include <stdlib.h>

int release (void* buf, len t len) {
memset(buf, ’\0’, len); /* <– Zeroize buffer before freeing */
free(buf);

update page counts(buf, len);
if (page counts are zero(buf, len))

return munlock(buf, len);
else 10

return 0;
}

You must remember the size of the block you allocated. You
can’t forget about that, like you can in “normal” C.

42/52

�

�

�

�

�

�

	

How to Avoid This Problem

#include <stdlib.h>

int release (void* buf, len t len) {
memset(buf, ’\0’, len); /* <– Zeroize buffer before freeing */
free(buf);

update page counts(buf, len);
if (page counts are zero(buf, len))

return munlock(buf, len);
else 10

return 0;
}

You must remember the size of the block you allocated. You
can’t forget about that, like you can in “normal” C.

You could zeroize each block every time before freeing it, but
chances are you’ll forget one of them ⇒ do it once in a library
routine, then call that library routine.

43/52

�

�

�

�

�

�

	

Handles (1)

typedef unsigned char key t[256];

unsigned char* encrypt file(const char* plaintext, const char* user) {
key t secret key = lookup key(user); /* Not a pointer! */
unsigned char ciphertext[512];

/* . . . */

encrypt(plaintext, secret key, ciphertext);
fwrite(ciphertext, 1024, 1, fp); /* Oops! Writes secret key! */ 10

/* . . . */
}

By mistake, the secret key gets written to disk.

43/52

�

�

�

�

�

�

	

Handles (1)

typedef unsigned char key t[256];

unsigned char* encrypt file(const char* plaintext, const char* user) {
key t secret key = lookup key(user); /* Not a pointer! */
unsigned char ciphertext[512];

/* . . . */

encrypt(plaintext, secret key, ciphertext);
fwrite(ciphertext, 1024, 1, fp); /* Oops! Writes secret key! */ 10

/* . . . */
}

By mistake, the secret key gets written to disk.

The mistake is easy to spot in this example, but there are
enough programs where these few lines are scattered among
many files.

44/52

�

�

�

�

�

�

	

Handles (2)

typedef int key handle t;

unsigned char* encrypt file(const char* plaintext, const char* user) {
key handle t key handle = lookup key(user); unsigned char ciphertext[512];

/* . . . */
encrypt(plaintext, key handle, ciphertext);
fwrite(ciphertext, 1024, 1, fp); /* Writes handle, not key */
/* . . . */

} 10

Using a handle instead of a pointer to the actual object makes
it possible to check every use of the object.

44/52

�

�

�

�

�

�

	

Handles (2)

typedef int key handle t;

unsigned char* encrypt file(const char* plaintext, const char* user) {
key handle t key handle = lookup key(user); unsigned char ciphertext[512];

/* . . . */
encrypt(plaintext, key handle, ciphertext);
fwrite(ciphertext, 1024, 1, fp); /* Writes handle, not key */
/* . . . */

} 10

Using a handle instead of a pointer to the actual object makes
it possible to check every use of the object.

If you want to be paranoid, make handles difficult to guess.
This will make accidental misuse of handles easy to detect.

44/52

�

�

�

�

�

�

	

Handles (2)

typedef int key handle t;

unsigned char* encrypt file(const char* plaintext, const char* user) {
key handle t key handle = lookup key(user); unsigned char ciphertext[512];

/* . . . */
encrypt(plaintext, key handle, ciphertext);
fwrite(ciphertext, 1024, 1, fp); /* Writes handle, not key */
/* . . . */

} 10

Using a handle instead of a pointer to the actual object makes
it possible to check every use of the object.

If you want to be paranoid, make handles difficult to guess.
This will make accidental misuse of handles easy to detect.

For extra paranoia, you can code identifying information into
the handle. ⇒ sharing of handles difficult between subjects.

