
Testing Strategies
Software Engineering 2017

Alessio Gambi - Saarland University

Generic Testing Strategies

• Automate as much as possible

• Manual not necessary bad, automatic not
necessary good

• Automate the “right” part of testing  
 input generation, execution, checking, …

Automated Unit Test Generation
• Generate the code of the test, the input data, and

possibly the behavior of the environment at once
- Directed random generation 

 each test build incrementally, Randoop
- Evolutionary method 

 whole test suite generation, Evosuite
• Combine coverage and other metrics (e.g., branch

distance) to define a fitness function
• False alarms and “impossible” behaviors

Test Carving

• From the execution of system tests, generate a
number of unit tests which execute only a
subset of the observed method invocations

• Unit tests capture the same set of behaviors
which are observed during the system tests

Fuzz Testing or Fuzzing

• Generate a large number of random inputs

• Mostly focused on security testing 
 Does system handle unforeseen inputs or crashes?

• Generative or metamorphic

• Structured inputs might be problematic

Deep Fuzzing

• Generate a large number of random but syntactically
valid inputs to reach deeper parts of the code

• Grammar based fuzzing: use a description of the input
structure to guide the input generation 
 Who provides the grammar? Can we learn it automatically?

Capture and Replay

• Record the (manual) interactions between the
system and its environment

• Replay interactions during testing

Capture and Replay

• Record the (manual) interactions between the
system and its environment

• Record the (manual) interactions between users
and the GUI

• Replay interactions during regression testing

Dealing with environmental
and other dependencies

Dealing with environmental and
other dependencies

• The SUT interacts with external entities 
 file system, database, remote services, …

• The code under test requires other code to be
in place 
 DB-bridge library, service API, …

• Avoid to directly interact with the actual entities 
 brittle, dependent, and non-isolated tests

Dealing with environmental and
other dependencies

• Isolation

• Repeatability

• Reuse

• Separation of concerns  
 setup/teardown vs test execution vs verification

How to achieve?

Fixed states used as a baseline for running tests
to ensure well known and fixed environment are

setup up before the test executions

Text Fixtures

Fixed states used as a baseline for running tests
to ensure well known and fixed environment are

setup up before the test executions

Text Fixtures

Text Fixtures
Fixed states used as a baseline for running tests
to ensure well known and fixed environment are

setup up before the test executions

• Loading DB with known data

• Copying files to specific location

• Setup of test drivers, mocks, stubs, etc.

Testing using Doubles

• Test Double. Generic term for any kind of
pretend object used in place of a real object for
testing purposes

To make a single unit work, you often need other units

Testing using Doubles

• Dummy objects 
 Object passed around but never used.

• Fake objects  
 Working implementations with shortcuts.

• Stubs 
 Provide canned answers to calls during tests.

• Mocks 
 Objects pre-programmed with expectations on calls.

To make a single unit work, you often need other units

Gerard Meszaros

State and Behavior Verification

• State verification examines the state of the SUT
and its collaborators after the method was
exercised.

• Behavior verification examines the interactions
of the SUT with its collaborators during the
method execution.

Martin Fowler

Mocks vs Stubs

• Mocks always use behavior verification,
Stubs can use also state verification.

• Setting up stubs includes defining canned
responses.

• Setting up mocks also includes expressing
expectations.

Test with a Database
Stub Mock

In-memory structure for storing
records

Define data which will be written in
the DB but not the logic to do it

SUT reads and writes records to
the stub DB

SUT invokes mock, but no data
are stored

 Check state of DB and behavior
of objects not related to the DB

 Check what was written to DB
and how values ended up there

The Test Oracle Problem

Given an input for a system, the challenge of
distinguishing the corresponding desired, correct

behavior from potentially incorrect behavior

The Test Oracle Problem
Given an input for a system, the challenge of

distinguishing the corresponding desired, correct
behavior from potentially incorrect behavior

• Test preconditions  
 specify the state before the test

• Test execution  
 specifies what to do during the test

• Test postconditions (oracle) 
 specify the expected results after the test

The Test Oracle Problem

• Oracles are necessarily incomplete 
 observable behavior, miss and false alarms

