
Web Applications
Software Engineering 2017

Alessio Gambi - Saarland University

Based on the work of Cesare Pautasso, Christoph Dorn, Andrea Arcuri, and others

ReCap

Software Architecture

A software system’s architecture is the
set of principal design decisions made

about the system. N. Taylor et al.

Abstraction Communication

Visualization and
Representation Quality Attributes

Every system a software
architecture has

What designers want

Design

• Architectural Styles

• Architectural Patterns

• Building Blocks
- Software Components
- Component API/Interfaces
- Software Connectors

Send HTTP request, and get HTTP response
containing the HTML page

Browser visualizes it

Send	a	HTTP	request,	and	get	back	a	HTML	page	which	will	be	visualized	in	the	
browser

Client/Server
• Many clients, active, close to users

• One server, passive, close to data

• Single point of failure, scalability

• Security, scalability

HTTP
The Hypertext Transfer Protocol

HTTP
The Hypertext Transfer Protocol

Connector or Component ?

HTTP
The Hypertext Transfer Protocol

Connector or Component ?

Synch or Asynch ?

HTTP
The Hypertext Transfer Protocol

Connector or Component ?

Synch or Asynch ?

Stateful or stateless ?

HTTP Request

• Action: verb, express the intent

• Headers: meta-data

• Body: optional, can be anything, a stream of
bytes, form data, session information, etc.

HTTP Actions
Have precise semantic, and

a web application might not implement all of them

Web applications must to implement the semantic right

GET retrieve a resource

POST send data and/or create a resource

PUT replace an existing resource

DELETE delete a resource

HEAD retrieve HEADers but not body

OPTIONS check the methods available on the resource

HTTP Response
Headers and status

Status codes, organized in families:
1xx: information
2xx: success
3xx: redirection
4xx: user error
5xx: server error

Delivers a resource: a page HTML, a CSS file for
the style, images, JS libraries, etc.

HTTP Body
• Transfer the main part of the data, but not the only

way to send data  
 query params, custom headers

• Required in POST and PUT requests

• Required in responses to GET requests

• HEAD must not provide one

HTML
The Hypertext Markup Language

Links	to	other	files

• To	display	the	page	in	the	
previous	slide,	after	a	GET	
of	the	index.html	page,	
the	browser	will	do	two	
further	HTTP	GET	requests
• Those	further	2	requests	
could	be	done	in	parallel	
on	two	different	TCP	
connections	

Resources

One request per resources, multiple requests in parallel
All requests must complete before a page is fully displayed

Static vs Dynamic Pages
Static:

Files are served as they are (index.html)
content does not change

Static vs Dynamic Pages
Static:

Files are served as they are (index.html)
content does not change

Dynamic:

The HTML (or part of it) is generated upon
request based on data

State-Logic-Display

cluster elements that change at the same rate

Server-Side HTML Rendering

• The HTML page is created on the server and sent
back to the client

• Overhead in processing each request if the page is
created from scratch

• Same content for different displays  
 Desktop vs Tablet vs Mobile

Presenter-View
extract the content from the model to be presented

from the rendering into screens/web pages

Server-Side HTML Rendering

• Based on HTML templates that mix together HTML
tags, data, and code

http://www.embeddedjs.com/getting_started.html

Server-Side HTML Rendering

• Based on HTML templates that mix together HTML
tags, data, and code

• Different technologies:  
 PHP scripts — index.php  
 JavaServer Faces (JSF) — index.xhtml 
 Embedded Ruby (ERB) — index.html.erb

Server-Side HTML Rendering
• Based on HTML templates that mix together HTML

tags, data, and code

• Different technologies:  
 PHP scripts — index.php  
 JavaServer Faces (JSF) — index.xhtml 
 Embedded Ruby (ERB) — index.html.erb

• Templates do not necessarily target the entire page
and they might not be stored in “files”

Components

Content Management Systems  
(CMS)

Design

3-Tier Architecture

Web Browser

Front End App Server Back End

Business logic

Presentation

Data source

Layered (Style)

• Communications 1 layer up/down

• Information hiding, no circular deps

• Possibly bad performance

• Good evolvability

18!

Where to run the layers?
What run where?

thin-client fat-client

3-Tier Architecture

Web Browser

Front End App Server Back End

Business logic

Presentation

Data source

Data Layer
Web Browser

Front End App Server Back End

• Persistence

• Storage

A Mapping Problem

20!

Core Problem

Conceptual mismatch

Programming
Language
Objects

Native Database Structure
(e.g., relations)

Domain model

20!

Core Problem

Conceptual mismatch

Programming
Language
Objects

Native Database Structure
(e.g., relations)

Data storage

Domain Model

• Represent concepts in the domain and their
relations, not as rows in a database

• Network of interconnected concepts

• Abstract Data Type  
 data and the behavior

Storage model
How to store data?