45/52

�

�

�

�

�

�

	

Comparison Handles/Pointers

• Handles force separation of object implementation and use

45/52

�

�

�

�

�

�

	

Comparison Handles/Pointers

• Handles force separation of object implementation and use

• Handles awkward to use, not normal language objects

45/52

�

�

�

�

�

�

	

Comparison Handles/Pointers

• Handles force separation of object implementation and use

• Handles awkward to use, not normal language objects

• Handles need complete implementation, standard library
has no generic support for handles

45/52

�

�

�

�

�

�

	

Comparison Handles/Pointers

• Handles force separation of object implementation and use

• Handles awkward to use, not normal language objects

• Handles need complete implementation, standard library
has no generic support for handles

• Handles make access control easier (in many cases, it’s the
only way to enable access controls at all)

45/52

�

�

�

�

�

�

	

Comparison Handles/Pointers

• Handles force separation of object implementation and use

• Handles awkward to use, not normal language objects

• Handles need complete implementation, standard library
has no generic support for handles

• Handles make access control easier (in many cases, it’s the
only way to enable access controls at all)

• Handles reduce drastically the probability of accidentally
leaking secret information

46/52

�

�

�

�

�

�

	

Coding for Testing

Most code that you write is difficult to test:

46/52

�

�

�

�

�

�

	

Coding for Testing

Most code that you write is difficult to test:

• Needs many other objects in order to test meaningfully.

46/52

�

�

�

�

�

�

	

Coding for Testing

Most code that you write is difficult to test:

• Needs many other objects in order to test meaningfully.

• Test cases are just too difficult to write.

46/52

�

�

�

�

�

�

	

Coding for Testing

Most code that you write is difficult to test:

• Needs many other objects in order to test meaningfully.

• Test cases are just too difficult to write.

• Time spent writing test cases is time not spent coding.

46/52

�

�

�

�

�

�

	

Coding for Testing

Most code that you write is difficult to test:

• Needs many other objects in order to test meaningfully.

• Test cases are just too difficult to write.

• Time spent writing test cases is time not spent coding.

• Besides, what could possibly go wrong?

46/52

�

�

�

�

�

�

	

Coding for Testing

Most code that you write is difficult to test:

• Needs many other objects in order to test meaningfully.

• Test cases are just too difficult to write.

• Time spent writing test cases is time not spent coding.

• Besides, what could possibly go wrong?

If you think like that, you may become famous. . .

46/52

�

�

�

�

�

�

	

Coding for Testing

Most code that you write is difficult to test:

• Needs many other objects in order to test meaningfully.

• Test cases are just too difficult to write.

• Time spent writing test cases is time not spent coding.

• Besides, what could possibly go wrong?

If you think like that, you may become famous. . . by being
named in a CERT advisory as the programmer responsible for a
security flaw!

47/52

�

�

�

�

�

�

	

Design Test Cases With the Code

• Use existing frameworks like CppUnit (for C++) or JUnit (for
Java).

http://cunit.sourceforge.net/

47/52

�

�

�

�

�

�

	

Design Test Cases With the Code

• Use existing frameworks like CppUnit (for C++) or JUnit (for
Java).

• If you code in C, write your own framework

http://cunit.sourceforge.net/

47/52

�

�

�

�

�

�

	

Design Test Cases With the Code

• Use existing frameworks like CppUnit (for C++) or JUnit (for
Java).

• If you code in C, write your own framework, or contribute
to CUnit (http://cunit.sourceforge.net/)

http://cunit.sourceforge.net/

47/52

�

�

�

�

�

�

	

Design Test Cases With the Code

• Use existing frameworks like CppUnit (for C++) or JUnit (for
Java).

• If you code in C, write your own framework, or contribute
to CUnit (http://cunit.sourceforge.net/)

• Test extreme conditions (no input, empty input, one item, a
million items, ±∞ for floats)

http://cunit.sourceforge.net/

47/52

�

�

�

�

�

�

	

Design Test Cases With the Code

• Use existing frameworks like CppUnit (for C++) or JUnit (for
Java).

• If you code in C, write your own framework, or contribute
to CUnit (http://cunit.sourceforge.net/)

• Test extreme conditions (no input, empty input, one item, a
million items, ±∞ for floats)

• Test fault conditions (bad password, wrong key, wrong
encryption algorithm, . . .)

http://cunit.sourceforge.net/

47/52

�

�

�

�

�

�

	

Design Test Cases With the Code

• Use existing frameworks like CppUnit (for C++) or JUnit (for
Java).

