
Mutation Testing
Andreas Zeller

Tacoma Narrows Bridge
also known as “Galloping Gertie”

Learning from Mistakes

• Key idea: Learning from earlier mistakes to
prevent them from happening again

• Key technique: Simulate earlier mistakes and
see whether the resulting defects are found

• Known as fault-based testing or
mutation testing

1

The Tacoma Narrows Bridge is a pair of
mile-long (1600 meter) suspension
bridges with main spans of 2800 feet
(850 m), they carry Washington State
Route 16 across the Tacoma Narrows
of Puget Sound between Tacoma and
the Kitsap Peninsula, USA. The first
bridge, nicknamed Galloping Gertie,
was opened to traffic on July 1, 1940,
and became famous four months later
for a dramatic wind-induced structural
collapse that was caught on color
motion picture film.

2

3

A Mutant

Seeding Defects

• We seed defects into the program
generating a mutant – a mutation of the original program

• We run the test suite to see whether it
detects the defects (“kills the mutants”)

• A mutant not killed indicates a weakness
of the test suite
The mutant may also be 100% equivalent to the original program

Saarbrücken

®
Visual
Computing
Institute

A blue lobster (one in two million), an
example of a genuine mutant. Blue
American lobster (Homarus
americanus). Taken at the New
England Aquarium (Boston, MA,
December 2006. Copyright © 2006
Steven G. Johnson and donated to
Wikipedia under GFDL and CC-by-SA.

4

5

6

Saarbrücken

7

Hans-Peter is moving into this building
– actually, he built it, too. Heʼs worried
that everything might be okay. But heʼs
not that worried.

8

If youʼre building not a building, but a
piece of software, you have many more
reasons to be worried.

9

Testing

Coverage
Criteria

Statement testing

Branch testing

Basic
condition testing

MC/DC testing

Compound
condition testing

Path testing

Loop boundary
testing

Branch and
condition testingLCSAJ testing

Boundary
interior testing

Pr
ac

tic
al

 C
ri

te
ri

a
T

he
or

et
ic

al
 C

ri
te

ri
asubsumes

Itʼs not like this is the ultimate horror…

10

11

And this is the summary of structural
testing techniques.

12

Weyuker’s Hypothesis

The adequacy of a coverage criterion
can only be intuitively defined.

AspectJ Defect Density

A Bad Test

class TrueStoryTest {
 public int test_all(Object other)
 {
 executeForSomeTime();
 assertTrue(true);
 }
}

100% coverage – and never fails

Established by a number of studies
done by E. Weyuker at AT&T. “Any
explicit relationship between coverage
and error detection would mean that we
have a fixed distribution of errors over
all statements and paths, which is
clearly not the case”.

13

14

15

Mutation Testing
DeMillo, Lipton, Sayward 1978

Program

A Mutation

class Checker {
 public int compareTo(Object other)
 {
 return 0;
 }
}

1;

not found by AspectJ test suite

Mutation Operators

320 Fault-Based Testing

id operator description constraint

Operand Modifications

crp constant for constant replacement replace constant C1 with constant C2 C1 �= C2
scr scalar for constant replacement replace constant C with scalar variable X C �= X

acr array for constant replacement replace constant C with array reference A[I] C �= A[I]
scr struct for constant replacement replace constant C with struct field S C �= S

svr scalar variable replacement replace scalar variable X with a scalar variable Y X �= Y

csr constant for scalar variable replacement replace scalar variable X with a constant C X �= C

asr array for scalar variable replacement replace scalar variable X with an array reference A[I] X �= A[I]
ssr struct for scalar replacement replace scalar variable X with struct field S X �= S

vie scalar variable initialization elimination remove initialization of a scalar variable
car constant for array replacement replace array reference A[I] with constant C A[I] �= C

sar scalar for array replacement replace array reference A[I] with scalar variable X A[I] �= X

cnr comparable array replacement replace array reference with a comparable array reference
sar struct for array reference replacement replace array reference A[I] with a struct field S A[I] �= S

Expression Modifications

abs absolute value insertion replace e by abs(e) e < 0
aor arithmetic operator replacement replace arithmetic operator ψ with arithmetic operator φ e1ψe2 �= e1φe2
lcr logical connector replacement replace logical connector ψ with logical connector φ e1ψe2 �= e1φe2
ror relational operator replacement replace relational operator ψ with relational operator φ e1ψe2 �= e1φe2
uoi unary operator insertion insert unary operator
cpr constant for predicate replacement replace predicate with a constant value

Statement Modifications

sdl statement deletion delete a statement
sca switch case replacement replace the label of one case with another
ses end block shift move } one statement earlier and later

Figure 16.2: A sample set of mutation operators for the C language, with associated constraints to select test cases that distinguish
generated mutants from the original program.

