v S

Yesting Strateg

M Software Enginéering
ifeas Zeller « Saarland UniVersity

W

From Pressman, “Software Engineering
— a practitioner’s approach”, Chapter 13
and Pezze + Young, “Software Testing

Perspective of

quality differs from
one personto

another. Also, it

® Testing: a procedure
intended to establish the
quality, performance, or
reliability of something,
esp. before it is taken
into widespread use.

WILL

BLEND?

From Oxford dictionary

Software Testing

® Software testing: the
process of exercising a
program with the
specific intent of finding
errors prior to delivery
to the end user.

From Pressman, “Software Engineering
— a practitioner’s approach”, Chapter 13

Waterfall Model

(1968)

Communication
project initiation
requirements
Planning
estimating
scheduling
tracking
Modeling
analysis
design
Construction

code
test

Deployment
delivery
support
feedback

Let’s recall the Waterfall model.

Waterfall Model

(1968)

Construction

code
test

Deployment
delivery
support
feedback

In the second half of the course, we
focus on construction and deployment

— essentially, all the activities that take

We built it!

So, we simply assume our code is done

Shall we deploy it?

— but is it ready for release?

It’s not like this is the ultimate horror...

...but still, this question causes fear,
uncertainty and doubt in managers

Waterfall Model

(1968)

Construction

code
test

12

Therefore, we focus on the
“construction” stage — and more

specifically, on the “test” in here.

Waterfall Model

(1968)

Construction

code

test

Deployment

delivery
support
feedback

and the question is: how to make your
code ready for deployment.

13

V&V

Are we building the
product right?

® Verification:
Ensuring that software
correctly implements a
specific function

® Validation:
Ensuring that software has
been built according to
customer requirements

Are we building the
right product?

These activities are summarized as
V&V — verification and validation
See Pressman, ch. 13: “Testing

Strateqios”

14

Validation and Verification

Sw

Actual Specs
|:> System

Requirements

Validation Verification

Includes testing,
inspections, static
analysis, proofs

Includes usability
testing, user feedback

(from Pezze + Young,
a IC] all !sis”)

15

Verification or validation depends on
the spec — this one is unverifiable, but

val | datio N validatable

and Analysis”)

® “if a user presses a

request button at

floor i, an available

elevator must arrive

at floor i soon”

16

this one is verifiable.

Verification

® “if a user presses a

request button at
floor i, an available

elevator must arrive

at floor i within

30 seconds”

17

When do V&V start? When are they
done?

Basic Questions

When do V&V start? When are they done!?

Which techniques should be applied?

How do we know a product is ready?

How can we control the quality of

successive releases?

How can we improve development?

18

Waterfall Model

(1968)

19

Early descriptions of the waterfall
model separated coding and testing

into two different activities

First Code, the T(t*’
Developers on s m
no testing at all &
Soft d s
sulfng test it mercilessly

over a wall” to

rss get involved with the project
hen®esting is about to begin

20

What do these facts have in common?
They’re all wrong!

Detailed Unit

Integration

Ekcitation _ Specification _Design Design & Delivery _Maintenance
5 [[Identify quaiites |
é Plan acceptance test
g 7 [Ptan unit & integration test |
a ') Monitor the A8Tprocess
5 Analyze architectural design
§‘§ Inspect architectural design |
N [Code inspecion |
B L Generate system test
i
m;gn ;cz;!?oldmg
.

