
Principles of

Software Design
Software EngineeringSoftware Engineering

Andreas Zeller • Saarland University

The Challenge

• Software may live much longer than
expected

• Software must be continuously adapted to
a changing environment

• Maintenance takes 50–80% of the cost

• Goal: Make software maintainable and
reusable – at little or no cost

Imperative
Programming

from 1950 until today

These slides are based on Grady
Booch: Object-Oriented Analysis and
Design (1998), updated from various
sources

Programming Styles

• Chaotic

• Procedural

• Modular

• Object oriented

Chaos
Fortran • Algol (1954–1958)

Data

Programs sharing data – changes have global effect

Procedures
Fortran • Algol • Cobol • Lisp (1959–1961)

Data

Reusable subprograms with parameters

Modules
PL/1 • Algol 68 • Pascal • Modula • Simula (1962–1970)

Data Data

Changes confined to individual modules

Gap
(1970–1980)

?

Objects
Smalltalk • C++ • Ada • Eiffel • Java (1980–)

Interface

Methods

State

Every object maintains its own state

Overview

Generation Control Data

chaotic anything anything

procedural procedure anything

modular procedure module

object oriented method object

plus: logic-based, rule-based, constraint-based, functional programming…

Principles
of object-oriented design

• Abstraction

• Encapsulation

• Modularity

• Hierarchy

Goal: Maintainability and Reusability

Principles
of object-oriented design

• Abstraction

• Encapsulation

• Modularity

• Hierarchy

Abstraction

Concrete Object General Principle

Abstraction…

• Highlights common properties of objects

• Distinguishes important and unimportant
properties

• Must be understood even without a
concrete object

Abstraction

“An abstraction denotes the essential
characteristics of an object that distinguish it from
all other kinds of objects and thus provide crisply
defined conceptual boundaries, relative to the
perspective of the viewer”

Perspectives

Example: Sensors

An Engineer’s Solution

void check_temperature() {
 // see specs AEG sensor type 700, pp. 53
 short *sensor = 0x80004000;
 short *low = sensor[0x20];
 short *high = sensor[0x21];
 int temp_celsius = low + high * 256;
 if (temp_celsius > 50) {
 turn_heating_off()
 }
}

Abstract Solution
typedef float Temperature;
typedef int Location;

class TemperatureSensor {
public:
 TemperatureSensor(Location);
 ~TemperatureSensor();

 void calibrate(Temperature actual);
 Temperature currentTemperature() const;
 Location location() const;

private: …
}

All implementation
details are hidden

More Abstraction

Principles
of object-oriented design

• Abstraction – hide details

• Encapsulation

• Modularity

• Hierarchy

Principles
of object-oriented design

• Abstraction – Hide details

• Encapsulation

• Modularity

• Hierarchy

Encapsulation

• No part of a complex system should
depend on internal details of another

• Goal: keep software changes local

• Information hiding: Internal details
(state, structure, behavior) become the
object’s secret

Encapsulation

“Encapsulation is the process of
compartmentalizing the elements of an abstraction
that constitute its structure and its behavior;
encapsulation serves to separate the contractual
interface of an abstraction and its implementation.”

Encapsulation

An active Sensor
class ActiveSensor {
public:
 ActiveSensor(Location)
 ~ActiveSensor();

 void calibrate(Temperature actual);
 Temperature currentTemperature() const;
 Location location() const;

 void register(void (*callback)(ActiveSensor *));

private: …
}

called when
temperature

changes

Callback management is the sensor’s secret

Anticipating Change

Features that are anticipated to change
should be isolated in specific components

• Number literals

• String literals

• Presentation and interaction

Number literals

int a[100]; for (int i = 0; i <= 99; i++) a[i] = 0;

const int SIZE = 100;
int a[SIZE]; for (int i = 0; i < SIZE; i++) a[i] = 0;

const int ONE_HUNDRED = 100;
int a[ONE_HUNDRED]; …

Number literals

double sales_price = net_price * 1.19;

final double VAT = 1.19;
double sales_price = net_price * VAT;