Draft version produced August 1, 2006

Pezzé and Young, Software Testing and Analysis

16

17

from Pezze + Young, “Software Testing
and Analysis”, Chapter 16
If one ever needed a proof that testing
is a destructive process – here it is

18

Does it work?

• Generated mutants are similar to real faults
Andrews, Briand, Labiche, ICSE 2005

• Mutation testing is more powerful than
statement or branch coverage
Walsh, PhD thesis, State University of NY at Binghampton, 1985

• Mutation testing is superior to data flow
coverage criteria
Frankl, Weiss, Hu, Journal of Systems and Software, 1997

Bugs in AspectJ

Issues

19

20

21

Offut and Pan, “Automatically Detecting Equivalent Mutants and Infeasible Paths”, 1997

Mid

Efficiency

• Test suite must be
re-run for every
single mutation

• Expensive

Efficiency

How do we make
mutation testing

efficient?

22

23

24

Efficiency

• Manipulate byte code directly
rather than recompiling every single mutant

• Focus on few mutation operators
• replace numerical constant C by C±1, or 0
• negate branch condition
• replace arithmetic operator (+ by –, * by /, etc.)

• Use mutant schemata
individual mutants are guarded by run-time conditions

• Use coverage data
only run those tests that actually execute mutated code

A Mutation

class Checker {
 public int compareTo(Object other)
 {
 return 0;
 }
}

1;

not found by AspectJ test suite
because it is not executed

Efficiency

• 6.5 CPU hours for Jaxen
XPath engine with 12,500 LOC

• Mutation testing is feasible
in practice

25

– and since we know itʼs not executed,
we donʼt even apply this mutation.

26

27

Inspection

• A mutation may leave
program semantics
unchanged

• These equivalent
mutants must be
determined manually

• This task is tedious.

An Equivalent Mutant
public int compareTo(Object other) {
 if (!(other instanceof BcelAdvice))
 return 0;
 BcelAdvice o = (BcelAdvice)other;
	 	
 if (kind.getPrecedence() != o.kind.getPrecedence()) {
 if (kind.getPrecedence() > o.kind.getPrecedence())
 return +1;
 else
 return -1;
 }
 // More comparisons...
}

+2;

no impact on AspectJ

Inspection is Costly

• In a Jaxen sample, 40% of non-detected
mutants were equivalent
• Assessing a single mutation took us 30 minutes
• 1,933 mutations were not detected

• This ratio grows as the test suite improves
and approaches 100% with a perfect test suite

• Such false positives are just worthless
Using coverage, false positives at least imply dead code

1,000 hours, or
10 weeks for
a Microsoft
programmer.

28

To check this, we need to look at 50+
places!

29

30

Frankl’s Observation

We also observed that […]
mutation testing was costly.

 Even for these small subject programs,
 the human effort needed to check a large

number of mutants for equivalence
 was almost prohibitive.

P. G. Frankl, S. N. Weiss, and C. Hu.
All-uses versus mutation testing:

An experimental comparison of effectiveness.
 Journal of Systems and Software, 38:235–253, 1997.

Inspection

How do we determine
equivalent mutants?

Aiming for Impact

31

32

33

Measuring Impact

• How do we characterize “impact” on
program execution?

• Idea: Look for changes in
pre- and postconditions

• Use dynamic invariants to learn these

Dynamic Invariants
pioneered by Mike Ernst’s Daikon

Run

Run

RunRunRunRun
✔ ✘

At f(), x is odd At f(), x = 2

Invariant Property

public int ex1511(int[] b, int n)
{
 int s = 0;
 int i = 0;
 while (i != n) {
 s = s + b[i];
 i = i + 1;
 }
 return s;
}

Postcondition
b[] = orig(b[])
return == sum(b)

Precondition
n == size(b[])
b != null
n <= 13
n >= 7

Example

• Run with 100 randomly generated arrays
of length 7–13

34

35

36

Obtaining Invariants

RunRunRunRunRun

Trace

InvariantInvariantInvariantInvariant

✔

get trace

filter invariants

report resultsPostcondition
b[] = orig(b[])
return == sum(b)

Impact on Invariants
public LazyMethodGen getLazyMethodGen(String name,
 String signature, boolean allowMissing) {
 for (Iterator i = methodGens.iterator(); i.hasNext();) {
 LazyMethodGen gen = (LazyMethodGen) i.next();
 if (gen.getName().equals(name) &&
 gen.getSignature().equals(signature))
 return gen;
 }
 if (!allowMissing)
 throw new BCException("Class " + this.getName() +
 " does not have a method " + name +
 " with signature " + signature);
 return null;
}

!