• Oracles are heuristics help testers to decide 
 might point to wrong decision

Given an input for a system, the challenge of
distinguishing the corresponding desired, correct

behavior from potentially incorrect behavior

Software Test Oracles

• Not always possible to express the oracles 
 non-testable programs

• Not always can be/need to be precise 
 float/doubles, asynchronous interaction, …

• Not always possible to capture all the facets of
“correct” behavior  
 result is correct but it took hours to compute

Types of Oracles
• Constraint oracle 

 test values or relationships
• Regression oracle 

 check results of current tests vs results of previous tests

• Self-verifying data as an oracle 
 embed the correct answer in the test data

• Calculation oracles 
 check the calculations of a program using other programs

• Inverse oracle 
 Apply the inverse function, check if result is same (neg)

Model as Oracles
• Physical model 

 test a software simulation of a physical process

• Statistical model 
 unlikely (yet formally correct) behaviors

• State model 
 what the program does for each input in each state

• Interaction model 
 how the SUT and the other programs behave in response
to each other

Model as Oracles
• Physical model 

 test a software simulation of a physical process

• Statistical model 
 unlikely (yet formally correct) behaviors

• State model 
 what the program does for each input in each state

• Interaction model 
 how the SUT and the other programs behave in response
to each other

Do not forget that models may be wrong !

The Test Oracle Problem

• Test with several oracles at once

• No matter what combination is used, some
errors will escape anyway

Anything else to test for ?
What’s beyond functional correctness and coverage?

Anything else to test for ?

• Load testing

• Performance testing

• Endurance testing

• Stress testing

• User Experience testing

What’s beyond functional correctness and coverage?

Anything else to test for ?

• Acceptance testing

• Security testing

• Penetration testing

• A/B testing

• …

What’s beyond functional correctness and coverage?

• Load testing

• Performance testing

• Endurance testing

• Stress testing

• User Experience testing

Specific Strategies. Why ?

• Testing different properties requires different approaches to
testing 
 adequacy criteria, test generation and execution, scaffolding, …

Specific Strategies. Why ?

• Testing different properties requires different approaches to
testing 
 adequacy criteria, test generation and execution, scaffolding, …

• Different systems work in different contexts and have
peculiar properties that must be taken into account during
testing 
 environment, distribution, limited resources, interactivity, …

Testing
Mobile Applications

Challenges

• Limited memory/computational resources

• Hardware and software fragmentation

• Multiple network connectivity and carriers

• Unforgiving users

• Native, web-based, hybrid applications

Main (Many) Strategies
• Functional Testing 

 functionalities of application as per requirement specification

• Performance Testing 
 client application, server, and network performance

• Memory Testing/Load Testing  
 optimized (limited) memory usage by an application

• Security Testing 
 secure connections, encrypted data, data leakage

Main (Many) Strategies
• Usability Testing, User eXperience Testing, and User

Acceptance Testing

• Interruption Testing 
 incoming call, SMS, low memory/battery warning, …

• Installation Testing  
 installation process including update and uninstall

• Carrier and Network Testing 
 WiFI, 3G, 4G how switching network impacts on the application  

Functional Testing
• Check the flow of actions

• Mostly at the level of user interface

• Tests can be local or instrumented 
 developer runtime, emulator, real devices, cloud

• Combination of manual and automated tests 
 capture&replay, monkey testing, …

Memory/Load Testing

• Memory leakage testing 
 performance slow down while using the app

• Find the breaking point of the application  
 how many items in the cart make my app unresponsive?

Devices have limited memory and OS stop
applications when they consume too much

memory

Security Testing

• Data flow vulnerability
- Check data are encrypted and channels are

secure
- Do not save clear private data on client’s side

• Data leakage
- Check log files

Usability, User eXperience and
User Acceptance Testing

• Entirely manual

• Alpha Testing: select a focused group of user

• Beta Testing: select a larger group of users with
different devices/connections/location

• Crowd-sourcing: very large sets of unknown, and
possibly untrustworthy, users

Interruption Testing

• Go smoothly in the suspended state and restart
afterwards

• Check that after the interruption the application does
not end up in “frustrating” the users 
 game not saved is lost, apps resume on home screen

Incoming notifications, text and calls, and memory/
battery warning interrupt the operation of the app

