
Testing Strategies
Software Engineering

Andreas Zeller • Saarland University

Qua
lity

From Pressman, “Software Engineering
– a practitionerʼs approach”, Chapter 13
and Pezze + Young, “Software Testing
and Analysis”, Chapters 1–4

1

2

Perspective of
quality differs from
one person to
another. Also, it
differs in the
customers’ and
developers’
perspectives.

3

Testing

• Testing: a procedure
intended to establish the
quality, performance, or
reliability of something,
esp. before it is taken
into widespread use.

Software Testing

• Software testing: the
process of exercising a
program with the
specific intent of finding
errors prior to delivery
to the end user.

Waterfall Model
(1968)

Communication
project initiation

requirements gathering

Planning
estimating
scheduling
tracking

Modeling
analysis
design

Construction
code
test

Deployment
delivery
support
feedback

From Oxford dictionary

4

From Pressman, “Software Engineering
– a practitionerʼs approach”, Chapter 13

5

Letʼs recall the Waterfall model.

6

Waterfall Model
(1968)

Communication
project initiation

requirements gathering

Planning
estimating
scheduling
tracking

Modeling
analysis
design

Construction
code
test

Deployment
delivery
support
feedback

☺
We built it!

☹
Shall we deploy it?

In the second half of the course, we
focus on construction and deployment
– essentially, all the activities that take
place after the code has been written.

7

So, we simply assume our code is done
–

8

– but is it ready for release?

9

We built it!

Waterfall Model
(1968)

Construction
code
test

Itʼs not like this is the ultimate horror…

10

…but still, this question causes fear,
uncertainty and doubt in managers

11

Therefore, we focus on the
“construction” stage – and more
specifically, on the “test” in here.

12

Waterfall Model
(1968)

Construction
code
test

Deployment
delivery
support
feedback

V&V

• Verification:
Ensuring that software
correctly implements a
specific function

• Validation:
Ensuring that software has
been built according to
customer requirements

Are we building the
product right?

Are we building the
right product?

Validation and Verification

Actual
Requirements

SW
Specs

System

Validation Verification
Includes usability

testing, user feedback
Includes testing,

inspections, static
analysis, proofs

and the question is: how to make your
code ready for deployment.

13

These activities are summarized as
V&V – verification and validation
See Pressman, ch. 13: “Testing
Strategies”

14

(from Pezze + Young,
“Software Testing and
Analysis”)

15

Validation

• “if a user presses a
request button at
floor i, an available
elevator must arrive
at floor i soon”

Verification

• “if a user presses a
request button at
floor i, an available
elevator must arrive
at floor i within
30 seconds”

Basic Questions

• When do V&V start? When are they done?

• Which techniques should be applied?

• How do we know a product is ready?

• How can we control the quality of
successive releases?

• How can we improve development?

Verification or validation depends on
the spec – this one is unverifiable, but
validatable
(from Pezze + Young, “Software Testing
and Analysis”)

16

this one is verifiable.

17

When do V&V start? When are they
done?

18

Waterfall Model
(1968)

Code

Test

First Code, then Test

• Developers on software should do
no testing at all

• Software should be “tossed over a wall” to
strangers who will test it mercilessly

• Testers should get involved with the project
only when testing is about to beginWRONG

Early descriptions of the waterfall
model separated coding and testing
into two different activities

19

What do these facts have in common?
Theyʼre all wrong!

20

Verification and validation activities
occur all over the software process
(from Pezze + Young, “Software Testing
and Analysis”)

21

V&V Activities

validation

verificationModule Test

Unit Tests

• Uncover errors at module boundaries

• Typically written by programmer herself

• Frequently fully automatic (→ regression)

Stubs and Drivers

• A driver exercises a
module’s functions

• A stub simulates not-yet-
ready modules

• Frequently realized as
mock objects

Driver

Stub Stub

This is called the “V”-model of “V&V”
activities (because of its shape)
(from Pezze + Young, “Software Testing
and Analysis”)

22

This is called the “V”-model of “V&V”
activities (because of its shape)
(from Pezze + Young, “Software Testing
and Analysis”)

23

From Pressman, “Software Engineering
– a practitionerʼs approach”, Chapter 13

24

Integration Tests

• General idea:
Constructing software while conducting tests

• Options: Big bang vs. incremental construction

Big Bang

• All components are combined in advance

• The entire program is tested as a whole

• Chaos results

• For every failure, the entire program must
be taken into account

Stub Stub Stub

A

Stub

Stub

Top-Down Integration

D

• Top module is
tested with stubs
(and then used as driver)

• Stubs are replaced
one at a time
(“depth first”)