Impact on Invariants
getLazyMethodGen()
mutated method

UnitDeclaration.resolve()
post: target field is now zero

DelegatingOutputStream.write()
pre: upper bound of argument changes

WeaverAdapter.addingTypeMunger()
pre: target field is now non-zero

ReferenceContext.resolve()
post: target field is now non-zero

37

38

39

Impact on Invariants
public LazyMethodGen getLazyMethodGen(String name,
 String signature, boolean allowMissing) {
 for (Iterator i = methodGens.iterator(); i.hasNext();) {
 LazyMethodGen gen = (LazyMethodGen) i.next();
 if (gen.getName().equals(name) &&
 gen.getSignature().equals(signature))
 return gen;
 }
 if (!allowMissing)
 throw new BCException("Class " + this.getName() +
 " does not have a method " + name +
 " with signature " + signature);
 return null;
}

!

impacts 39 invariants in 18 methods
but undetected by AspectJ unit tests

Javalanche

• Mutation Testing Framework for Java
12 man-months of implementation effort

• Efficient Mutation Testing
Manipulate byte code directly • Focus on few mutation
operators • Use mutant schemata • Use coverage data

• Ranks Mutations by Impact
Checks impact on dynamic invariants • Uses efficient
invariant learner and checker

Mutation Testing
with Javalanche

Program

40

41

42

Mutation Testing
with Javalanche

Program

1. Learn invariants from test suite

2. Insert invariant checkers into
code

3. Detect impact of mutations

4. Select mutations with the most
invariants violated
(= the highest impact)

But does it work?

Evaluation

1. Are mutations with impact
less likely to be equivalent?

2. Are mutations with impact
more likely to be detected?

3. Are mutants with the highest impact
most likely to be detected?

43

44

45

Evaluation Subjects
Name Lines of Code #Tests

AspectJ Core
AOP extension to Java

94.902 321

Barbecue
Bar Code Reader

4.837 137

Commons
Helper Utilities

18.782 1.590

Jaxen
XPath Engine

12.449 680

Joda-Time
Date and Time Library

25.861 3.447

JTopas
Parser tools

2.031 128

XStream
XML Object Serialization

14.480 838

Mutations

Name #Mutations %detected

AspectJ Core 47.146 53

Barbecue 17.178 67

Commons 15.125 83

Jaxen 6.712 61

Joda-Time 13.859 79

JTopas 1.533 72

XStream 5.186 92

Performance

• Mutation testing is feasible in practice
14 CPU hours for AspectJ, 6 CPU hours for XStream

• Learning invariants is very expensive
22 CPU hours for AspectJ – one-time effort

• Creating checkers is somewhat expensive
10 CPU hours for AspectJ – one-time effort

46

% detected means covered mutations

47

48

Results

Are mutations with impact
less likely to be equivalent?

• Randomly selected non-detected Jaxen
mutants – 12 violating, 12 non-violating

• Manual inspection: Are mutations equivalent?

• Mutation was proven non-equivalent
iff we could create a detecting test case

• Assessment took 30 minutes per mutation

Non-Equivalent
Equivalent

Are mutations with impact
less likely to be equivalent?

Equivalent
2

Non-Equivalent
10

Equivalent
8

Non-Equivalent
4

Violating mutants Non-violating mutants
Difference is statistically significant according to Fisher test

Mutations and tests made public to counter researcher bias

In our sample, mutants with impact
were significantly less likely to be

equivalent.

49

50

51

Are mutations with impact
more likely to be detected?

1. Mutations detected by the test suite
are non-equivalent.

2. The more of my mutations are detected,
the fewer equivalent mutations I have
generated.

Are mutations with impact
more likely to be detected?

detected by test ⇒ non-equivalent

has impact ⇒ detected by test

has impact ⇒ non-equivalent

?

