Systematic Debugging

Software Engineering
Andreas Zeller ¢ Saarland University

The Problem

Facts on Debugging

® Software bugs cost ~60 bln US$/yr in US
® |mprovements could reduce cost by 30%

® Validation (including debugging) can easily
take up to 50-75% of the development time

® When debugging, some people
are three times as efficient than others

« B

How to Debug

(Sommerville 2004)

Design Repair Re-test
error repair error program

Locate error

The Process

T rack the problem
R eproduce

A utomate

F ind Origins

F ocus

I solate

C orrect

Tracking Problems

s trac

%) Toe Teacking

—— — e ea

Tracking Problems

® Every problem gets entered
into a problem database

® The priority determines
which problem is handled next

® The product is ready
when all problems are resolved

Problem Life Cycle

Reproduce

Randomness Operating System

N\
Communlcatlon\ _4

»

«—— Concurrency

Interaction — ‘ “———Physics

/

Data Debugger

8 Automate

// Test for host

public void testHost() {
int noPort = -1;
assertEquals(askigor_url.getHost(), "www.askigor.org");
assertEquals(askigor_url.getPort(), noPort);

}

// Test for path
public void testPath() {
assertEquals(askigor_url.getPath(), "/status.php");

}

// Test for query part

public void testQuery() {
assertEquals(askigor_url.getQuery(), "id=sample");

}

Automate

® Every problem should be
reproducible automatically

® Achieved via appropriate (unit) tests

o After each change, we re-run the tests

: Finding Origins

I. The programmer creates | | |
a defect in the code.

I Variables

2. When executed, the
defect creates an infection. | | | | X | |

3. The infection propagates. B

4. The infection causes a | | X | | X | |
failure.

N
This infection chain must be traced I:l:-l—:l -
back — and broken. » t

Not every defect creates an infection — not every infection results in a failure

: Finding Origins

Variables

4

. The Defect

Variables

—
X

(o)

A Progsram State

Finding Origins

F
I Variables
|. We start with a
known infection
(say, at the failure) L I[I=] |
2. We search the infection LCO!
in the previous state | |x | | ¥ | |
LCONIN
(=] ~
F20 DDD: fpublicisourceiprogramming/ddd-3.2/dddicxxtest.C AR
File Edt View Progam Commands Stalus Source Data e |
e Ml ooy iy B0 2y '
of st e e S 28
F x x . N . self. . . self.
T Tist g [sale ()nm 36
(List *)_0x804df80| ’ QNN 4 vt
Tist-onext = new List(a_globa] + start+);
list->next—>next = new List(a_global + start+);
Tist->next-snext->next = Tist;
@ wvoid) Tigk; /7 Display this
> deroe 11, BT
delete 1§st—nents
delete Tist;
17 Test £:-4 DDD Tip of the Day #5
Void Tis
et If you madle a nistake, try Edit—>Undo. This will unda the most 5
recent debugger commant and redispiay he previous progre state. ||
.
— el
Void ref
€ jate | Close Prev Tip Next Tip
dele
dates
3
i
o
’ (o) araph display *(1ist-onest-onext->se1) dapendent on 4 E
b ¢ =
A list= (List *) 0x804df80 +
: A Program State

T
R
A
F
F
1
C

Search

A=mT>3H

Focus

During our search for infection, we focus upon
locations that

® are possibly wrong
(e.g., because they were buggy before)

® are explicitly wrong
(e.g., because they violate an assertion)

Assertions are the best way to find infections!