Execute unit test

Analyze coverage “

[Execute rogression test]

Collect data on faulls

[Analyze faults and improve the pvocess]

Execute Test Cases and Validate
Software

Improve
Process

21

Verification and validation activities
occur all over the software process
(from Pezze + Young, “Software Testing

V&YV Activities

Actual Needs and .
Constraints < User Acceptance (alpha, beta test) Ez'(':‘g'::
System { System Test System
Specifications N Integration
Analysis /
\’T Review
N Subsystem Integration Test Subsystem
Design/Specs
/T Analysis /
e L aicaion |
9 Corr?nt;tr/wnt Unit/
S;ecs Module Test | Components

N
User review of external behavior as itis

This is called the “V’-model of “V&V”
activities (because of its shape)
(from Pezze + Young, “Software Testing

determined or becomes visible 22
This is called the “V”-model of “V&V”
activities (because of its shape)
1 from Pezze + Young, “Software Testin
Unit Tests o ozze 3 Young :
® Uncover errors at module boundaries
® Typically written by programmer herself
® Frequently fully automatic (— regression)
Unit/ 5
Cogn;)eocr;ent < Module Test Coml:)orr{ems
23

Stubs and Drivers

Driver ® A driver exercises a

module’s functions

|

Unit _ ® A stub simulates not-yet-
Unit/
Cosm;J:Cr;ent Module Test | Components ready modules

AN

Stub

® Frequently realized as
mock objects

Stub

From Pressman, “Software Engineering
— a practitioner’s approach”, Chapter 13

24

This is called the “V”-model of “V&V”
activities (because of its shape)

Integ r’ation Te StS (from Pezze + Young, “Software Testing

® General idea:
Constructing software while conducting tests

e Options: Big bang vs. incremental construction

Subsystem Integration Test Subsystem
Design/Specs|

25

From Pressman, “Software Engineering
— a practitioner’s approach”, Chapter 13

Big Bang

-

AII components are comblned m advance

The entire progra i asted asa whole.

Chaos results

For every fallure the'entlre program must
~ be taken |nto account. .

From Pressman, “Software Engineering
— a practitioner’s approach”, Chapter 13

Top-Down Integration

® Top module is
tested with stubs
(and then used as driver)

\ ® Stubs are replaced
one at a time

e | [sw | (“depth first”)

® As new modules
are integrated,

tests are re-run

® Allows for early demonstration of capability

27

Bottom-Up Integration

e
N

® Bottom modules

implemented first
and combined
into clusters

Drivers are
replaced one at a
time

® Removes the need for complex stubs

28

From Pressman, “Software Engineering
— a practitioner’s approach”, Chapter 13

Sandwich Integration

Stub

=1

e Combines

bottom-up and
top-down
integration

Top modules

tested with stubs,

bottom modules
with drivers

® Combines the best of the two approaches

29

From Pressman, “Software Engineering
— a practitioner’s approach”, Chapter 13

TETO Principle

Test early, test often

30

Evidence: pragmatic — there is no way
a test can ever cover all possible paths
through a program

Who Tests the Software!?

Developer Independent Tester

® understands the system ® must learn about system
® but will test gently e will attempt to break it
® driven by delivery e driven by quality

From Pressman, “Software Engineering
— a practitioner’s approach”, Chapter 13

31

The ldeal Tester

A good tester should be creative and
destructive — even sadistic in places.
— Gerald Weinberg, “The psychology of

32

The conflict between developers and
testers is usually overstated, though.

33

The Developers

34

Let’s simply say that developers should
respect testers — and vice versa.

Weinberg’s Law

A developer is unsuited
to test his or her code.

35

Theory: As humans want to be honest
with themselves, developers are
blindfolded with respect to their own
mistakess———
Evidence: “seen again and again in
every project” (Endres/Rombach)

From Gerald Weinberg, “The

psychology of computer programming™ -

Acceptance Testing

Actual Needs and :
Delivered

User Acceptance (alpha, beta test
< B (alp) Package

Constraints

® Acceptance testing checks whether the
contractual requirements are met

® Typically incremental
(alpha test at production site, beta test at user’s site)

® Work is over when acceptance testing is done

36

Special System Tests

Recovery testing
forces the software to fail in a variety of ways and verifies that
recovery is properly performed

Security testing
verifies that protection mechanisms built into a system will, in
fact, protect it from improper penetration

Stress testing

executes a system in a manner that demands resources in
abnormal quantity, frequency, or volume

Performance testing
test the run-time performance of software within the context of
an integrated system

37

Actual Needs and
Constraints

V&YV Activities

< User Acceptance (alpha, beta test)

Delivered
Package

System
Integration

System
Specifications

System Test

/

N

/T Analysis /
\’T " Review

Subsystem

Integration Test
W Analysis /
\W Review

Unit/
Module Test | Components

Design/Specs Subsystem

Unit/
Component

Specs verification

il

User review of external behavior as itis
determined or becomes visible

This is called the “V”-model of “V&V”
activities (because of its shape)
(from Pezze + Young, “Software Testing

 Analysis?)