!

Are mutations with impact
more likely to be detected?

0

25

50

75

100

AspectJ Barbecue Commons Jaxen Joda-Time JTopas XStream

Non-violating mutants detected Violating mutants detected

Mutations with impact are more likely
to be detected by actual tests – and

thus less likely to be equivalent.

All differences are statistically significant according to testχ2

52

53

54

Are mutations with the highest
impact most likely to be detected?

0

25

50

75

100

AspectJ Barbecue Commons Jaxen Joda-Time JTopas XStream

Non-violating mutants detected Top 5% violating mutants detected

Mutations with the highest impact are most
likely to be detected by actual tests – and

thus the least likely to be equivalent.

All differences are statistically significant according to testχ2

Detection Rates

Barbecue
20 40 60 80 100

0
20

40
60

80
10

0

Percentage of mutants included

Pe
rc

en
ta

ge
 o

f m
ut

an
ts

 k
ill

ed

Commons
20 40 60 80 100

0
20

40
60

80
10

0

Percentage of mutants included

Pe
rc

en
ta

ge
 o

f m
ut

an
ts

 k
ill

ed

Jaxen
20 40 60 80 100

0
20

40
60

80
10

0

Percentage of mutants included

Pe
rc

en
ta

ge
 o

f m
ut

an
ts

 k
ill

ed

Joda-Time
20 40 60 80 100

0
20

40
60

80
10

0

Percentage of mutants included

Pe
rc

en
ta

ge
 o

f m
ut

an
ts

 k
ill

ed

JTopas
20 40 60 80 100

0
20

40
60

80
10

0

Percentage of mutants included

Pe
rc

en
ta

ge
 o

f m
ut

an
ts

 k
ill

ed

XStream
20 40 60 80 100

0
20

40
60

80
10

0

Percentage of mutants included

Pe
rc

en
ta

ge
 o

f m
ut

an
ts

 k
ill

ed

AspectJ
20 40 60 80 100

0
20

40
60

80
10

0

Percentage of mutants included

Pe
rc

en
ta

ge
 o

f m
ut

an
ts

 k
ill

ed

Top n% mutants

D
et

ec
tio

n
ra

te

0%
100%

100%

0%

Evaluation

1. Are mutations with impact
less likely to be equivalent?

2. Are mutations with impact
more likely to be detected?

3. Are mutants with the highest impact
most likely to be detected?

✔

✔

✔

55

56

57

Efficiency Inspection

Mid
16 LOC

AspectJ
~94,000 LOC

Future Work

• How effective is mutation testing?
on a large scale – compared to traditional coverage

• Alternative impact measures
Coverage • Program spectra • Method sequences

• Adaptive mutation testing
Evolve mutations to have the fittest survive

• Automatic fixes
Choose fixes (mutations) with minimal impact

58

Factor 6,666 – plus full automation due
to lack of inspection

59

60

Estimating #Defects

• How many defects remain in our software?

• With mutation testing, we can make an
estimate of remaining defects

Fish Tag

• We catch 1,000 fish and tag them

61

Letʼs consider a lake. How many fish
are in that lake?

62

Simple. We catch a number of fish
(say, 1000), tag them, and throw them
back again.

63

Counting Tags

50

300

Estimate

1,000

untagged fish population
=

50

300

Letʼs assume over the next week, we
ask fishermen to count the number of
tags. We find 300 untagged and 50
tagged fish.

64

…and we can thus estimate that there
are about 6,000 remaining untagged
fish in the lake.

65

Thatʼs how we can tell how many fish
there are.

66

Program

A Mutant

• We seed 1,000 mutations into the program

Counting Mutants

50

300

Now letʼs assume our lake is not a lake,
but our program.

67

Simple. We catch a number of fish
(say, 1000), tag them, and throw them
back again.

68

Our test suite finds 50 mutants, and
300 natural faults.

69

Estimate

1,000

remaining defects
=

50

300

Conclusion

Assumptions

• Mutations are representatives for earlier
mistakes
so-called competent programmer hypothesis

• Failures come to be because of a
combination of minor mistakes
but there may be logical errors that cross-cut the program

• These hypotheses are not proven

…and we can again estimate that there
are about 6,000 remaining defects in
our program. (A test suite finding only
50 out of 1,000 mutations is a real bad
sign.)

70

71

72

http://www.st.cs.uni-saarland.de/mutation/

73