• As new modules
are integrated,
tests are re-run

Stub

Stub

• Allows for early demonstration of capability

C

B

This is called the “V”-model of “V&V”
activities (because of its shape)
(from Pezze + Young, “Software Testing
and Analysis”)

25

From Pressman, “Software Engineering
– a practitionerʼs approach”, Chapter 13

26

From Pressman, “Software Engineering
– a practitionerʼs approach”, Chapter 13

27

Bottom-Up Integration

C

• Bottom modules
implemented first
and combined
into clusters

• Drivers are
replaced one at a
time

• Removes the need for complex stubs

Driver

D E

Driver

F

Sandwich Integration

• Combines
bottom-up and
top-down
integration

• Top modules
tested with stubs,
bottom modules
with drivers

• Combines the best of the two approaches

C

D E

Driver

F

A

Stub StubStubB

TETO Principle

Test early, test often

From Pressman, “Software Engineering
– a practitionerʼs approach”, Chapter 13

28

From Pressman, “Software Engineering
– a practitionerʼs approach”, Chapter 13

29

Evidence: pragmatic – there is no way
a test can ever cover all possible paths
through a program

30

Who Tests the Software?

Developer
• understands the system

• but will test gently

• driven by delivery

Independent Tester
• must learn about system

• will attempt to break it

• driven by quality

The Ideal Tester

The Developer

From Pressman, “Software Engineering
– a practitionerʼs approach”, Chapter 13

31

A good tester should be creative and
destructive – even sadistic in places.
– Gerald Weinberg, “The psychology of
computer programming”

32

The conflict between developers and
testers is usually overstated, though.

33

The Developers

Weinberg’s Law

A developer is unsuited
to test his or her code.

Acceptance Testing

• Acceptance testing checks whether the
contractual requirements are met

• Typically incremental
(alpha test at production site, beta test at user’s site)

• Work is over when acceptance testing is done

Letʼs simply say that developers should
respect testers – and vice versa.

34

Theory: As humans want to be honest
with themselves, developers are
blindfolded with respect to their own
mistakes.
Evidence: “seen again and again in
every project” (Endres/Rombach)
From Gerald Weinberg, “The
psychology of computer programming”

35

36

Special System Tests
• Recovery testing

forces the software to fail in a variety of ways and verifies that
recovery is properly performed

• Security testing
verifies that protection mechanisms built into a system will, in
fact, protect it from improper penetration

• Stress testing
executes a system in a manner that demands resources in
abnormal quantity, frequency, or volume

• Performance testing
test the run-time performance of software within the context of
an integrated system

V&V Activities

validation

verification

Basic Questions

• When do V&V start? When are they done?

• Which techniques should be applied?

• How do we know a product is ready?

• How can we control the quality of
successive releases?

• How can we improve development?

37

This is called the “V”-model of “V&V”
activities (because of its shape)
(from Pezze + Young, “Software Testing
and Analysis”)

38

Which techniques should be applied?

39

Testing
(dynamic verification)

Inspections
(static verification)

Program
Analysis

(static or dynamic)

Proofs
(static verification)

Why V&V is hard
(on software)

• Many different quality requirements

• Evolving (and deteriorating) structure

• Inherent non-linearity

• Uneven distribution of faults

Compare

can load 1,000 kg can sort 256 elements

There is a multitude of activities
(dynamic ones execute the software,
static ones donʼt) – and weʼd like them
to end when the software is 100%
correct.
Unfortunately, none of them is perfect.

40

41

If an elevator can safely carry a load of
1000 kg, it can also safely carry any
smaller load;
If a procedure correctly sorts a set of
256 elements, it may fail on a set of
255 or 53 or 12 elements, as well as
on 257 or 1023.
(from Pezze + Young, “Software Testing
and Analysis”)

42

The Curse of Testing

 ∞ possible runs

a
te

st
 r

un

a
te

st
 r

un

a
te

st
 r

un

a
te

st
 r

un

optimistic
inaccuracy

Dijkstra’s Law

Testing can show the presence
but not the absence of errors

Static checking
for match is
necessarily
inaccurate

if (....) {
 ...

 lock(S);
}
...

if (...) {
 ...

 unlock(S);
}

Static Analysis

pessimistic
inaccuracy

We cannot tell
whether this
condition ever holds
(halting problem)

Every test can only cover a single run

43

Evidence: pragmatic – there is no way
a test can ever cover all possible paths
through a program

44

The halting problem prevents
us from matching lock(S)/
unlock(S) – so our technique
may be overly pessimistic.
(from Pezze + Young,
“Software Testing and
Analysis”)

45

Pessimistic Inaccuracy
static void questionable() {
 int k;

 for (int i = 0; i < 10; i++)
 if (someCondition(i))
 k = 0;
 else
 k += 1;

 System.out.println(k);
}

• Is k being used uninitialized in this method?

