From Pressman, “Software Engineering
— a practitioner’s approach”, Chapter 14
and Pezze + Young, “Software Testing

Today, we’ll talk about testing — how to
test software. The question is: How do
: onal)

Functional Testing

Software Engineering
Andreas Zeller * Saarland University

Functional testing is also called “black-
box” testing, because we see the
program as a black box —that is, we

——ighore-how-itis being-written——————

in contrast to structural or “white-box”
testing, where the program is the base.

If the program is not the base, then
what is? Simple: it’s the specification.

Testing Tactics

Functional Structural
“black box” “white box”

® Tests based on spec ® Tests based on code

® Test covers as much ® Test covers as much
specified behavior implemented behavior
as possible as possible

If the program is not the base, then
what is? Simple: it’s the specification.

Why Functional?

Functional
“black box”

® Program code not necessary

® Early functional test design has benefits
reveals spec problems ¢ assesses testability ¢ gives additional
explanation of spec * may even serve as spec, as in XP

Why Functional?

Functional
“black box”

® Best for missing logic defects

Common problem: Some program logic was simply forgotten
Structural testing would not focus on code that is not there

® Applies at all granularity levels
unit tests ¢ integration tests * system tests * regression tests

Structural testing can not detect that
some required feature is missing in the
code

= ional : i I
granularity levels (in contrast to
structural testing, which only applies to
unit and integration testing)

A Challenge

class Roots {
// Solve ax? + bx + c = 0@
public roots(double a, double b, double c)
{ .}

// Result: values for x
double root_one, root_two;

}

® Which values for a, b, c should we test?
assuming a, b, ¢, were 32-bit integers, we'd have (232)* = 10?8 legal inputs
with 1.000.000.000.000 tests/s, we would still require 2.5 billion years

2,510,588,971 years, 32 days, and 20
hours to be precise.

Life Cycle of the.Sun

Note that in 900 million years, due to
increase of the luminosity of the sun,
CO2 levels will be toxic for plants; in
evaporated (source: Wikipedia on
“Earth”)

Note that in 900 million years, due to
increase of the luminosity of the sun,

L|fe Cycle Of the SU N : CO2 levels will be toxic for plants; in
. . * . evaporated (source: Wikipedia on
® . . , Now “Earth”)

: .
‘ | . ‘
. ‘ . ’ ‘
. .
.

Birth® 1 2 3 4 5

In Billions of Years (approx.)

None of this is crucial for the
computation, though.

Red Giant

-Gradual Warming

.
.
. .
-
-
. - .

6 7 8 - 9 10 11

In Billions of Years (approx.,) .

. [

_Planetary Nebula

.
.

White Dwarf ...

.' I I

. & 13 « 14

.

ot drawn to scale -

A Challenge

class Roots {
// Solve ax? + bx + c = 0
public roots(double a, double b, double c)
{ .1}

// Result: values for x
double root_one, root_two;

}

® Which values for a, b, ¢ should we test?
assuming a, b, ¢, were 32-bit integers, we'd have (232)3 = 1028 legal inputs
with 1.000.000.000.000 tests/s, we would still require 2.5 billion years

Random Testing

® Pick possible inputs uniformly

® Avoids designer bias
A real problem: The test designer can make the same logical
mistakes and bad assumptions as the program designer
(especially if they are the same person)

® But treats all inputs as equally valuable

One might think that picking random
samples might be a good idea.

Why not Random!?

® Defects are not distributed uniformly

® Assume Roots applies quadratic equation

—b+ /b2 —4ac
Tr=
2a

and fails if b2 —4ac=0and a =0

® Random sampling is unlikely to choose
a=0andb=0

However, it is not. For one, we don’t

care for bias — we specifically want to

search where it matters most. Second,
I o ol

specific defects. Therefore, we go for

functional testing.

Systematic Functional Testing

identify
Functional Independently
specification testable feature

identify derive

Representative
P Model
values

derive

generate
Test case
Test case : :
specifications

The main steps of a systematic
approach to functional program testing
~ (from Pezze + Young, “Software Testing

Testable Features

identify
Functional Independently
specification testable feature

® Decompose system into
independently testable features (ITF)

® An ITF need not correspond to units or
subsystems of the software

® For system testing, ITFs are exposed
through user interfaces or APlIs

Testable Fatures

class Roots {
// Solve ax? + bx + c = 0
public roots(double a, double b, double c)
{ .1}

// Result: values for x
double root_one, root_two;

}

® What are the independently testable features?

Just one — roots is a unit and thus
provides exactly one single testable

Teature.