38

Basic Questions

When do V&V start? When are they done?
Which techniques should be applied?
How do we know a product is ready?

How can we control the quality of
successive releases?

How can we improve development!?

Which techniques should be applied?

39

Program
Analysis

(static or dynamic)

Testing

(dynamic verification)

Inspections Proofs

(static verification) (static verification)

[Collect data on faults |

Improve
Process

[Analyze faults and improve the process |

There is a multitude of activities
(dynamic ones execute the software,
static ones don’t) —and we’d like them
to-end when the software is 100%
correct.

Unfortunately, none of them is perfect.

40

Why V&V is hard

(on software)

® Many different quality requirements
® Evolving (and deteriorating) structure
® Inherent non-linearity

® Uneven distribution of faults

41

Compare

® 00Dty

can load 1,000 kg can sort 256 elements

If an elevator can safely carry a load of
1000 kg, it can also safely carry any
smaller load;

H-a procedure-correctly sorts-a-setof —

256 elements, it may fail on a set of
255 or 53 or 12 elements, as well as
on 257 or 1028.

and Analysis”)

42

The Curse of Testing

= c = =

2 = = = imisti
7 2 o o optimistic
Q) () Q Inaccuracy
=) =) =) =

(" 4 © 4

o0 possible runs

43

Every test can only cover a single run

Dijkstra’s Law

Testing can show the presence

but not the absence of errors

44

Evidence: pragmatic — there is no way
a test can ever cover all possible paths
through a program

Static Analysis

We cannot tell
whether this

/ condition ever holds
if (... 7)) |

(halting problem)

lock (S);

} Static checking pessimistic
T for match is inaccuracy
if (-) necessarily
te inaccurate
unlock (S) ;

}

45

The halting problem prevents

us from matching lock(S)/
- .
E"'IQGIIE(S) sle our t_eellm_lq.ue
(fromPezze +Young, ——
Analysis”y

Pessimistic Inaccuracy

static void questionable() {
int k;

for (int i = 0; i < 10; i++)
if (someCondition(i))

The Java compiler cannot tell whether

someCondition() ever holds, so it

refuses the program (pessimistically) —
i Condition(i) al

true.

(from Pezze + Young, “Software Testing

and Analysis”)

k = 0;
else
k += 1;
System.out.println(k);
}
® |s k being used uninitialized in this method?
46
ever (from Pezze + Young, “Software Testing
9 [T]
and Analysis
You can’t always get ysis')
what you want
v
Decision Pass/Fail
/ Procedure
Program
® Correctness properties are undecidable
the halting problem can be embedded in almost every property
of interest
47

Simplified Properties
original problem simplified property

Java prescribes a more

if (L) A restrictive, but statically

Tt checkable construct.
lock (S);

} Static checking

) T for match is

if (...) { / necessarily synchronized(s) {
cee inaccurate

unlock(S) ; e

} }

An alternative is to go for a

higher abstraction level
(from Pezze + Young, —

48

Simplified Properties

Other char

49

If you can turn your program

: fini hine, f
instance, you can prove all
sorts of properties
(from Pezze + Young,
“SEﬁ‘”EI’E :He S,t'”ﬁ g alﬂd

Bnal‘ rsis”)

abstraction

Static Verification

a proof

non-simplified
properties

oo possible runs

50

A proof can cover all runs — but only at
a higher abstraction level

In some way, fear, uncertainty and
doubt will thus prevail...