String literals

if (sensor.temperature() > 100)
 printf(“Water is boiling!”);

if (sensor.temperature() > BOILING_POINT)
 printf(message(BOILING_WARNING,
 “Water is boiling!”);

if (sensor.temperature() > BOILING_POINT)
 alarm.handle_boiling();

If one searches for “100”, one will miss
the “99” :-(

Principles
of object-oriented design

• Abstraction – Hide details

• Encapsulation – Keep changes local

• Modularity

• Hierarchy

Principles
of object-oriented design

• Abstraction – Hide details

• Encapsulation – Keep changes local

• Modularity

• Hierarchy

Modularity

• Basic idea: Partition a system such that
parts can be designed and revised
independently (“divide and conquer”)

• System is partitioned into modules that
each fulfil a specific task

• Modules should be changeable and
reuseable independent of other modules

Modularity

Modularity

“Modularity is the property of a system that has
been decomposed into a set of cohesive and loosely
coupled modules.”

Module Balance

• Goal 1: Modules should hide information –
and expose as little as possible

• Goal 2: Modules should cooperate –
and therefore must exchange information

• These goals are in conflict with each other

Principles of Modularity

• High cohesion – Modules should contain
functions that logically belong together

• Weak coupling – Changes to modules
should not affect other modules

• Law of Demeter – talk only to friends

High cohesion

• Modules should contain functions that
logically belong together

• Achieved by grouping functions that work on
the same data

• “natural” grouping in object oriented design

Weak coupling

• Changes in modules should not impact
other modules

• Achieved via

• Information hiding

• Depending on as few modules as possible

Law of Demeter
or Principle of Least Knowledge

• Basic idea: Assume as little as
possible about other modules

• Approach: Restrict method
calls to friends

Call your Friends

A method M of an object O should only call
methods of

1. O itself

2. M’s parameters

3. any objects created in M

4. O’s direct component objects

“single dot rule”

Demeter: Example
class Uni {
 Prof boring = new Prof();
 public Prof getProf() { return boring; }
 public Prof getNewProf() { return new Prof(); }

}

class Test {
 Uni uds = new Uni();
 public void one() { uds.getProf().fired(); }
 public void two() { uds.getNewProf().hired(); }
}

Demeter = Greek Goddess of
Agriculture; grow software in small
steps; signify a bottom-up philosophy of
programming

http://en.wikipedia.org/wiki/
Law_of_Demeter

Demeter: Example
class Uni {
 Prof boring = new Prof();
 public Prof getProf() { return boring; }
 public Prof getNewProf() { return new Prof(); }
 public void fireProf(...) { ... }
}

class BetterTest {
 Uni uds = new Uni();
 public void betterOne() { uds.fireProf(...); }

}

Demeter effects

• Reduces coupling between modules

• Disallow direct access to parts

• Limit the number of accessible classes

• Reduce dependencies

• Results in several new wrapper methods
(“Demeter transmogrifiers”)

Principles
of object-oriented design

• Abstraction – Hide details

• Encapsulation – Keep changes local

• Modularity – Control information flow
High cohesion • weak coupling • talk only to friends

• Hierarchy

Principles
of object-oriented design

• Abstraction – Hide details

• Encapsulation – Keep changes local

• Modularity – Control information flow
High cohesion • weak coupling • talk only to friends

• Hierarchy

Hierarchy

“Hierarchy is a
ranking or ordering
of abstractions.”

