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The Problem

Facts on Debugging

® Software bugs cost ~60 bln US$/yr in US
® |mprovements could reduce cost by 30%

® Validation (including debugging) can easily
take up to 50-75% of the development time

® When debugging, some people
are three times as efficient than others
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How to Debug

(Sommerville 2004)

Design Repair Re-test
error repair error program

Locate error

The Process

T rack the problem
R eproduce

A utomate

F ind Origins

F ocus

I solate

C orrect




Tracking Problems
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Tracking Problems

® Every problem gets entered
into a problem database

® The priority determines
which problem is handled next

® The product is ready
when all problems are resolved

Problem Life Cycle
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8 Automate

// Test for host

public void testHost() {
int noPort = -1;
assertEquals(askigor_url.getHost(), "www.askigor.org");
assertEquals(askigor_url.getPort(), noPort);

}

// Test for path
public void testPath() {
assertEquals(askigor_url.getPath(), "/status.php");

}

// Test for query part

public void testQuery() {
assertEquals(askigor_url.getQuery(), "id=sample");

}

Automate

® Every problem should be
reproducible automatically

® Achieved via appropriate (unit) tests

o After each change, we re-run the tests




: Finding Origins

I. The programmer creates | | |
a defect in the code.

I Variables

2. When executed, the
defect creates an infection. | | | | X | |

3. The infection propagates. B

4. The infection causes a | | X | | X | |
failure.

N
This infection chain must be traced I:l:-l—:l -
back — and broken. » t

Not every defect creates an infection — not every infection results in a failure

: Finding Origins

Variables
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Finding Origins
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Search
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Focus

During our search for infection, we focus upon
locations that

® are possibly wrong
(e.g., because they were buggy before)

® are explicitly wrong
(e.g., because they violate an assertion)

Assertions are the best way to find infections!




Finding Infections

class Time {
public:
int hour(); // 0..23
int minutes(); // 0..59
int seconds(); // 0..60 (incl. leap seconds)

void set_hour(int h);

Every time between 00:00:00 and 23:59:60 is valid

Finding Origins

bool Time::sane()

{
return (@ <= hour() && hour() <= 23) &&
(@ <= minutes() && minutes() <= 59) &&
(@ <= seconds() && seconds() <= 60);
}

void Time::set_hour(int h)

{

assert (sane()); // Precondition

assert (sane()); // Postcondition

Finding Origins

bool Time::sane()

{
return (@ <= hour() && hour() <= 23) &&
(@ <= minutes() && minutes() <= 59) &&
(@ <= seconds() && seconds() <= 60);
1

sane() is the invariant of a Time object:
® valid before every public method

® valid after every public method




Finding Origins

® Precondition fails = Infection before method
® Postcondition fails = Infection after method

® All assertions pass = no infection

void Time: :set_hour(int h)
{

assert (sane()); // Precondition

assert (sane()); // Postcondition

Complex Invariants

class RedBlackTree {

boolean sane() {
assert (rootHasNoParent());
assert (rootIsBlack());
assert (redNodesHaveOnlyBlackChildren());
assert (equalNumberOfBlackNodesOnSubtrees());
assert (treelIsAcyclic());
assert (parentsAreConsistent());

return true;

Assertions
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Focusing

® All possible influences must be checked
® Focusing on most likely candidates

® Assertions help in finding infections fast

Isolation

® Failure causes should be
narrowed down systematically

® Use observation and experiments

Scientific Method

|. Observe some aspect of the universe.

2. Invent a hypothesis that is consistent with
the observation.

3. Use the hypothesis to make predictions.

4. Tests the predictions by experiments or
observations and modify the hypothesis.

5. Repeat 3 and 4 to refine the hypothesis.




Scientific Method
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EXp|ICIt Hypotheses

Isolate

® We repeat the search for infection origin
until we found the defect

® We proceed systematically
along the scientific method

® Explicit steps guide the search —
and make it repeatable at any time

Correction

Before correcting the defect, we must check
whether the defect

® actually is an error and
® causes the failure

Only when we understood both, can we
correct the defect




The Devil’s Guide
to Debugging

Find the defect by guessing:
® Scatter debugging statements everywhere
® Try changing code until something works
® Don’t back up old versions of the code

® Don’t bother understanding what the
program should do

The Devil's Guide
to Debugging

Don’t waste time understanding the problem.

® Most problems are trivial, anyway.

The Devil’s Guide
to Debugging

Use the most obvious fix.
® Just fix what you see:

x = compute(y)
// compute(17) is wrong - fix it
if (y == 17)

x = 25.15

Why bother going into compute()?




Successful Correction

Homework

Does the failure no longer occur?
(If it does still occur, this should come as a big surprise)

Did the correction introduce new problems?

® \Was the same mistake made elsewhere?

Did | commit the change to version control
and problem tracking?
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