• If you code in C, write your own framework, or contribute
to CUnit (http://cunit.sourceforge.net/)

• Test extreme conditions (no input, empty input, one item, a
million items, ±∞ for floats)

• Test fault conditions (bad password, wrong key, wrong
encryption algorithm, . . .)

• Test expected failures (decryption on modified ciphertext,
signature verification on modified signature, negative
values where only positive values are allowed, . . .)

http://cunit.sourceforge.net/

47/52

�

�

�

�

�

�

	

Design Test Cases With the Code

• Use existing frameworks like CppUnit (for C++) or JUnit (for
Java).

• If you code in C, write your own framework, or contribute
to CUnit (http://cunit.sourceforge.net/)

• Test extreme conditions (no input, empty input, one item, a
million items, ±∞ for floats)

• Test fault conditions (bad password, wrong key, wrong
encryption algorithm, . . .)

• Test expected failures (decryption on modified ciphertext,
signature verification on modified signature, negative
values where only positive values are allowed, . . .)

• Test “impossible” conditions (bad parameters, enums
outside the legal range, ‘NaN’s for floats. . .)

http://cunit.sourceforge.net/

48/52

�

�

�

�

�

�

	

Learn from Testing (1)

If it is at all possible to provide your interface with “impossible”
values, then the interface probably needs redesigning.

48/52

�

�

�

�

�

�

	

Learn from Testing (1)

If it is at all possible to provide your interface with “impossible”
values, then the interface probably needs redesigning.

#include <string.h>

void* copy memory(const void* block, int size) {
void* ret = malloc(size);

if (ret != 0)
memcpy(ret, block, size);

return ret;
} 10

49/52

�

�

�

�

�

�

	

Learn From Testing (2)

#include <string.h>

void* copy memory(const void* block, size t size) {
void* ret = malloc(size);

if (ret != 0) memcpy(ret, block, size);

return ret;
}

49/52

�

�

�

�

�

�

	

Learn From Testing (2)

#include <string.h>

void* copy memory(const void* block, size t size) {
void* ret = malloc(size);

if (ret != 0) memcpy(ret, block, size);

return ret;
}

• The block and its size clearly belong together.

49/52

�

�

�

�

�

�

	

Learn From Testing (2)

#include <string.h>

void* copy memory(const void* block, size t size) {
void* ret = malloc(size);

if (ret != 0) memcpy(ret, block, size);

return ret;
}

• The block and its size clearly belong together.

• The block is an abstract data type that should only be
accessed by handles.

49/52

�

�

�

�

�

�

	

Learn From Testing (2)

#include <string.h>

void* copy memory(const void* block, size t size) {
void* ret = malloc(size);

if (ret != 0) memcpy(ret, block, size);

return ret;
}

• The block and its size clearly belong together.

• The block is an abstract data type that should only be
accessed by handles.

• That way, all manipulations on blocks can be made locally,
in one module (easier to verify).

49/52

�

�

�

�

�

�

	

Learn From Testing (2)

#include <string.h>

void* copy memory(const void* block, size t size) {
void* ret = malloc(size);

if (ret != 0) memcpy(ret, block, size);

return ret;
}

• The block and its size clearly belong together.

• The block is an abstract data type that should only be
accessed by handles.

• That way, all manipulations on blocks can be made locally,
in one module (easier to verify).

• (That’s really just common sense.)

50/52

�

�

�

�

�

�

	

Learn From Testing (3)

When it becomes impossible (or even very difficult) to provide
an interface with “impossible” values, then it will be even more
difficult for an attacker to inject “impossible” values through
official channels.

50/52

�

�

�

�

�

�

	

Learn From Testing (3)

When it becomes impossible (or even very difficult) to provide
an interface with “impossible” values, then it will be even more
difficult for an attacker to inject “impossible” values through
official channels.

The system has then become more secure by design.

