
Software Engineering – Demo Exam

Name:

Student ID (Matrikelnummer):

Course of study (Studiengang): since

Duration: 120 minutes (2 hours)1

Exam material: Writing instruments (pens and pencils); one A4 page with handwritten notes
(please hand in with exam). The supervisors can hand out extra pages if needed.

Language: You can provide answers in English or German.

Sprache: Sie können Antworten auf Deutsch oder Englisch geben.

Assistance: Any questions? Ask the supervisors!

This exam has 15 pages. Please check that all pages are present.

In this exam, you can achieve a maximum of 75 points.
The exam is passed with 40 points or more.

Problem Max #points Achieved #points

1 Requirements and Design 35

2 Functional Testing 10

3 Structural Testing 20

4 Mixed Bag 10

Total 75

Points

Grade

Notes

1Note: this time applies to this demo exam. Real exams may cover more and take longer.

1

1 Requirements and Design [35 points]

The Software Engineering Chair at Saarland University has decided to set up a new coffee manage-
ment system. These are the (informal) requirements:

1. A coffee machine dispenses coffee at the press of a button.

2. There are different coffee flavors (espresso, cappuccino, or latte macchiato) with different
prices.

3. Every user has an account on the coffee management system.

4. Every user logs on to the system using some identification (a password or picture).

5. Users choose the coffees they had (or will have) and mark them as “dispensed”.

6. The price for the coffee is automatically deducted from their account.

7. A special user (the “administrator”) can recharge user’s accounts.

a) [4 points] Consider the scenario

1. A student gets a coffee.

Create a use case (in Pressman style) for the above scenario including alternatives and excep-
tions.

b) [10 points] Design a user interface for the above use case as a series of screen shot sketches—
again, including alternatives and exceptions.

c) [15 points] Develop a class model for the coffee management system:

1. Start with CRC (Class-Responsibility-Collaborators) descriptions

2. Provide a UML system model listing

– classes

– attributes

– essential methods, and

– relationships.

2

Name: Student ID (Matnr):

3

Name: Student ID (Matnr):

4

Name: Student ID (Matnr):

5

Name: Student ID (Matnr):

6

Name: Student ID (Matnr):

7

2 Functional Testing [10 points]

Consider the enclosed description of the SMTP protocol, the most frequently used protocol for
sending emails. The states are the states of the SMTP client; the transitions stand for messages
sent. (Note: each of authSend, data, etc. is an individual transition.)

a) Design a set of test cases (as sequences of messages) that achieve state coverage with as little
effort as possible.

b) Design a set of test cases (as sequences of messages) that achieve transition coverage with as
little effort as possible.

Use the following format for sequences of messages:

<init> openPort helo data quit

8

Name: Student ID (Matnr):

9

3 Structural Testing [20 points]

The cgi decode() function translates CGI encoding to plain ascii text:

/**
* @title cgi_decode

* @desc

* Translate a string from the CGI encoding to plain ascii text

* ’+’ becomes space, %xx becomes byte with hex value xx,

* other alphanumeric characters map to themselves

*
* returns 0 for success, positive for erroneous input

* 1 = bad hexadecimal digit

*/
int cgi_decode(char *encoded, char *decoded)
{

char *eptr = encoded;
char *dptr = decoded;
int ok = 0;

while (*eptr) /* loop to end of string (’\0’ character) */
{

char c;
c = *eptr;
if (c == ’+’) { /* ’+’ maps to blank */

*dptr = ’ ’;
} else if (c == ’%’) { /* ’%xx’ is hex for char xx */

int digit_high = Hex_Values[*(++eptr)];
int digit_low = Hex_Values[*(++eptr)];
if (digit_high == -1 || digit_low == -1)

ok = 1; /* Bad return code */
else

*dptr = 16 * digit_high + digit_low;
} else { /* All other characters map to themselves */

*dptr = *eptr;
}
++dptr; ++eptr;

}

dptr = ’\0’; / Null terminator for string */
return ok;

}

a) For each of the following coverage criteria, provide a set of inputs to cgi decode that
achieves 100% coverage:

1. [4 points] Statement coverage

2. [4 points] Branch coverage

3. [4 points] Branch and condition coverage

4. [4 points] MC/DC coverage

5. [4 points] Loop boundary coverage

Use the following format:

cgi_decode("foo")
cgi_decode("bar")

10

Name: Student ID (Matnr):

11

Name: Student ID (Matnr):

12

4 Mixed Bag [10 points]

Please evaluate the following statements and check “T” if they are true, or “F” if they are false.
Grading: +2 points for each correct, −2 points for each wrong answer.
Non-checked or ambiguous answers are graded with ±0 points.

1. T F Functional testing tests against the specification.

2. T F Structural testing attempts to find missing functionality.

3. T F The OO hierarchy principle defines team structure.

4. T F Weyuker’s hypothesis states that coverage criteria are only intuitively defined.

5. T F Code and Fix is an important debugging pattern.

13

Name: Student ID (Matnr):

14

Name: Student ID (Matnr):

15

