
Requirements Engineering
Software EngineeringSoftware Engineering

Andreas Zeller • Saarland University

Computer)science)students)like)this)

About) Photos) Likes) Map) Videos)

Post%

Computer)Science)Saarland)University)

Community)Page)about)Computer)Science)

2)

Find)us….)

www.facebook.com/SaarlandUniversityCS)

Informa,k%Universität%Saarland%6%Saarland%University%
Computer%Science%shared%a%link.)
16)minutes)ago)

Analysis)fällt)aus,)weil)im)Hörsaal)ein)

Specht)hämmert.)Das)

Summenzeichen)auf)Seite)42)im)

Skript)ist)eh)falsch.)Bin)dann)ab)22)

Uhr)auf)der)InformaPkerQParty)im)

Canossa.)Was)ist)euer)Plan?)))

The Software Life Cycle
Software Engineering

Andreas Zeller • Saarland University

Planning

Modelling

Construction

Deployment

CommunicationSoftware
Increment

Inception

Elaboration

ConstructionTransition

Production

Based on the Book by Pressman:
“Software Engineering – a
Practitioner’s Approach”, as well as
Wikipedia

Summary

Scrum

Scrum

• An iterative and incremental agile software
development method for managing software projects
and product or application development.

• Small working teams to maximize communication,
minimize overhead and maximize knowledge sharing.

• Adaptable to technical and business changes.

• Yields frequent software increments that can be
inspected.

Scrum = iterative and incremental
agile software development method
for managing software projects and
product or application development.
In rugby, a scrum refers to the
manner of restarting the game after
a minor infraction.

Scrum

• Development work and the people who perform it
are partitioned into clean, low coupling partitions.

• Constant testing and documentation is performed.

• Ability to declare project “done” whenever required.

Scrum

Demos: Demonstrate software increment to the
customer for evaluation.

Scrum
A prioritised list project requirements or
features that provide business value.

Backlog:

Sprints: Consists of work units that are required to
achieve a defined backlog into a predefined
time-box (usually 30 days).

Scrum Meetings: Short 15 mins. meetings held daily by the
scrum team. The Scrum master leads the
meeting.

Requirements Engineering
Software EngineeringSoftware Engineering

Andreas Zeller • Saarland University

Waterfall Model
(1968)

Communication
project initiation

requirements gathering

Planning
estimating
scheduling
tracking

Modeling
analysis
design

Construction
code
test

Deployment
delivery
support
feedback

Communication
Communication

project initiation
requirements gathering

Based on the Book by Pressman:
“Software Engineering – a
Practitioner’s Approach”, as well as
Wikipedia

Communication

How do we get there?

“Requirement”
Standard Glossary of Software Engineering Terminology

(ANSI/IEEE Standard 610.12-1990)

1. A condition or capability needed by a user
to solve a problem or achieve an objective.

2. A condition or capability that must be met
or possessed by a system or system
component to satisfy a contract, standard,
specification, or other formally imposed
documents.

3. A documented representation of a
condition or capability as in (1) or (2).

A Software Crisis
Denver
International
Airport (DIA)
Construction started
in 1989 • 53 sq miles
• Planned: 1.7 bio
USD costs, opening
1993

Glass’ Law

Requirement deficiencies
are the prime source

of project failures.

“Requirements Analysis”
Standard Glossary of Software Engineering Terminology

(ANSI/IEEE Standard 610.12-1990)

• The process of studying user needs to
arrive at a definition of system, hardware,
or software requirements.

• The process of studying and refining
system, hardware, or software
requirements.

Analysis vs Design

• Analysis = what the software should do

• Software functionality

• Software properties

• Design = how it should do it

This and other laws
are found in
Endres/Rombach:
Handbook of
Software and
Systems
Engineering.
Evidence: Denver
airport case study
and two more

Up-front RE

• “We must know [exactly] what to build
before we can build it”

• classical engineering viewpoint

• leads to waterfall process

• … but is this realistic for today’s systems?

In our Course

• Gather Requirements with few (≤ 3) iterations

• Gather UI Design with several (≥ 3) iterations

Topics in
Requirements Analysis

• Identify Stakeholders

• Elicit Requirements

• Identify Requirements

• Prototypes

Stakeholders

• Persons or organizations who…

• have a valid interest in the system

• are affected by the system

Stakeholders

• anyone who operates the system
(normal and maintenance operators)

• anyone who benefits from the system
(functional, political, financial and social beneficiaries)

• anyone involved in purchasing or procuring
the system

Stakeholders

• organizations which regulate aspects of the
system
(financial, safety, and other regulators)

• organizations responsible for systems which
interface with the system under design

• people or organizations opposed to the
system
(negative stakeholders)

Elicit Requirements

• Interviews are the best way to elicit
requirements

• Explore requirements systematically

• Sounds simple – but is the hardest part!

Why is Elicitation hard?

• Problems of scope
What is the boundary of the system? • What details are
actually required?