What to do

abstraction

a test run [
a test run |
a test run

unverified
properties

o0 possible runs

...but we can of course attempt to
cover as many runs — and abstractions
— as possible!

52
Evidence: Various studies showed that
different methods have strength in
H etze I _ Mye rs La.W different application areas — in our
of the program, different abstractions,
different “aspects”.
A combination
of different V&Y methods
outperforms
any single method alone.
53

Theorem proving:

Perfect verification of

Unboundgd effort tol arbitrary properties by
veiify ge:\t;ara logical proof or exhaustive
propertes. testing (Infinite effort)

Model checking:
Decidable but possibly
intractable checking of

simple temporal

properties.

Precise analysis of

simple syntactic
properties.

Simplified
properties

Trade-Offs

® We can be

» inaccurate

| Typical testi imisti

| s (optimistic or
pessimistic)...

® oOr we can

simplify
Optimistic Propert'es- .
inaccuracy
Pessimistic ® but not all!
inaccuracy

54

and we have a wide range of
techniques at our disposal
(from Pezze + Young, “Software Testing

 Analysis?)

Basic Questions

When do V&V start!? When are they done!?
Which techniques should be applied?
How do we know a product is ready?

How can we control the quality of
successive releases?

How can we improve development?

55

How do we know a product is ready?

Readiness in Practice

Let the customer test it :-)

56

Readiness in Practice

We're out of time.

57

This is the type of argument we aim for.
From Pressman, “Software Engineering

Read | ness in Pr’actice — a practitioner’s approach”, Chapter 13

Relative to a theoretically
sound and experimentally
validated statistical model, we have

done sufficient testing to say with
95% confidence that the probability
of 1,000 CPU hours of failure-free
operation is = 0.995.

58

How can we control the quality of
successive releases?

Basic Questions

When do V&V start? When are they done!?

Which techniques should be applied?

® How do we know a product is ready?

® How can we control the quality of
successive releases!?

® How can we improve development?

59

The idea is to have automated tests
(here: JUnit) that run all day.
R ' [est
. FEE
JUnit
Test class name: j
[uRLTest \m L=l
[vI Reload classes every run RGP
uRLTest [~ [« |[Rrun_]|
Runs: 4/4 X Errors: 0 “ Failures) [j Reload classes every run
Results: JU
= U,RLTES(Runs: 4/4 X Errors: 0 “ Failures: 1
i testProtacol
 testHost Lol
" testPath [URLTest = ‘ Run
+ testQuery + testProtocol ’
@Eﬁm A Test Hierarchy testHost
* testPath
 testQuery
["XIFailures | & Test Hierarchy
[junit.framework. ComparisonFailure: expected: </... > but was: <...>
40 at URLTest testPath(URLT est. java: 41)
at sun.reflect. Nati ce:
[Finished: 0.041 seconds at sun reflect
Exit

Basic Questions

® When do V&V start! When are they done!
® Which techniques should be applied?
® How do we know a product is ready?

® How can we control the quality of
successive releases?

® How can we improve development?

How can we improve development?