Central Hierarchies

• “has-a” hierarchy –
Aggregation of abstractions

• A car has three to four wheels

• “is-a” hierarchy –
Generalization across abstractions

• An ActiveSensor is a TemperatureSensor

Central Hierarchies

• “has-a” hierarchy –
Aggregation of abstractions

• A car has three to four wheels

• “is-a” hierarchy –
Generalization across abstractions

• An ActiveSensor is a TemperatureSensor

Hierarchy principles

• Open/Close principle – Classes should be
open for extensions

• Liskov principle – Subclasses should not
require more, and not deliver less

• Dependency principle – Classes should
only depend on abstractions

Hierarchy principles

• Open/Close principle – Classes should be
open for extensions

• Liskov principle – Subclasses should not
require more, and not deliver less

• Dependency principle – Classes should
only depend on abstractions

Open/Close principle

• A class should be open for extension,
but closed for changes

• Achieved via inheritance and dynamic binding

An Internet Connection

void connect() {
 if (connection_type == MODEM_56K)
 {
 Modem modem = new Modem();
 modem.connect();
 }
 else if (connection_type == ETHERNET) …
 else if (connection_type == WLAN) …
 else if (connection_type == UMTS) …
}

Solution with Hierarchies

MyApp
connect()

Connection
connect()
hangup()

ModemConnection
connect()
hangup()

WLANConnection
connect()
hangup()

EthernetConnection
connect()
hangup()

Hierarchy principles

• Open/Close principle – Classes should be
open for extensions

• Liskov principle – Subclasses should not
require more, and not deliver less

• Dependency principle – Classes should
only depend on abstractions

Liskov Substitution Principle

• An object of a superclass should always be
substitutable by an object of a subclass:

• Same or weaker preconditions

• Same or stronger postconditions

• Derived methods should not assume more
or deliver less

Circle vs Ellipse

• Every circle is an
ellipse

• Does this hierarchy
make sense?

• No, as a circle
requires more and
delivers less

Circle
draw()

Ellipse
draw()

http://en.wikipedia.org/wiki/
Liskov_substitution_principle

Hierarchy principles

• Open/Close principle – Classes should be
open for extensions

• Liskov principle – Subclasses should not
require more, and not deliver less

• Dependency principle – Classes should
only depend on abstractions

Dependency principle

• A class should only depend on abstractions
– never on concrete subclasses
(dependency inversion principle)

• This principle can be used to break
dependencies

Dependency
// Print current Web page to FILENAME.
void print_to_file(string filename)
{
 if (path_exists(filename))
 {
 // FILENAME exists;
 // ask user to confirm overwrite
 bool confirmed = confirm_loss(filename);
 if (!confirmed)
 return;
 }

 // Proceed printing to FILENAME
 ...
}

Cyclic Dependency

Constructing, testing, reusing individual
modules becomes impossible!

Core

+print_to_file()

UserPresentation

+confirm_loss()

invokes

invokes

Dependency
// Print current Web page to FILENAME.
void print_to_file(string filename, Presentation *p)
{
 if (path_exists(filename))
 {
 // FILENAME exists;
 // ask user to confirm overwrite
 bool confirmed = p->confirm_loss(filename);
 if (!confirmed)
 return;
 }

 // Proceed printing to FILENAME
 ...
}

Depending on
Abstraction

Core

+print_to_file()

Presentation
+confirm_loss()

UserPresentation

+confirm_loss()

AutomatedPresentation

+confirm_loss()

return true;ask user

Choosing
Abstraction

• Which is the
“dominant”
abstraction?

• How does this
choice impact the
remaining system?

Hierarchy principles

• Open/Close principle – Classes should be
open for extensions

• Liskov principle – Subclasses should not
require more, and not deliver less

• Dependency principle – Classes should
only depend on abstractions

Principles
of object-oriented design

• Abstraction – Hide details

• Encapsulation – Keep changes local

• Modularity – Control information flow
High cohesion • weak coupling • talk only to friends

• Hierarchy – Order abstractions
Classes open for extensions, closed for changes • Subclasses that
do not require more or deliver less • depend only on abstractions

More on this topic: aspect-oriented
programming

Principles
of object-oriented design

• Abstraction – Hide details

• Encapsulation – Keep changes local

• Modularity – Control information flow
High cohesion • weak coupling • talk only to friends

