
Software Engineering
Andreas Zeller • Saarland University 

Systematic Debugging

The Problem

2

Facts on Debugging

• Software bugs cost ~60 bln US$/yr in US

• Improvements could reduce cost by 30%

• Validation (including debugging) can easily
take up to 50-75% of the development time

• When debugging, some people 
are three times as efficient than others

How to Debug
(Sommerville 2004)

Locate error Design
error repair

Repair
error

Re-test
program

The Process
T
R
A
F
F
I
C

rack the problem
eproduce
utomate
ind Origins
ocus
solate
orrect

Tracking Problems
T
R
A
F
F
I
C

Tracking Problems

• Every problem gets entered 
into a problem database

• The priority determines 
which problem is handled next

• The product is ready 
when all problems are resolved

T
R
A
F
F
I
C

Problem Life Cycle

UNCONFIRMED NEW ASSIGNED

REOPENED

VERIFIED CLOSED

INVALID

DUPLICATE

INVALID

DUPLICATE

FIXED

WORKSFORME

WONTFIX

NEW

FIXED

Status

Resulting
Resolution

RESOLVED

if resolution is FIXED

T
R
A
F
F
I
C

Reproduce

Program

Data

Interaction

Communication

Randomness Operating System

Concurrency

Physics

Debugger

T
R
A
F
F
I
C

Automate
 // Test for host
 public void testHost() {

int noPort = -1;
 assertEquals(askigor_url.getHost(), "www.askigor.org");

assertEquals(askigor_url.getPort(), noPort);
 }

 // Test for path
 public void testPath() {

assertEquals(askigor_url.getPath(), "/status.php");
 }

 // Test for query part
 public void testQuery() {

assertEquals(askigor_url.getQuery(), "id=sample");
 }

T
R
A
F
F
I
C

Automate

• Every problem should be 
reproducible automatically

• Achieved via appropriate (unit) tests

• After each change, we re-run the tests

T
R
A
F
F
I
C

Finding Origins

1. The programmer creates
a defect in the code.

2. When executed, the
defect creates an infection.

3. The infection propagates.

4. The infection causes a
failure.

T
R
A
F
F
I
C

✘

✘

✘ ✘

Variables

This infection chain must be traced
back – and broken. t

✘

Not every defect creates an infection – not every infection results in a failure

Finding Origins
T
R
A
F
F
I
C

t

Variables

✔

✘ t

The Defect
T
R
A
F
F
I
C

t

Variables

✔

✘ t

✘

T
R
A
F
F
I
C

A Program State

T
R
A
F
F
I
C

Finding Origins

1. We start with a 
known infection  
(say, at the failure)

2. We search the infection
in the previous state

T
R
A
F
F
I
C

✘

✘

✘ ✘

Variables

t

✘

T
R
A
F
F
I
C

T
R
A
F
F
I
C

A Program State

T
R
A
F
F
I
C

Search
T
R
A
F
F
I
C

Focus

During our search for infection, we focus upon
locations that

• are possibly wrong  
(e.g., because they were buggy before)

• are explicitly wrong 
(e.g., because they violate an assertion)

Assertions are the best way to find infections!

T
R
A
F
F
I
C

Finding Infections
class Time {
public:
 int hour(); // 0..23
 int minutes(); // 0..59
 int seconds(); // 0..60 (incl. leap seconds)

 void set_hour(int h);
 …
}

Every time between 00:00:00 and 23:59:60 is valid

T
R
A
F
F
I
C

Finding Origins

void Time::set_hour(int h)
{
 assert (sane()); // Precondition
 …
 assert (sane()); // Postcondition
}

bool Time::sane()
{
 return (0 <= hour() && hour() <= 23) &&
 (0 <= minutes() && minutes() <= 59) &&
 (0 <= seconds() && seconds() <= 60);
}

T
R
A
F
F
I
C

Finding Origins
bool Time::sane()
{
 return (0 <= hour() && hour() <= 23) &&
 (0 <= minutes() && minutes() <= 59) &&
 (0 <= seconds() && seconds() <= 60);
}

sane() is the invariant of a Time object:

• valid before every public method

• valid after every public method

bool Time::sane()
{
 return (0 <= hour() && hour() <= 23) &&
 (0 <= minutes() && minutes() <= 59) &&
 (0 <= seconds() && seconds() <= 60);
}

T
R
A
F
F
I
C

Finding Origins

void Time::set_hour(int h)
{
 assert (sane()); // Precondition
 …
 assert (sane()); // Postcondition
}