Every single function becomes an
independently testable feature. Some

Testable Fatu res functions (like memory access, for
—instance) are dependent on each other,

though: to retrieve a value, you must
first store it.

HP48-R (CX

1
4:
gf £.518.588.971,49
1:

921,09 (Note how the calculator shows the
28, 30 :
® Consider a multi-function calculation.)
calculator

® What are the independently
testable features?

The main steps of a systematic
approach to functional program testing

TeStable Featu res (from Pezze + Young, “Software Testing
identify
Functional Independently
specification testable feature
{ Representative E Model
values
{ ‘ specifications

The main steps of a systematic
approach to functional program testing

Re P rese ntative Val ues (from Pezze +Young, “Software Testing

. Independently
® Try to select inputs testable feature

that are especially
valuable

identify

Representative

i Usua”)’ b)’ values
choosing
representatives of equivalence classes that
are apt to fail often or not at all

Needles in a Haystack

® To find needles,
look systematically

® We need to find out
what makes needles special

I

The space of possible input values

We can think of all the possible input
values to a program as little boxes ... white

correctly, and colored boxes on which the

M Failure (valuable test case)

the space of
O No failure i

Failures are sparse in

Inputs ...

... but dense in some

B e R heyepes

00 OO0 oo/oo/oo go oo oo/oo oo
00 OO0 O0/00/00 00 00|00 00 OO0/00 OO
000000000000 0omm o 00 00/00 0O
< 00 00|00 00,00 OO0 O0O|mo|0 00 O0/00 OO
[o]
% |00 00|00 00|00 00 00|00 O 00 00/00 0O
& 0000000000 0000000 00 OO0/00 OO
£ |00 00|00 0000 0o oojoo g 00 00/00 OO
€ |00 00|00 00|00 00 00|00 0 00 0O0/00 OO
00 00|00 00/00 00 00|00 O 00 00 00 0O
00 0O0/00 00/00 00 00|00 0 00 OO0 00 00

If we systematically test some
cases from each part, we will
include the dense parts

Functional testing is one way of
drawing orange lines to isolate
regions with likely failures

program fails. Our problem is that there
are a lot of boxes ... a huge number, and
fraction of the whole set. If we reach in
and pull out boxes at random, we are

out at random. Let’s first subdivide the big
bag of boxes into smaller groups (the pink
concentrate the colored boxes in a few of
the groups. The number of groups needs
to be much smalier than the number of

— boxes, so that we can systematically reach

into each group to pick one or a few boxes.

Equivalence Partitioning

Input condition Equivalence classes

range

one valid, two invalid

(larger and smaller)

specific value

one valid, two invalid

(larger and smaller)

member of a set

one valid, one invalid

boolean

one valid, one invalid

How do we choose equivalence
classes? The key is to examine input
conditions from the spec. Each input

——condition-induces-an-equivalenceclass-

—valid and invalid inputs.

Boundary Analysis

O Possible test case

00 00 OO0 00800 oo
00 00 00 0000 oo
00 00 OO0 00800 0o
000000 08/EO0O0B
00 00 OO0 0080 00O
00 00 OO0 0000 oo
00 00 00 00 00 OO
00 00 0000 400 oo
00 00 00 00 00 oo
00 00 00 00 oo oo

OO0 OO0 oo oo oo
00O OO0 0o @0 oo

00 00 00 00 00 Og
00 00 00 00 00 Ooa
00 00 00 00 00 O
00 00 00 00 00 Ooa
00 00 00 00 00 00
00 00 00 00 0o oo
00 00 00 00 00 00
00 00 00 00 00 Ooa
00 00 00 00 00 O
00 00 00 00 0o oo

® Test at lower range (valid and invalid),

at higher range(valid and invalid), and at center

How do we choose

~ representativesrom
~equivalence classes? A
-~ greater number of errors
~occurs at the boundaries of
~an equivalence class rather

Therefore. o

look for values that are at the
boundaries — both of the input
domain as well as at the
output.

Example: ZIP Code

~ UNITED STATES
B POSTAL SERVICE

ZIP Code Lookup

B

Find a list of cities that are in a ZIP Code.

* Required Fields
*ZIP Code 12345

® |nput:
5-digit ZIP code

e Qutput:
list of cities

® What are
representative
values to test?

(from Pezze + Young, “Software Testing
and Analysis”, Chapter 10)

Valid ZIP Codes

~ UNITED STATES
B POSTAL SERVICE

ZIP Code Lookup

Find a list of cities that are in a ZIP Code.