• Problems of understanding
Users do not know what they want • don’t know what is
needed • have a poor understanding of their computing
environment • don’t have a full understanding of their domain
• omit “obvious” stuff • are ambiguous

• Problems of volatility
Requirements change over time

Identify Requirements

• Types of requirements
Functional requirements • Nonfunctional requirements •
Constraints

• Contract-style requirements

• Use cases (user stories)

Types of Requirements

Functional
Requirements

• An action the product must take to be useful

The product shall allow to track
individual payments of coffee servings

Nonfunctional
Requirements

• A property or quality the product must have

The product shall be accessible in
multiple languages

(such as German and English)

Suppose we want
to set up a system
that tracks who has
had how much
coffee

Constraints

• Global requirements – on the project or the
product

The product shall be available before
March 1st.

Contract Style

Contract Style

Classify product features as

• Must-have features
“The product must conform to accessibility guidelines”

• May-have features
“The product may eventually be voice-controlled”

• Must-not-have features
“The product supports only one language”

Be explicit about must-not-have features!

From “Use cases:
requirements in
context” By Daryl
Kulak, Eamonn
Guiney

Contract Style

• Provide a contract between sponsors and
developers

• Can run to hundreds of pages

• Abstract all requirements, with little context

Contract Style

love it hate it

Use Case

• An actor is something that can act – a
person, a system, or an organization

• A scenario is a specific sequence of actions
and interactions between actors
(where at least one actor is a system)

• A use case is a collection of related
scenarios – successful and failing ones

• Useful for clients as well as for developers

Strengths
■ Provides a checklist of

requirements.
■ Provide a contract between

the project sponsor(s) and
developers.

■ For a large system can
provide a high level
description.

Weaknesses
■ Such lists can run to

hundreds of pages. It is
virtually impossible to read

Actors and Goals

• What are the boundaries of the system? Is
it the software, hardware and software, also
the user, or a whole organization?

• Who are the primary actors – i.e., the
stakeholders?

• What are the goals of these actors?

• Describe how the system fulfills these goals
(including all exceptions)

Example: SafeHome

Initial Scenario
Use case: display camera views
Actor: homeowner

If I’m at a remote location, I can use any PC with
appropriate browser software to log on to the SafeHome
Web site. I enter my user ID and two levels of
passwords and, once I’m validated, I have access to all
the functionality. To access a specific camera view, I
select “surveillance” and then “select a camera”.
Alternatively, I can look at thumbnail snapshots from all
cameras by selecting “all cameras”. Once I choose a
camera, I select “view”…

Refined Scenario
Use case: display camera views
Actor: homeowner

1. The homeowner logs on to the Web Site

2. The homeowner enters his/her user ID

3. The homeowner enters two passwords

4. The system displays all major function buttons

5. The homeowner selects “surveillance” button

6. The homeowner selects “Pick a camera”…

Alternative Interactions

• Can the actor take some other action at
this point?

• Is it possible that the actor encounters
some error condition? If so, which one?

• Is it possible that some other behavior is
encountered? If so, which one?

Exploring alternatives is the key
to successful requirements analysis!

Full Use Case

Full Use Case

Live Demo

What we expect
1. A set of requirements

contract style • ≤4 pages

2. A set of use cases
Pressman style • ~10–20 pages

3. A GUI design
covering all “must-have” and most “may-have” use cases

4. Architectural models and data models
covering all “must-have” and most “may-have” use cases

5. An executable prototype
covering all “must-have” use cases

1. A set of requirements
contract style • ≤4 pages

2. A set of use cases
Pressman style • ~10–20 pages

3. A GUI design
covering all “must-have” and most “may-have” use cases

4. Architectural models and data models
covering all “must-have” and most “may-have” use cases

5. An executable prototype
covering all “must-have” use cases

What we expect

Suppose we want
to set up a system
that tracks who has
had how much
coffee

1. A set of requirements
contract style • ≤4 pages

2. A set of use cases
Pressman style • ~10–20 pages

3. A GUI design
covering all “must-have” and most “may-have” use cases

4. Architectural models and data models
covering all “must-have” and most “may-have” use cases

5. An executable prototype
covering all “must-have” use cases

What we expect

1. A set of requirements
contract style • ≤4 pages

2. A set of use cases
Pressman style • ~10–20 pages

3. A GUI design
covering all “must-have” and most “may-have” use cases

4. Architectural models and data models
covering all “must-have” and most “may-have” use cases

5. An executable prototype
covering all “must-have” use cases

What we expect

1. A set of requirements
contract style • ≤4 pages

2. A set of use cases
Pressman style • ~10–20 pages

3. A GUI design
covering all “must-have” and most “may-have” use cases

4. Architectural models and data models
covering all “must-have” and most “may-have” use cases

5. An executable prototype
covering all “must-have” use cases

What we expect

1. A set of requirements
contract style • ≤4 pages

2. A set of use cases
Pressman style • ~10–20 pages

3. A GUI design
covering all “must-have” and most “may-have” use cases

4. Architectural models and data models
covering all “must-have” and most “may-have” use cases

5. An executable prototype
covering all “must-have” use cases

What we expect

What we expect

Summary

And then, of
course – it’s done!
☺