• Key-Value Model  
 list of keys and values (hashtable style)

• Relational Model  
 traditional SQL model

• Document-oriented Model 
 schema-less documents

• Graph-oriented Model  
 data is stored as an interconnected graph

Key-Value
• Implement a map

• Values have no schema

Relational
• Set-theory

• Collection of tables with
rows and columns

Document-oriented
• Data stored in

document but not
relations

• Extends Key-Value

Graph-oriented
• Data stored as network

graph

• Relations first-class
citizens

Polyglot Persistence
Multiple ways to store data

User
Sessions

Financial
Data

Shopping
Cart

Recomme
ndation

Product
Catalog

ReportingRelational

Document KeyValue

Graph

3-Tier Architecture

Web Browser

Front End App Server Back End

Business logic

Presentation

Data source

Application Layer
Web Browser

Front End App Server Back End

• Data access, navigation, and persistence

• Data processing (Business logic)

Plugin
• Explicit extension points

• Static/Dynamic composition

• Low security (3rd party code)

• Extensibility and customizability

A Different Problem (?)

20!

Core Problem

Conceptual mismatch

Programming
Language
Objects

Native Database Structure
(e.g., relations)

Programming Language

20!

Core Problem

Conceptual mismatch

Programming
Language
Objects

Native Database Structure
(e.g., relations)

Storage Architecture

Data Access API

Relational
Database

(e.g. MySQL)

REST API REST API

Object-based
storage
(e.g. S3)

Document-
based

Database

Relational
Database

Service API Tool-specific API

• Add an abstraction layer that
the represent the database in
the application

• Wrap the communication with
the data store and expose it
as domain model

Data Source Patterns
• Row Data Gateway 

 One instance per row returned by a query

• Table Data Gateway 
 One instance per table

• Active Record  
 Encapsulates DB access and adds business logic to data

• Data Mapper 
 loads DB into Domain Model, and vice-versa

Row and Table Gateways

• Based on table structure

• Conversion of object type to database format

• Typically stateless

• Push back and forth data

Active Record

static get(int id)
insert
update
delete

calculateRecognitions()

productId
productName

Product

Data
Store

Row Data Gateway + Business Logic

• Methods for:
- Create instances from SLQ results
- Insert new instances in the data store
- Update data store based on instances data
- Find relevant instances

Data Mapper

calculateRecognitions()

productId
productName

Product
Data
Store

get(int id)
insert
update
delete

ProductMapper

• Decouple objects structure from database structure

• There may be more than one mapper per domain
object

Navigate (Relational) Data

20!

Core Problem

Conceptual mismatch

Programming
Language
Objects

Native Database Structure
(e.g., relations)

Traverse object graph

20!

Core Problem

Conceptual mismatch

Programming
Language
Objects

Native Database Structure
(e.g., relations)

Join over foreign keys

Lazy Loading

Lazy Loading

Interrupt the load at some point and resume it later
only if needed

Lazy Loading Patterns
• Lazy Initialization 

 Checks if field is null at every access

• Value Holder 
 Wraps lazy-loaded objects

• Virtual Proxy 
 Mocks field access and loads values on the demand

• Ghost 
 Real object but partially loaded, missing data loaded on 
 first access

3-Tier Architecture

Web Browser

Front End App Server Back End

Business logic

Presentation

Data source

Front End
Web Browser

Front End App Server Back End

• Generate the HTML based on request and data
from the backend

• Can handle client side interactions both inside the
server and the client’s browser

• Security, input validation, responsiveness, etc.

Web Frameworks

Plugin
• Explicit extension points

• Static/Dynamic composition

• Low security (3rd party code)

• Extensibility and customizability

Client Side

JavaScript
• a programming language executed in the browser  

 nothing to do with java

• JS files/libraries referenced by the web page  
 like any other resource

• Can be inlined

• Dynamically manipulates the page Document
Object Model (DOM) to alter page’s content,
structure, and behavior

AJAX
Asynchronous JavaScript and XML

JS not so (well designed) easy

JS Frameworks

Case Study

Main Scenarios

• A user requests an article during normal operation
and gets the rendered article HTML page.  

• An editor saves an edited article during normal
operation and the article is saved.

Backend

ParserArticleEdit

ReadsWrites

ArticleViewSubmit Logic

UI Page

Skinning Localization

Static
Resources

Qualities

• “Basic” implementation

- Limited scalability

- Single point of failure

- Limited Security

Performance Tactics

• Control Resource Demand
- Increase the resource efficiency (caching)
- Reduce overhead (pre-generate HTML from PHP)

• Manage Resources
- Schedule resources (load balancer)

https://www.digitalocean.com/community/tutorials/5-common-server-setups-for-your-web-application

Load Balancing
deploy many replicated instances of the server

on multiple machines

Caching + Load Balancing

FrontEnd
(Apache)