61

Mozilla Vulnerabiities
lt(wilv madnews (MI'M EXTENSIONS NSprpnd
amasdd webtervice python spelich I
i s0ap Jpro [apco | [yre s s
Wegkix i uu seftcken o] ot | are u, = ==
okl nes |'mol [ed 2 L
o o1 7 : I
7 everes F
phix Jind |l utl certd smim ! Include |
100 Juti ¢
o um |r|
‘ Sl Ja E
il | gkl gacs lde.
L] local news exten pom drectony db «l xpinstall
Buliting [il bwr phisi2 I e = = Tk o e 3k alited Compller_ Utiiai wizard
kit ar fry e idip [Coc- from um Windows _ ibxgoe
- - W banes [cee ¥ st uni | CUSI
G Bas an . ol Tbidap T P [0 (08
- frazem! - o nl reflea [sting ftypelib| ! Joaw : 1 3
omed 20) - lp(u' x lpu 3 pl [x suncsak . 1, ~ 3 -
2ib o fm gk [si lsp\pl e dules sec [|i5] e = 3 P i SRunim T gc [Pack ryerup e
g bit [~ base |tests idap e 3 e Tl _—
o lugin ds 3 », @0 —
marager) tests [| tools [sam T R bracies (K1 = G c Tools *
o9 e test 3 3 | def build compo B D
layout N §7 obsolete T el editor toolkat xohe
geoaric iyl — | CARATC Base e 1] 'unm 5 wom e ditor tem [components | aitbag | compone bootstra
Base Ac o Ry = - oovat] e el Juovl | hml Tbase ‘place s 3 | airbag | seariboo Lapp
- " =t
; sr¢ esmg &lont libpron | 740 e fitf o ¥ Boloal e Im | 7
o9 Imege |dec s |arc mac gtk = 1 Tewt tatv. & oosht)
- e { calendar paner [ccessible
(~ L3 —= e Iibical Mmiparsar expa trace- codes re L3
— base et e we plib | T Tp ATk [Bas[he
e e ibseal [iibic ol e i
o (gt ph — — e Jp ‘
e : a L) i S
prin in e bu aix base | protocol 2L okl = 9
S— v db ico'g g e htp fip ,7&“ — ;e (4 pes e L
n o [alib | mac_[theb 6 2 | s 2 o prosocy iamer 1@ B¢
3 amank - e - | »
embedd. 2
apcoinec e o o CNC] e Eeamen | sest [plugn unloader|camino | pe
3o et i Jexha o) sc | iped
o windo be [xp sh| [acivex | otk [phot b ceher-license |y o
U - (53 e cache dns B My
11 . Tast hban, o Nl -
faud ol o ¢ B iwed e b maton veew | mall
e Jcode MM ==
calr hebe | o ol LI IPOVER (g | o el - G, mac || src Jurc | [com
B I N awo i e wedclent Juppid] browser atk-1. [Base o | s e
[= P compon| e | tess [wemor i | wl | || components — prafle
hail 3 Vs o [prinein [teste mic fw B il fplaces jmigrat Jk— -
. ? Tey) = e @ phi e Secthel L aen io e
!)] o =30 i 0 -
| e xe web) £ e |¢h!o I

To improve development, one needs to
capture data from projects and
aggregate it to improve development.
{Fhe-data-shown-here showsthe——
occurrence of vulnerabilities in Mozilla
Firefox.)

62

Pareto’s Law

Approximately 80% of defects

come from 20% of modules

Evidence: several studies, including
Zeller's own evidence :-)

63

Basic Questions

When do V&V start? When are they done!?
Which techniques should be applied?
How do we know a product is ready?

How can we control the quality of
successive releases?

How can we improve development?

64

Strategic Issues

Specify requirements in a quantifiable
manner

State testing objectives explicitly

Understand the users of the software and
develop a profile for each user category

Develop a testing plan that emphasizes
“rapid cycle testing”

65

From Pressman, “Software Engineering
— a practitioner’s approach”, Chapter 13

Strategic Issues

Build “robust” software that is designed to
test itself

Use effective formal technical reviews as a
filter prior to testing

Conduct formal technical reviews to assess
the test strategy and test cases themselves

Develop a continuous improvement
approach for the testing process

66

From Pressman, “Software Engineering
— a practitioner’s approach”, Chapter 13

Design for Testing

® OO design principles also improve testing

Encapsulation leads to good unit tests

® Provide diagnostic methods
Primarly used for debugging, but may also be useful as

regular methods

® Assertions are great helpers for testing
Test cases may be derived automatically

67

Validation and Verification

sw ,
Specs
o |

abstraction

Summary

Techniques

a test run
a test run

-
g
g

A test run

o possible runs

NO—

V&V Activities

i

Trade-Offs
® We can be
inaccurate
(optimistic or
pessimistic). .

® or we can
simplify
properties...

® but notall!

68