Finding Infections

class Time {
public:
int hour(); // 0..23
int minutes(); // 0..59
int seconds(); // 0..60 (incl. leap seconds)

void set_hour(int h);

Every time between 00:00:00 and 23:59:60 is valid

Finding Origins

bool Time::sane()

{
return (@ <= hour() && hour() <= 23) &&
(@ <= minutes() && minutes() <= 59) &&
(@ <= seconds() && seconds() <= 60);
}

void Time::set_hour(int h)

{

assert (sane()); // Precondition

assert (sane()); // Postcondition

Finding Origins

bool Time::sane()

{
return (@ <= hour() && hour() <= 23) &&
(@ <= minutes() && minutes() <= 59) &&
(@ <= seconds() && seconds() <= 60);
1

sane() is the invariant of a Time object:
® valid before every public method

® valid after every public method

Finding Origins

® Precondition fails = Infection before method
® Postcondition fails = Infection after method

® All assertions pass = no infection

void Time: :set_hour(int h)
{

assert (sane()); // Precondition

assert (sane()); // Postcondition

Complex Invariants

class RedBlackTree {

boolean sane() {
assert (rootHasNoParent());
assert (rootIsBlack());
assert (redNodesHaveOnlyBlackChildren());
assert (equalNumberOfBlackNodesOnSubtrees());
assert (treelIsAcyclic());
assert (parentsAreConsistent());

return true;

Assertions

4

SRNNSKENS
SRR EKEKNS
SRKEKKNS

Focusing

® All possible influences must be checked
® Focusing on most likely candidates

® Assertions help in finding infections fast

Isolation

® Failure causes should be
narrowed down systematically

® Use observation and experiments

Scientific Method

|. Observe some aspect of the universe.

2. Invent a hypothesis that is consistent with
the observation.

3. Use the hypothesis to make predictions.

4. Tests the predictions by experiments or
observations and modify the hypothesis.

5. Repeat 3 and 4 to refine the hypothesis.

Scientific Method

1
Problem Report
Hypothesis is supported:

Code refine hypothesis
i Observati
o) a servation
Hyﬁotr:emi ~ Prediction -Experiment . T e
Run Hypothesis is rejected:
create new hypothesis
More Runs

Diagnosis

Explicit Hypotheses

Hypothesis

Prediction

Conclusion eSS 15 Confirmed.

EXp|ICIt Hypotheses

Isolate

® We repeat the search for infection origin
until we found the defect

® We proceed systematically
along the scientific method

® Explicit steps guide the search —
and make it repeatable at any time

Correction

Before correcting the defect, we must check
whether the defect

® actually is an error and
® causes the failure

Only when we understood both, can we
correct the defect

The Devil’s Guide
to Debugging

Find the defect by guessing:
® Scatter debugging statements everywhere
® Try changing code until something works
® Don’t back up old versions of the code

® Don’t bother understanding what the
program should do

The Devil's Guide
to Debugging

Don’t waste time understanding the problem.

® Most problems are trivial, anyway.

The Devil’s Guide
to Debugging

Use the most obvious fix.
® Just fix what you see:

x = compute(y)
// compute(17) is wrong - fix it
if (y == 17)

x = 25.15

Why bother going into compute()?

Successful Correction

Homework

Does the failure no longer occur?
(If it does still occur, this should come as a big surprise)

Did the correction introduce new problems?

® \Was the same mistake made elsewhere?

Did | commit the change to version control
and problem tracking?

The Process

T rack the problem
R eproduce

A utomate

F ind Origins

F ocus

I solate

C orrect

WINNER OF JOLT PRODUCTIV

WHY PROGRAMS FAIL

A GUIDE TO SYSTEMATIC DEBUGGING
SECOND EDITION

?&WM s ow e consislent wih oor dosecvabipus
2 Dodlle guokes awe skipped from daced oy
npk ppecied pubpl
n Il " o
Lo g s
sl aa c%) >
Twe evor is der b0 Lna bciy.a et

Automated Debugging
(WS 2016/17)

a7

The Process : Finding Origins
T rack the problem
R eproduce
A utomate
F ind Origins
F ocus
1 solate
C orrect ¢
Scientific Method Online Course on Debugging
.
Problem Report ;?3;' porbeses shevk withs oor d
Hypothesis is supported: ! N .
Code Tefine Typothesis 52 Dol gonkes owe shippel fom bl it
Hypothesis - Prediction - Experiment . Ovservation :fj'n "{3‘ iﬁr x
s i aw ‘“ﬁ) }%4
Run Hypothesis is rejected:

The error is dee bo Loy beivg 26

create new hypothesis

More Runs
Diagnosis