Carriers & Network Connectivity
Testing

• Do not test only on WiFi connection

• Different carriers have different performances and
features/standards

• Test for lost connectivity

• Test for connectivity downgrade 
 4G to 1G, 1G to Edge, …

Tools
• Monkey, DroidMATE: generate pseudo-random streams

of user events and system-level events

• UIAutomator: JavaScript to define tests which consists
of complex user actions

• Robotium, Appium: support native and hybrid
automated black-box tests

• MonkeyTalk: record and playback

• Screenfly: emulators to test different screen sizes and
device profiles

there are many, many more

Testing Web
Applications

Challenges
• Client/Server architecture

- Part of the app runs in the browser (e.g., JS)
- Part of the app runs in the server (CGI, DB, business

logic)

• Huge variability in browsers, versions, connection
speeds, standard protocols, devices

• Open World (intranet vs internet audience)

Challenges

• Fast rollout and updates

• Standard or specific requirements for
appearance, graphics, or user interface

• Links between the pages, navigation

• Page content, consistent layout

Main (Many) Strategies
• Functionality testing

• Interface testing

• Database testing

• Performance testing

Main (Many) Strategies
• Functionality testing

• Interface testing

• Database testing

• Performance testing

• Security testing

• Usability testing

• Cookies testing

• Compatibility testing

• …

Functionality Testing
• Check all the links

- Outgoing and internal links must be valid (non broken)

- Orphan pages or dead-end navigation

- Back-button

• Test all the forms

- Fields validation, default values, wrong inputs

- Optional elements, and modification to form

Interface Testing
• Check the interactions between, client and Web

server, between Web server and application server,
and between application server and database

• Handle errors gracefully and display proper
messages to users

• Reset connections and interrupts running
transactions

Database Testing
• Check data consistency, integrity and errors for

every DB related functionality 
 edit, delete, modify

• Check all queries to database are sanitized and
correctly executed

• Check that data is retrieved and updated
correctly

Performance/Load Testing
• Subject the application to heavy load

- Define user model and runs as many concurrent users
as possible

- Use small and large input data
- Target specific pages (much like DoS)

• Stress testing: go beyond know system limits and
break it; then, check if the system recovers.

Cookies Testing

• Test if the application crashes if cookies are enabled/
disabled

• Check if data are encrypted and cookies expire after
sessions end

• “Fuzz” cookies (alter their content) or delete them

Cookies are small files stored on the user
machine which enable server side user session

and might contains private data

Compatibility Testing

• Cross-platform, cross-browser, and mobile

• CSS Style and AJAX/JS 
 layout and interactions

• Security and validation

• Some operations (graphics) might not be available to OS

Tools and Services
• Many, diverse, and with tons of features 

 Load and Performance Test, Page Speed, Mobile Web/App,  
 Link Checkers, HTML Validators, Web Accessibility, Web  
 Services, Cross-Browser, Web Functional/Regression Test,  
 Web Site Security, …

• Start with the most widely known: Selenium, JMeter

• Focus on the essential and what you need

• Outsource to the cloud (compatibility)

http://www.softwaretestinghelp.com/most-popular-web-application-testing-tools/

Testing
Distributed Applications

Challenges

• Think of the problems and issues of testing
normal applications and …

Challenges

• Think of the problems and issues of testing
normal applications and …

• … multiply them by multiple processes written
in multiple languages running on multiple boxes
that could potentially all be on different OS

End-to-End Testing

• Order and timing of data arrival can cause bugs 
 write after read, read after write, write over write

• Huge number of possible interleaving of operations  
 difficult to predict and test

In a distributed application, data propagate to
multiple parts. Hence, testing only a single system

at the time it not enough.

• The number of components is small

• Run all the components locally 
 bare metal or inside virtual machines

• Better control over component lifecycle

• No network related issues and delays

Simple Distributed Systems

Complex Distributed Systems
• Many components, impossible to test all the

configurations

• Test using a “good approximation” of production system  
 vary the number of nodes

• Mimic any system that is not available during testing  
 simulators, stubs, or doubles

• Generate positive and negative scenarios 
 hard to enumerate and foreseen

On Simulators/Stubs

• Valuable tools for development and debugging,  
but …

- are time consuming to develop

- do not behave like the actual systems

Distributed Data Systems

• Asynchronous data delivery

• Nodes failure and recovery

Guarantee eventual consistency by means of
data replication and distribution

Asynchronous Data Delivery
• Data is delivered to any the entry node which

replicates that data asynchronously to all other
nodes.