• Hierarchy – Order abstractions
Classes open for extensions, closed for changes • Subclasses that
do not require more or deliver less • depend only on abstractions

Goal: Maintainability and Reusability

From Requirements to
Software Design

Software EngineeringSoftware Engineering
Andreas Zeller • Saarland University

From Requirements
to Software Design

• Describe requirements as use cases

• Refine use cases to alternate scenarios

• Identify classes and operations

These slides are based on Grady
Booch: Object-Oriented Analysis and
Design (1998), updated from various
sources

See Pressman, chapter 8 for the
remainder of this lecture

Use Case

• An actor is something that can act – a
person, a system, or an organization

• A scenario is a specific sequence of actions
and interactions between actors
(where at least one actor is a system)

• A use case is a collection of related
scenarios – successful and failing ones

Actors and Goals

• What are the boundaries of the system? Is
it the software, hardware and software, also
the user, or a whole organization?

• Who are the primary actors – i.e., the
stakeholders?

• What are the goals of these actors?

• Describe how the system fulfills these goals
(including all exceptions)

Example: SafeHome

Initial Scenario
Use case: display camera views
Actor: homeowner

If I’m at a remote location, I can use any PC with
appropriate browser software to log on to the SafeHome
Web site. I enter my user ID and two levels of
passwords and, once I’m validated, I have access to all
the functionality. To access a specific camera view, I
select “surveillance” and then “select a camera”.
Alternatively, I can look at thumbnail snapshots from all
cameras by selecting “all cameras”. Once I choose a
camera, I select “view”…

Refined Scenario
Use case: display camera views
Actor: homeowner

1. The homeowner logs on to the Web Site

2. The homeowner enters his/her user ID

3. The homeowner enters two passwords

4. The system displays all major function buttons

5. The homeowner selects “surveillance” button

6. The homeowner selects “Pick a camera”…

Alternative Interactions

• Can the actor take some other action at
this point?

• Is it possible that the actor encounters
some error condition? If so, which one?

• Is it possible that some other behavior is
encountered? If so, which one?

Full Use Case

Full Use Case

From Use Case
to Control

• To describe the flow of interaction (and
possible errors / exceptions), one uses an
activity diagram.

• The activity diagram represents the
interaction flow through the system

• Useful swimlane variant: arranged according
to actors

“Swimlane”
Activity Diagram

Swimlane diagram for Access camera
surveillance–display camera views
functions

Class-based modeling

Initial approach:

• Each noun in the problem description
becomes a class candidate

• Verbs later become methods

• A class should never have an imperative
procedural name (such as InvertImage)

1. Retained Information
The information is necessary for the system to function

2. Needed Services
The potential class must have a set of potential operations

3. Multiple Attributes
We are focusing on potential classes with more than one attribute

4. Common Attributes and Operations
The attributes and operations apply to all instances of the class

5. Essential Requirements
External entities – producers and consumers of information – almost
always become classes

Requirements for

Potential Classes

Classes and Methods

• Class-Responsibility-Collaborator (CRC) modeling
is a simple means for identifying and
organizing classes

• Makes use of virtual or actual index cards

These are requirements a potential
class has to fulfill to be retained

A CRC index card

CRC Responsibilities
• System intelligence should be distributed

across classes (➔ modularity)

• State responsibilities as general as possible
(➔ abstraction)

• Information and related behavior goes into
the same class (➔ encapsulation)

• Information about one thing should be
localized in a single class (➔ modularity)

• Responsibilities should be shared among
related classes (➔ hierarchy)

CRC Collaborations

• If a class cannot fulfil a responsibility, it has
to collaborate with other classes.

• Typical (generic) relationships include

• is-part-of – parts of an aggregate class

• has-knowledge-of – information source

• depends-upon – required for existence

Final word on CRC

“One purpose of CRC cards is to fail early, to fail
often, and to fail inexpensively. It is a lot cheaper to
tear up a bunch of cards than it would be to
reorganize a large amount of source code.” (C. Horstmann)

Summary