* Required Fields
*ZIP Code 12345

I. with O cities

as output
(0 is boundary value)

2. with | city

as output

3. with many cities
as output

(from Pezze + Young, “Software Testing
and Analysis”, Chapter 10)

Invalid ZIP Codes

UNITED STATES,
B pOSTAL SERVICE. 4

. empty input

5. 1—4 characters

(4 is boundary value)

Search By Address » Search By City »] 6. 6 characters

Find a list of cities that are in a ZIP Code. (6 is boundary value)
* Required Fields .
e i T 7. very long input

8. no digits

9. non-character data

(from Pezze + Young, “Software Testing
and Analysis”, Chapter 10)

“Special” ZIP Codes

® How about a ZIP code that reads

12345‘; DROP TABLE orders; SELECT
* FROM zipcodes WHERE ‘zip’ =

® Or a ZIP code with 65536 characters...

® This is security testing

Gutjahr’s Hypothesis

Partition testing

is more effective
than random testing.

Generally, random inputs are easier to
generate, but less likely to cover parts
of the specification or the code.

See Gutjahr (1999) in IEEE
Transactions on Software Engineering
25, 5 (1999), 661-667

Representative Values

identify
Functional Independently
specification testable feature

identify ©

Representative
values

derive

derive

Test case

generate

Test case e
specifications

The main steps of a systematic
approach to functional program testing

(from Pezze + Young, Software Iestlng

Model-Based Testing

Independently
testable feature
® Have a formal model

that specifies software behavior

derive

® Models typically come as
® finite state machines and

® decision structures

The main steps of a systematic
approach to functional program testing
(from Pezze + Young, “Software Testing

NO

Maintenance
o o*‘: N by, e
9“%“ \eﬂ"es‘ ‘3‘5\; ”/s’p"ozb%/ return
W™ o5 o, 8y, oy,
P | P
- . %% 8F Mo,y
Walt for W Maintenance g §ge
L returning /1 \(no wrmrantyz.vj\ v g E gg . ‘g;:' :“:
W 2[%, <2§ .“
%, 22 2l EBT /
‘.v% § ' %\L/w“
) Repair N
Wait for | accept 4
. . . (maintenance |
Finite e |
%&’%
%
& component %
tate SR
(7] 0
. m‘?’“‘:;tm lack component (b) (regional ‘
achine TN e)

unable to repair
(not US or EU resident)

- ‘componen!
arives (b)
ot
00,%0
",

component 0y

{_headquarters))

As an example, consider these steps
modeling a product maintenance
process...

and Analysis”, Chapter 14)

Maintenance: The Maintenance function records the history of items undergoing
maintenance.

If the product is covered by warranty or maintenance contract, maintenance can
be requested either by calling the maintenance toll free number, or through the
Web site, or by bringing the item to a designated maintenance station.

If the maintenance is requested by phone or Web site and the customer is a US
or EU resident, the item is picked up at the customer site, otherwise, the customer
shall ship the item with an express courier.

If the maintenance contract number provided by the customer is not valid, the
item follows the procedure for items not covered by warranty.

If the product is not covered by warranty or maintenance contract, maintenance
can be requested only by bringing the item to a maintenance station. The mainte-
nance station informs the customer of the estimated costs for repair. Maintenance
starts only when the customer accepts the estimate. If the customer does not ac-
cept the estimate, the product is returned to the customer.

Small problems can be repaired directly at the maintenance station. If the main-
tenance station cannot solve the problem, the product is sent to the maintenance
regional headquarters (if in US or EU) or to the maintenance main headquarters
(otherwise).

If the maintenance regional headquarters cannot solve the problem, the product
is sent to the maintenance main headquarters.

Maintenance is suspended if some components are not available.
Once repaired, the product is returned to the customer.

...based on these (informal)
requirements

(from Pezze + Young, Software Iestlng

Coverage Criteria

® Path coverage: Tests cover every path
Not feasible in practice due to infinite number of paths

® State coverage: Every node is executed
A minimum testing criterion

® Transition coverage: Every edge is executed
Typically, a good coverage criterion to aim for

=
Maintenance |
(nc warranty)

Wait for }

pick up

waitfor |
retuming |

request at

Wait for

acceptance | Repaired

Transition
Coverage

unableWp repair
(not US or E

Wait for
component

(main
_headquarters)

With five test cases (one color each),
we can achieve transition coverage

(from Pezze + Young, “Software Testing

”
)

State-based Testing

® Protocols (e.g., network communication)
® GUIs (sequences of interactions)

® Objects (methods and states)

Finite state machines can be used to
model for a large variety of behaviors —
and thus serve as a base for testing.

setup Accnt

set up
acct

deposit
(initial)
Account states
working
balance acct)
credit withdraw
accntinfo
withdrawal
(final)

nonworking
acct

Here’s an example of a finite state
machine representing an Account class
going through a number of states.