• Precondition fails = Infection before method

• Postcondition fails = Infection after method

• All assertions pass = no infection

T
R
A
F
F
I
C

Complex Invariants
class RedBlackTree {
 …
 boolean sane() {
 assert (rootHasNoParent());
 assert (rootIsBlack());
 assert (redNodesHaveOnlyBlackChildren());
 assert (equalNumberOfBlackNodesOnSubtrees());
 assert (treeIsAcyclic());
 assert (parentsAreConsistent());

 return true;
 }
}

T
R
A
F
F
I
C

Assertions

t

✔

✘ t

✔
✔
✔
✔
✔
✔
✔

✔
✔
✔
✔
✔
✔
✔

✔
✔
✔
✔
✔
✔
✔

T
R
A
F
F
I
C

Focusing

• All possible influences must be checked

• Focusing on most likely candidates

• Assertions help in finding infections fast

T
R
A
F
F
I
C

Isolation

• Failure causes should be  
narrowed down systematically

• Use observation and experiments

T
R
A
F
F
I
C

Scientific Method
T
R
A
F
F
I
C

1. Observe some aspect of the universe.

2. Invent a hypothesis that is consistent with
the observation.

3. Use the hypothesis to make predictions.

4. Tests the predictions by experiments or
observations and modify the hypothesis.

5. Repeat 3 and 4 to refine the hypothesis.

T
R
A
F
F
I
C

Hypothesis

Problem Report

Code

Run

More Runs

Prediction Experiment Observation 
+ Conclusion

Hypothesis is supported:
refine hypothesis

Hypothesis is rejected:
create new hypothesis

Diagnosis

Scientific Method

T
R
A
F
F
I
C

The execution causes a[0] = 0

At Line 37, a[0] = 0 should hold.

Observe a[0] at Line 37.

a[0] = 0 holds as predicted.

Hypothesis is confirmed.

Hypothesis

Prediction

Experiment

Observation

Conclusion

Explicit Hypotheses
T
R
A
F
F
I
C The execution causes a[0] = 0

At Line 37, a[0] = 0 should hold.

Observe a[0] at Line 37.

a[0] = 0 holds as predicted.

Hypothesis is confirmed.

Kee
pin

g e
ve

ry
thi

ng
 in

mem
or

y i
s l

ike
 pl

ayi
ng

mast
er

mind
 bl

ind
!

Explicit Hypotheses
T
R
A
F
F
I
C

T
R
A
F
F
I
C

Isolate
T
R
A
F
F
I
C

• We repeat the search for infection origins
until we found the defect

• We proceed systematically 
along the scientific method

• Explicit steps guide the search –  
and make it repeatable at any time

Stu
dy in

 Su
mmer –

 

Call f
or Voluntee

rs

Correction

Before correcting the defect, we must check
whether the defect

• actually is an error and

• causes the failure

Only when we understood both, can we
correct the defect

T
R
A
F
F
I
C

☠
The Devil’s Guide

to Debugging
Find the defect by guessing:

• Scatter debugging statements everywhere

• Try changing code until something works

• Don’t back up old versions of the code

• Don’t bother understanding what the
program should do

T
R
A
F
F
I
C

☠
The Devil’s Guide

to Debugging

Don’t waste time understanding the problem.

• Most problems are trivial, anyway.

T
R
A
F
F
I
C

☠
The Devil’s Guide

to Debugging
Use the most obvious fix.

• Just fix what you see:

x = compute(y)
// compute(17) is wrong – fix it
if (y == 17)
 x = 25.15

Why bother going into compute()?

T
R
A
F
F
I
C

Successful Correction
T
R
A
F
F
I
C

Homework
T
R
A
F
F
I
C

• Does the failure no longer occur? 
(If it does still occur, this should come as a big surprise)

• Did the correction introduce new problems?

• Was the same mistake made elsewhere?

• Did I commit the change to version control
and problem tracking?

The Process
T
R
A
F
F
I
C

rack the problem
eproduce
utomate
ind Origins
ocus
solate
orrect

“The definitive book on debugging” 
– WALTER F. TICHY  

TU Karlsruhe

S E C O N D E D I T I O N

ANDREAS ZELLER

WHY PROGRAMS FAIL
A GUIDE TO SYSTEMATIC DEBUGGING

WINNER OF JOLT PRODUCTIVITY AWARD

Automated Debugging 
(WS 2016/17)

47

Summary