You can’t always get
what you want

• Correctness properties are undecidable
the halting problem can be embedded in almost every property
of interest

Decision
Procedure

Property

Program

Pass/Fail

ever

if (....) {
 ...

 lock(S);
}
...

if (...) {
 ...

 unlock(S);
}

Simplified Properties

synchronized(S) {
 ...
 ...
}

Java prescribes a more
restrictive, but statically

checkable construct.

original problem simplified property

Static checking
for match is
necessarily
inaccurate

The Java compiler cannot tell whether
someCondition() ever holds, so it
refuses the program (pessimistically) –
even if someCondition(i) always returns
true.
(from Pezze + Young, “Software Testing
and Analysis”)

46

(from Pezze + Young, “Software Testing
and Analysis”)

47

An alternative is to go for a
higher abstraction level
(from Pezze + Young,
“Software Testing and
Analysis”)

48

Simplified Properties

Static Verification
a proof

ab
st

ra
ct

io
n

 ∞ possible runs

non-simplified
properties

We built it!

If you can turn your program
into a finite state machine, for
instance, you can prove all
sorts of properties
(from Pezze + Young,
“Software Testing and
Analysis”)

49

A proof can cover all runs – but only at
a higher abstraction level

50

In some way, fear, uncertainty and
doubt will thus prevail…

51

What to do

 ∞ possible runs

a
te

st
 r

un

a
te

st
 r

un

a
te

st
 r

un

a
te

st
 r

un

ab
st

ra
ct

io
n

a proof

a proof

unverified
properties

Hetzel-Myers Law

A combination
of different V&V methods

outperforms
any single method alone.

Trade-Offs
• We can be

inaccurate
(optimistic or
pessimistic)…

• or we can
simplify
properties…

• but not all!

dynamic

verificatio
n

staticverification

…but we can of course attempt to
cover as many runs – and abstractions
– as possible!

52

Evidence: Various studies showed that
different methods have strength in
different application areas – in our
picture, they would cover different parts
of the program, different abstractions,
different “aspects”.

53

and we have a wide range of
techniques at our disposal
(from Pezze + Young, “Software Testing
and Analysis”)

54

Basic Questions

• When do V&V start? When are they done?

• Which techniques should be applied?

• How do we know a product is ready?

• How can we control the quality of
successive releases?

• How can we improve development?

Readiness in Practice

Let the customer test it :-)

Readiness in Practice

We’re out of time.

How do we know a product is ready?

55

56

57

Readiness in Practice

Relative to a theoretically
sound and experimentally

validated statistical model, we have
done sufficient testing to say with

95% confidence that the probability
of 1,000 CPU hours of failure-free

operation is ≥ 0.995.

Basic Questions

• When do V&V start? When are they done?

• Which techniques should be applied?

• How do we know a product is ready?

• How can we control the quality of
successive releases?

• How can we improve development?

Regression Tests

This is the type of argument we aim for.
From Pressman, “Software Engineering
– a practitionerʼs approach”, Chapter 13

58

How can we control the quality of
successive releases?

59

The idea is to have automated tests
(here: JUnit) that run all day.

60

Basic Questions

• When do V&V start? When are they done?

• Which techniques should be applied?

• How do we know a product is ready?

• How can we control the quality of
successive releases?

• How can we improve development?

Collecting Data

Pareto’s Law

Approximately 80% of defects
come from 20% of modules

How can we improve development?

61

To improve development, one needs to
capture data from projects and
aggregate it to improve development.
(The data shown here shows the
occurrence of vulnerabilities in Mozilla
Firefox.)

62

Evidence: several studies, including
Zellerʼs own evidence :-)

63

Basic Questions

• When do V&V start? When are they done?

• Which techniques should be applied?

• How do we know a product is ready?

• How can we control the quality of
successive releases?

• How can we improve development?

Strategic Issues

• Specify requirements in a quantifiable
manner

• State testing objectives explicitly

• Understand the users of the software and
develop a profile for each user category

• Develop a testing plan that emphasizes
“rapid cycle testing”

Strategic Issues

• Build “robust” software that is designed to
test itself

• Use effective formal technical reviews as a
filter prior to testing

• Conduct formal technical reviews to assess
the test strategy and test cases themselves

• Develop a continuous improvement
approach for the testing process

64

From Pressman, “Software Engineering
– a practitionerʼs approach”, Chapter 13

65

From Pressman, “Software Engineering
– a practitionerʼs approach”, Chapter 13

66

Design for Testing

• OO design principles also improve testing
Encapsulation leads to good unit tests

• Provide diagnostic methods
Primarly used for debugging, but may also be useful as
regular methods

• Assertions are great helpers for testing
Test cases may be derived automatically

Summary

67

68