T - .

each Account method once.

(From Pressman, “Software
Engineering — a practitioner’s

——approach”, Chapter t4) ———

Education account
Current purchase >
Threshold |
Current purchase >
Threshold 2
Special price <
scheduled price

Special price <
Tier | F T - -

Special price < _ _ _ _ _
Tier 2 F T

Tier |
discount

Tier 2
discount

Special No
price |discount

Special
price

Special
price

Special
Price

Out

A decision table describes under which
conditions a specific outcome comes to
be. This decision table, for instance,
depending on specific thresholds for
the amount purchased.

(from Pezze + Young, “Software Testing

——andAnalysis”, Chapter t4)

Condition Coverage

® Basic criterion: Test every column
“Don’t care” entries (—) can take arbitrary values

® Compound criterion: Test every combination

Requires 2" tests for n conditions and is unrealistic
® Modified condition decision criterion (MCDC):

like basic criterion, but additionally, modify

each T/F value at least once
Again, a good coverage criterion to aim for

MCDC Ceriterion
Education

Individual

Education account F F F F F
Current purchase >
Threshold | F T T B B
Current purchase >
Threshold 2 B F F T T
Special price < T _ _ _ _
scheduled price
Special price <
Tier | F T
Special price <
Tier 2 F T
Special No Special | Tier | | Special | Tier 2 | Special
price |discount| price [discount| price |discount| Price

We modify the individual values in
column 1 and 2 to generate four
additional test cases — but these are

the modified values in column 1 are
already tested in column 3.
(from Pezze + Young, “Software Testing

——andAnalysis”, Chapter t4) ——

Education account

Current purchase >
Threshold |

Current purchase >
Threshold 2

Special price <
scheduled price

Special price <
Tier | T

Special price <
Tier 2 F T
Out Edu Special No Special | Tier | | Special | Tier 2 | Special
. discount| price |discount| price |discount| price [discount| Price

This also applies to changing the other
values, so adding additional test cases
iS not necessary in this case.

and Analysis”, Chapter 14)

MCDC Criterion

Education Individual

Education account

Current purchase >
Threshold |

Current purchase >
Threshold 2

Special price <
scheduled price

Special price <
Tier | F T -

Special price < _ _ _ _ _ F
Tier 2

T
Special No Special | Tier | | Special | Tier 2 | Special
Out -) ! A ! A A
price |discount| price [discount| price |discount| Price

Education account

Current purchase >
Threshold |

Current purchase >
Threshold 2

Special price <
scheduled price

Special price < F
Tier |

T | =

Special price <

Tier 2 - - - - - F T
Special No Special | Tier | | Special | Tier 2 | Special
price |discount| price [discount| price |discount| Price

However, if we had not (yet) tested the
individual accounts, the MC/DC
criterion would have uncovered them.

113

and Analysis”, Chapter 14)

Weyuker’s Hypothesis

The adequacy of a coverage criterion

can only be intuitively defined.

Established by a number of studies
done by E. Weyuker at AT&T. “Any
explicit relationship between coverage

———and-error-detection-would-mean-that we
have a fixed distribution of errors over
all statements and paths, which is
clearly not the case”.