Caching + Load Balancing

Squid
(Caching) Apache

Caching + Load Balancing

Squid
(Caching) Apache

Caching + Load Balancing

Squid ApacheLoadBalancer
(Squid) LoadBalancer

Caching + Load Balancing

Squid ApacheLoadBalancer
(Squid) LoadBalancer

Squid ApacheLoadBalancer LoadBalancer

Squid

Squid

Apache

Apache

Backend

ParserArticleEdit

ReadsWrites

ArticleViewSubmit Logic

UI Page

Skinning Localization

Static
Resources

Backend

ParserArticleEdit

ReadsWrites

ArticleViewSubmit Logic

UI Page

Skinning Localization

Static
Resources

Loader

Cache Cache

Cache
Cache

Performance Tactics

• Control Resource Demand
- Prioritize events (deferred article updates)

• Manage Resources
- Introduce concurrency (distributed database)
- Schedule resources (load balancer)
- Multiple copies of data and computations

https://www.digitalocean.com/community/tutorials/5-common-server-setups-for-your-web-application

Master/Slave
split a large job into smaller independent

partitions which can be processed in parallel

Distribution + Replication

Database

More reads than writes
Near-live updates (no strict consistency requirements)

Distribution + Replication

DB Slave

Load Balancer

ReadsWrites

DB Master

More reads than writes
Near-live updates (no strict consistency requirements)

Clear data separation (Article Name: A-B, C-D, etc..)

Distribution + Replication
Data Sharding

Distribution + Replication

DB Slave

Load Balancer

ReadsWrites

DB Master

Distribution + Replication

DB Slave

Load Balancer
(Master)

ReadsWrites

DB Master
(Shard)

Partition Logic
(Sharding,
Relication

Visualization

Backend

ParserArticleEdit

ReadsWrites

ArticleViewSubmit Logic

UI Page

Skinning Localization

Static
Resources

Loader

Cache Cache

Cache
Cache

Backend

Parser

ArticleEdit

Reads

Writes

ArticleView

Submit Logic

UI Page

Skinning Localization

Parser
Cache

Static
Resources

Loader

CachedCached

Cached

Job Runner

Writes

Job Queue

HTML File
Cache

Precompile/Recompile

Regenerate/Invalidate

Security/Availability Tactics
• Prevent Attacks

• Challenge Tokens (CSRF)
• Validation (User) and Sanitization (SQL Injection, XSS)

• Resist Attacks
• Maintain multiple copies of computations
• Maintain multiple copies of data

• Recover from Attacks
• DB Versioning (Recovery from data loss)

Backend

ParserArticleEdit

ReadsWrites

ArticleViewSubmit Logic

UI Page

Skinning Localization

Static
Resources

Loader

Cache Cache

Cache
Cache

Backend

Parser
ArticleEdit

Reads
Writes

ArticleView

Submit Logic

UI Page

Skinning Localization

Static
Resources

Loader

Cache Cache

Cache
Cache

Sanitizer
Pipeline

User Access

Backend

Parser
ArticleEdit

Reads
Writes

ArticleView

Submit Logic

UI Page

Skinning Localization

Static
Resources

Loader

Cache

Cache
Sanitizer

Cache

Cache

Additional Qualities

Extensibility

Backend

Parser
ArticleEdit

Reads
Writes

ArticleView

Submit Logic

UI Page

Skinning Localization

Static
Resources

Loader

Cache

Cache
Sanitizer

Cache

Cache

Extensibility

Backend

ParserArticleEdit

ReadsWrites

ArticleView

Submit Logic

UI Page

Skinning Localization

Static
Resources

Loader

Cache

CacheSanitizer

Cache

Cache

Hook Engine
Register Callback

Notify

Notify

Notify
Notify

Notify

External
Module

Configurability/Customizability

ParserArticleEdit

ReadsWrites

ArticleView

Submit Logic

UI Page

Skinning Localization

Static
Resources

Loader

Cache

Cache
Sanitizer

Cache

Cache

Global
Variables and
Configurations

ParserArticleEdit

ReadsWrites

ArticleView

Submit Logic

UI Page

Skinning Localization

Static
Resources

Loader

Cache

Cache
Sanitizer

Cache

Cache

Configurability/Customizability

Process View

Read Article
A user requests an article during normal
operation and gets the rendered article

HTML page.

GET Article

HTML
Cache

LoadBalancer
Select DB

Article
Exists

Parser
Cache

Get Article from
DB

Parse Content

Render Content

Missing Page

Y

Y

Y

N

N

Read Article

Write/Edit Article

An editor saves an edited article during
normal operation and the article is saved.

Submit Logic

User
Authorized

LoadBalancer
Select DB

Article Edit

Write
ConflictError Page

Create Edit Form

Render Content

Y

Y

Update Job

Write/Edit Article

Summary
• Work incrementally

• Use different architectural views

• Start the design from the domain model and go up
in the layers

• Use frameworks whenever possible

• Each design decision has a rationale (hoisting)