51/52

�

�

�

�

�

�

	

Summary

• KISS—Keep It Simple, Stupid: Configurability, Size,
Interconnections

51/52

�

�

�

�

�

�

	

Summary

• KISS—Keep It Simple, Stupid: Configurability, Size,
Interconnections

• Fail Safe and Fail Secure

51/52

�

�

�

�

�

�

	

Summary

• KISS—Keep It Simple, Stupid: Configurability, Size,
Interconnections

• Fail Safe and Fail Secure

• Locking Memory

51/52

�

�

�

�

�

�

	

Summary

• KISS—Keep It Simple, Stupid: Configurability, Size,
Interconnections

• Fail Safe and Fail Secure

• Locking Memory

• Sanitizing Memory

51/52

�

�

�

�

�

�

	

Summary

• KISS—Keep It Simple, Stupid: Configurability, Size,
Interconnections

• Fail Safe and Fail Secure

• Locking Memory

• Sanitizing Memory

• Handles

51/52

�

�

�

�

�

�

	

Summary

• KISS—Keep It Simple, Stupid: Configurability, Size,
Interconnections

• Fail Safe and Fail Secure

• Locking Memory

• Sanitizing Memory

• Handles

• Testing

52/52

�

�

�

�

�

�

	

References

• Peter Gutmann, Cryptographic Security Architecture,
Springer Verlag, 2003

http://www.cs.auckland.ac.nz/~pgut001/pubs/secure_del.html
http://www.cs.auckland.ac.nz/~pgut001/pubs/secure_del.html
http://cunit.sourceforge.net/

52/52

�

�

�

�

�

�

	

References

• Peter Gutmann, Cryptographic Security Architecture,
Springer Verlag, 2003

• Peter Gutmann, Secure Deletion of Data from Magnetic and
Solid-State Memory, 1996 Usenix Security Symposion,
http://www.cs.auckland.ac.nz/˜pgut001/pubs/
secure_del.html

http://www.cs.auckland.ac.nz/~pgut001/pubs/secure_del.html
http://www.cs.auckland.ac.nz/~pgut001/pubs/secure_del.html
http://cunit.sourceforge.net/

52/52

�

�

�

�

�

�

	

References

• Peter Gutmann, Cryptographic Security Architecture,
Springer Verlag, 2003

• Peter Gutmann, Secure Deletion of Data from Magnetic and
Solid-State Memory, 1996 Usenix Security Symposion,
http://www.cs.auckland.ac.nz/˜pgut001/pubs/
secure_del.html

• CUnit testing framework for C at
http://cunit.sourceforge.net/

http://www.cs.auckland.ac.nz/~pgut001/pubs/secure_del.html
http://www.cs.auckland.ac.nz/~pgut001/pubs/secure_del.html
http://cunit.sourceforge.net/

	Today's Specials
	Software Insecurity: Size
	Tenex Password Hack (1)
	Tenex Password Hack (2)
	Tenex Password Hack (3)
	How to Get Tenex Passwords to File f
	Stealing Tenex Passwords
	Stealing Tenex Passwords
	Stealing Tenex Passwords
	Stealing Tenex Passwords
	Stealing Tenex Passwords
	Stealing Tenex Passwords
	Stealing Tenex Passwords
	Stealing Tenex Passwords
	Software Complexity: Configurability
	Sendmail Example
	What About It?
	Hints
	Fail Safe
	Fail Secure
	Reporting Success (1)
	Reporting Success (2)
	Reporting Success (3)
	A Little Puzzle
	Handling Sensitive Data
	Keeping Data in Memeory
	Keeping Data in Memory
	How mlock(2) works
	How mlock(2) works
	How mlock(2) works
	mlock(2) Calls Don't Stack!
	mlock(2) Calls Don't Stack!
	mlock(2) Calls Don't Stack!
	Another Little Puzzle
	Allocating Memory
	Allocating Memory
	Allocating Memory
	Allocating Memory
	Allocating Memory
	Zeroing Memory
	So You Think It Can't Happen?
	How to Avoid This Problem
	Handles (1)
	Handles (2)
	Comparison Handles/Pointers
	Coding for Testing
	Design Test Cases With the Code
	Learn from Testing (1)
	Learn From Testing (2)
	Learn From Testing (3)
	Summary
	References