• The entry node does not notify that the data has
been successfully replicated.

• Testing needs to verify that data reaches the entry
node and all the other nodes. Therefore, tests need
to pull the data from each node where the data
supposedly lives.

Tests Asynchronous Data
Delivery

• Change the SUT and introduce a notification
when data is propagated.

- Guarantees on data delivery but changes the
implementation

- Tests might not be representative

Tests Asynchronous Data
Delivery (2)

• Introduce artificial delays

- No guarantees on data delivery but highly
changes it will complete

- Brittle tests: outcome of the tests is not
predictable and depends on the environment the
tests are executed (load, network speed, …)

Tests Asynchronous Data
Delivery (3)

• Introduce more and longer artificial delays

- Overall execution become exponentially
longer

- It worsens as more tests are defined

Tests Asynchronous Data
Delivery (4)

• Introduce more and longer artificial delays but
parallelize the tests execution

- Shorter time, but most likely more problems

- Problems appear in the test suite itself

Asynchronous Data Delivery

• No ideal and “one-fits-all” solutions for testing

• Tailor testing to the specific requirements of the
SUT

• Go for an hybrid solution that combines the
different delays, small/large tests, and
parallelization

Node Failure

• A component that fail must not cause the entire
system to fail, and ideally it should be invisible
to the users.

• For example, data should be retrieved by a
replica if the entry node is down. Data should
propagate if a replica node is down and when it
comes back synchronized.

Test Node Failure
• Setup and run the system  

 store data in the system

• Kill a node (take the node offline)  
 which node? check that it is actually down

• Check data can be correctly retrieved  
 is the data up-to-date or the “best version” (all the data)  
 retrieving data from the broken node must fail (not hang)

• Restore the node (take the node online)

• Check data are synchronized (reconstruct the node)  
 requires the ability to pull data from that particular node

Model-Based Testing
• Design the code to run in simulated environments and

deterministic execution order

• Add the ability to programmatically inject faults and
perform sanity checks

• Encapsulate the correct behavior in a model and design
tests on the model 
 state searches, pseudo-random activity, and timing variations