Mozifla Vulnerabilities
security o extensions)
as3d Twebsenvice | python [4pelic » e i
s Fsoap [pre fapco | [sre tes
Wegkix s
phicolms | mol | l
moda] gkl ;)
everts m. ,
oﬁ ind nd ymim ”DOM o’wow cwl it e s = |
1o futi s e — A w3 5 e
: fre Sasaline [.. R
mf phi phcs lde . . fam || [+
L] 3 Tocal news Jexten drecton an “ o
Baltins [ca || PR1k shes12 I e o Pasien o Jue -3k salite3 Compller TUthtle
’n\ it gar v e & = W i Coda Front | Caner
- certhg (TN i bl t Wbrares che L ;.
e mapl[lilel ea (string Jtvoelib| Lubidsp_—Lleia g I TP !
omd t L = [xpteal x Tpu [\l ¥ suncsdk *» r o 3
b T im gk sl [figs [pk ‘modules see | S5 sk 3 (23 N SRuntim | e |Pack 3 w—
criv bit ™18 & Sl T base [tests Wap . o Hoyee Wi
manages m tests sr | tools [sam o HARE Nbraries md FE N (G Toos C
o9 sre est 3 [s | cef build {compo TEE o) s
Toyo N T emclere] el edtor tootkst xole
generic wyle xul C AmATC L) 3 I"“‘" oy Iibe ditor " LCOmponents a9 [compone odt:
Base Ac) = o C R) ‘place Jhis]s | airbag | ‘searlboo lapp
3 leimg |hedont [libpron | 2o e v s ER -y]
) jmege | dec s wrc mac gtk2 I txtsy = appihel
T = 3
Tbles jmachm forms ‘ ibre Mg ibbL_ 1 ichar [locale |atl |~ calendar parser oot | accessi e
| e . 7 T v e el mindows s heas |3 Tsre L e I iibical [nmiparser [expa | trace- codes [re [
= " o harder] e we Tl e Tg W o (a0 Jowa b
. bjar X 3]0 e Tibscal [lib o 1 P o
o e wow @ on Pty] i o
e prin n e bu o otk B prorocl R dom gk & -
— e b ‘o9 9 5 wrc | hatp [fip) L . & [Sgat Jonch voun
i ™y i ol B arc 5. : 3L
we [amunn e l
roxcoerec iveco ‘ e

To decide where to put most effort in
testing, one can also examine the past

—i.e., where did most defects occurin

distribution of security vulnerabilities in
Firefox — the redder a rectangle, the
more vulnerabilities, and therefore a

likel idate for i . ing.
~ Thegroup of Andreas Zellerat

Saarland University researches how to
mine such information automatically
and how to predict future defects.

Evidence: several studies, including

Pareto’s Law

Approximately 80% of defects
come from 20% of modules

Zeller’s own evidence :-)

The main steps of a systematic

Model-Based Testing

identify
Independently

testable feature

Functional

specification

identify " derive

| Representative
values

derive

generate
Test case

Test case Sl
specifications

approach to functional program testing
(from Pezze + Young, “Software Testing

Deriving Test Case Specs

® |nput values enumerated in previous step
® Now: need to take care of combinations

® Typically, one

uses models and || BEAEEIENE Model
] values
representative

values to generate derive

test cases
Test case

specifications

The main steps of a systematic
approach to functional program testing
(from Pezze + Young, “Software Testing

Server

Combinatorial Testing

OS

Database

Many domains come as a

binati f individual
——inputs. - We therefore need to-

i bi ol
——explosion..—

Combinatorial Testing

® Eliminate invalid combinations
IIS only runs on Windows, for example

® Cover dll pairs of combinations
such as MySQL on Windows and Linux

® Combinations typically generated

automatically
and — hopefully — tested automatically, too

Pairwise testing means to
Pairwise Testing configurations

In practice, such testing needs
hundreds and hundreds of PCs in every
possible configuration — Microsoft, for

.] o buildi illed it
every hardware imaginable

Source: http://www.ci.newton.ma.us/
MIS/Network.htm

The main steps of a systematic
approach to functional program testing

Derivi ng Test Case SPeCS (from Pezze + Young, “Software Testing
Functional ! Independently
specification testable feature
values

derive

=i generate
Test case
Test case 3 :
specifications

Deriving Test Cases

® |mplement test cases in code

® Requires building scaffolding —
i.e., drivers and stubs

generate
Test case
Test case : :
specifications

The main steps of a systematic
approach to functional program testing

(from Pezze + Young, Software Iestlng

Unit Tests

® Directly access units (= classes, modules,
components...) at their programming
interfaces

® Encapsulate a set of tests as a single
syntactical unit

® Auvailable for all programming languages
(JUNIT for Java, CPPUNIT for C++, etc.)

Here’s an example for automated unit
tests — the well-known JUnit

Deriving Test Cases
W
testqble feature

Functional
specification

generate
Test case Tssts caste
specifications

The main steps of a systematic
approach to functional program testing
(from Pezze + Young, “Software Testing

Systematic Functional Testing

identify
‘ Independently

Functional

testable feature

specification

-
i

g

0 derive

identify

Representative

Model
values

Test case
Test case

specifications

The main steps of a systematic
approach to functional program testing

(from Pezze + Young, Software Iestlng

Systematic Partition Testing

e ket s) [Pt

ONo faiure

but dense in some
parts of the space.

Systematic Functional Testing

00 00 oojooiog
OO 00 00|00
Ie]

The space of possibie input vakses
(the hapack)

® Tests bay

MC/DC Criterion

® Test co
havor enplermet
as possif

|

Individual

Education

Transition
Coverage

