
Software Engineering
Summer 2017

A Software Crisis

Denver
International Airport

• Approved for construction in 1989

• First major airport to be built in the United
States in over 20 years.

• Three terminals + several runways

• Built on 53 square miles of land 
(Twice the size of Manhattan Island!)

BAE Contract

• Original assumption: Every company builds
its own baggage transport system

• United (70% Denver traffic) was the only
to begin planning; contract with BAE

• First fully automated baggage system

• Later, Denver airport extended contract to
entire airport – three times original size

The Scope

• 20 miles of track

• 6 miles of conveyor belts

• 56 laser arrays that read bar coded tags

• 400 frequency readers

• 3,100 standard size baggage ‘Telecars’

• 450 6.5 ft by 4 ft oversize cars

• 55 separate computers

The System

The Timeframe

• BAE started work 17 months before
scheduled opening October 31, 2003

• In Munich (similar system), engineers had
spent two years just testing the system  
(with 24/7 operation six months before the
airport opened)

More Risks

• Most of buildings were already done, so
BAE had to accommodate system 
(sharp turns, narrow corridors…)

• BAE paid little attention to German sister
project and devised system from scratch

• Little communication within BAE

Final Blunder

• The decision to broadcast the preliminary
test of the “revolutionary” new baggage
system on national television

A Disaster

• Carts jammed together

• Damaged luggage everywhere, some bags
literally split in half

• Tattered remains of clothing strewn about
caused subsequent carts to derail

• Half the luggage that survived the ordeal
ended up at the wrong terminal

More Issues

• Carts got stuck in narrow corridors

• Wind blew light baggage from carts

• 5% of the labels were read correctly

• Normal network load was 95%

Complexity: Empty Carts

• Empty carts need to go where they are
needed

• Cart has to be at its “cannon” at the right
moment

• Lanes have limited length ➔ traffic jam

• All controlled by single central system

Consequences

• Airport opening delayed four times –
overall, sixteen months late

• New engineering firm

• split system in three (one per terminal)

• implemented manual backup system

• BAE got bankrupt

• Overall damage: 1.3 bln USD

Glass’ Law

Requirement deficiencies  
are the prime source 

of project failures.

Project Success

Source: Standish Group CHAOS Report, 2015  
based on 50,000 software projects around the world

19%

52%

29%

successful challenged failed

Project Success by Size

Source: Standish Group CHAOS Report, 2015, based on 50,000 software projects around the world

More Examples
• Mariner 1 (1962)  

Missing overbar crashes Venus probe

• Eole 1 (1971)  
72 weather balloons get wrong cmd

• Nimbus 7 (1978)  
Satellite misses ozone hole for 6 yrs

• HMS Sheffield (1982)  
Exocet rocket id’ed as “friend”

• Stanislaw Petrow (1983)  
Russia detects global nuclear attack

• Therac 25 (1985)  
Radiation overdose kills six

• Stock crash (1987)  
Dow Jones loses 22% in one day

• Vincennes (1988)  
Passenger jet mistaken to be F-14

• Patriot (1991)  
Misses to shoot down Iraqi Scud

• Climate Orbiter (1999)  
Confuses metrics and imperial

• US Blackout (2003)  
50 mln affected for 5 days

• Apple SSL bug (2012)  
18 months w/o SSL authentication

• Heartbleed bug (2014)  
Silent data leak in major SSL code

• Stagefright MMS (2015)  
All Android <5.1 vulnerable

Challenges

• Why does it take so long to get software
finished?

• Why are the development costs so high?

• Why can’t we find all errors?

• Why do we spend so much time and effort
maintaining existing programs?

• Why is it difficult to measure progress?

Topics

• Requirements Engineering

• Software Specification

• Software Design and Architecture

• Software Quality Assurance and Testing

• Software Maintenance and Evolution

• Software Project Management

Your Lecturers

• Andreas Zeller

• Dr. Alessio Gambi

• Dr. María Gómez Lacruz

• Lecture every Tue+Thu 8:30 here in E2.2

• Start with 2x/week, later 0x/week

Your Tutors
• Ezekiel Soremekun Olamide  

(course manager)

• Abbas Rezaey

• Adekunle Onaopepo

• Aditya Gulati

• Ahmad Taie

• Alyona Morozova

• Chirag Shah

• Firuza Sharifullaeva

• Jyoti Prakash

• Muhammad Muaz

• Petr Tikhonov

• Timo Gühring

• Tri Huynh

Books

JULY

22

Exam

(+ extra exam beginning of September)

Projects

• SW Engineering is best learned by doing 
(There is no “theory of software engineering”)

• Therefore, projects make up 2/3 of course

Projects

Team

Work

Tutor

Supervision

Honor

Client

Project Details

• Non-trivial piece of software

• Suggested by client (mostly CS members)

• Client is busy (spends max 15 hrs total)

• Client is vague (on purpose)

Deliverables

• Full set of requirements

• User interface design

• Architecture design

• Project plan

• Prototype

Grading

67%

33%

Exam Project

• Need to pass
exam and project
to pass

• Project grades
based on group
performance
(with bonus for
individuals)

Web Site

Sign up!

Summary

Software Engineering
Summer 2017

Project Success

Source: Standish Group CHAOS Report, 2015  
based on 50,000 software projects around the world

19 %

52 %

29 %

successful challenged failed