SUT

social network

user userSUT

social network

user userSUT

social network

user userSUT

social network

user userSUT

social network

user userSUT

social network

user userSUT

social network

Init Role Reply Role

Existing

init.C

Declined Retracted Accepted

reply.Uinit.Dreply.D

observe.D observe.Dobserve.Dobserve.Dobserve.D

Existing

init.C

Accepted Declined Retracted

init.Dreply.Dreply.U

observe.D observe.Dobserve.Dobserve.Dobserve.D

Synchronized FSMs

Init Role Reply Role

Existing

init.C

Declined Retracted Accepted

reply.Uinit.Dreply.D

observe.D observe.Dobserve.Dobserve.Dobserve.D

Existing

init.C

Accepted Declined Retracted

init.Dreply.Dreply.U

observe.D observe.Dobserve.Dobserve.Dobserve.D

Synchronized FSMs

Init Role Reply Role

Existing

init.C

Declined Retracted Accepted

reply.Uinit.Dreply.D

observe.D observe.Dobserve.Dobserve.Dobserve.D

Existing

init.C

Accepted Declined Retracted

init.Dreply.Dreply.U

observe.D observe.Dobserve.Dobserve.Dobserve.D

Synchronized FSMs

Init Role Reply Role

Existing

init.C

Declined Retracted Accepted

reply.Uinit.Dreply.D

observe.D observe.Dobserve.Dobserve.Dobserve.D

Existing

init.C

Accepted Declined Retracted

init.Dreply.Dreply.U

observe.D observe.Dobserve.Dobserve.Dobserve.D

Synchronized FSMs

Init Role Reply Role

Existing

init.C

Declined Retracted Accepted

reply.Uinit.Dreply.D

observe.D observe.Dobserve.Dobserve.Dobserve.D

Existing

init.C

Accepted Declined Retracted

init.Dreply.Dreply.U

observe.D observe.Dobserve.Dobserve.Dobserve.D

Synchronized FSMs

Init Role Reply Role

Existing

init.C

Declined Retracted Accepted

reply.Uinit.Dreply.D

observe.D observe.Dobserve.Dobserve.Dobserve.D

Existing

init.C

Accepted Declined Retracted

init.Dreply.Dreply.U

observe.D observe.Dobserve.Dobserve.Dobserve.D

Synchronized FSMs

Additional Considerations
• Ideal systems can be deterministically validated 

 not always possible!

• Design the system to run locally 
 do not use global state

• Make sure you have dynamic logging  
 timestamp, node ID, log levels, multiple sources

• Use APIs for messaging, time, timed events, and
scheduling 
 dependency injections during testing

to build testable distributed applications

Summary
• Testing is not only functional

• Automation is good but not always, manual
testing is not always bad

• Focus the test effort on the requirements and
the type of SUT

• Many tools… choose widely !

References and
Additional Readings

• The Art of Software Testing, Glenn Myers

• Testing Computer Software, Cem Kaner

• Test-Driven Development by Example, Kent Beck

• How Google Tests Software, James Whittaker, Jason Arbon and Jeff Carollo

• Mock, Stubs, and Test Double:

• https://stackoverflow.com/questions/2665812/what-is-mocking

• http://cdn2.hubspot.net/hubfs/582328/GrammaTech-Img/mock-diagram.png

• https://martinfowler.com/articles/mocksArentStubs.html

• Test Oracle Problem

• http://www0.cs.ucl.ac.uk/staff/M.Harman/tse-oracle.pdf

• http://kaner.com/?p=190

• Test Mobile Applications:

• https://ymedialabs.com/17-strategies-for-end-to-end-mobile-testing-on-both-ios-and-android/

• http://www.softwaretestingclass.com/mobile-testing-tutorial-1-mobile-application-testing-
strategy/

• http://cdn2.softwaretestinghelp.com/wp-content/qa/uploads/2015/08/Mobile-Testing-Tools1.jpg

• https://ymedialabs.com/17-strategies-for-end-to-end-mobile-testing-on-both-ios-and-android/

• Test Mobile Applications:

• https://developer.android.com/training/testing/unit-testing/local-unit-tests.html

• https://developer.android.com/training/testing/unit-testing/instrumented-unit-tests.html

• http://www.optimusinfo.com/top-10-mobile-testing-tools/

• https://www.ranorex.com/mobile-automation-testing/android-test-automation.html?
gclid=CNrrjte2sNQCFekW0wodOroJTQ

• http://www.softwaretestinghelp.com/best-mobile-testing-tools/

• http://www.testingtools.com/mobile-testing/

• http://www.softwaretestinghelp.com/5-best-automation-tools-for-testing-android-
applications/

• http://www.softwaretestingclass.com/overview-of-appium-mobile-automation-testing-
tool/

• http://www.softwaretestingclass.com/overview-of-selendroid-mobile-automation-testing-
tool/

• https://stackoverflow.com/questions/3337505/mocking-library-framework-that-works-
best-in-android

• Test Web Applications:

• http://www.softwaretestinghelp.com/how-can-a-web-site-be-tested/

• Web Testing: A Complete guide about testing web applications. http://
www.softwaretestinghelp.com/web-application-testing/

• http://www.softwaretestinghelp.com/website-cookie-testing-test-cases/

• http://www.softwaretestinghelp.com/best-cross-browser-testing-tools-to-ease-your-
browser-compatibility-testing-efforts/

• http://www.softwareqatest.com/qatweb1.html

• https://dzone.com/articles/top-10-automated-software-testing-tools

• http://www.softwaretestinghelp.com/most-popular-web-application-testing-tools/

• Testing Distributed Applications:

• http://queue.acm.org/detail.cfm?id=2800697

• https://www.quora.com/How-do-I-test-a-distributed-system

• https://www.quora.com/How-do-you-design-a-distributed-system-so-that-it-can-be-
deterministically-validated-by-tests

