
SAMPLE SOLUTION DEMO EXAM
Software Engineering winter term 2011

1. Requirements and Design

a) Create a use case (in Pressman style) for the above scenario

including alternatives and exceptions.

Use Case 1: A student gets a coffee

Primary Actor: Student

Goal in context: To get a coffee

Preconditions: 1. Student needs to have an account in the system
2. Student needs to have sufficient money on his account
3. Coffee management system is switched on and previous user (if any)

has logged out.

Trigger: Student just had or will have a coffee and wants to pay for it.

Scenario: 1. Student selects his account by clicking on his picture
2. Student enters his password
3. Student clicks on “Login”-Button
4. System shows a list of available beverages to choose from
5. Student chooses the beverage he likes to have by clicking on the

respective button
6. Remaining money of student’s account is displayed for 5 seconds
7. System returns to main menu
8. Student clicks on the “Logout”-Button

Exceptions: 1. User enters wrong password: An error message is shown and system
returns to step 2.

2. User enters wrong password for fifth time: Error message is shown
that the account is blocked and needs to be unblocked by
administrator. Contact data to administrator is shown as well. System
continues with step 1.

Alternatives: 1. Student doesn’t have enough money for the selected beverage:
Message is shown with information that account doesn’t have enough
money and on how to increase account money. System continues with
step 4.

Priority: High

Frequency of Use: Very often - this is the main functionality of the system.

Remark: From the given data it is not defined whether the account has a minimum limit or not.

Hence, the use case without precondition 2 and alternative 1 would be valid as well.

b) Design a user interface for the above use case as a series of screen

shot sketches - again, including alternatives and exceptions.

C) Develop a class model for the coffee management system

1. Class-Responsibility-Collaborators

Student

Responsibilities:
- Manage student

information (image,
password)

- Store balance object
- Login
- Logout

Collaborators:
- Beverage
- Balance
- Exception

Balance

Responsibilities:
- Store amount of

available money
- Manage decrease and

increase of balance

Collaborators:
- Student
- Exception

2. UML system model listing

Beverage

Responsibilities:
- Store information

about baverage (price,
image)

Collaborators:
- Student
- Exception

Exception

Responsibilities:
- Handling of

unexpected events

Collaborators:
- Student
- Beverage
- Balance

2. Functional Testing

a) Design a set of test cases that achieve state coverage with as little

effort as possible
To achieve state coverage we need to cover each state out of the set {start, 0, 1, 2} at least once. The

only valid solution for this exercise is the following, since all other solutions need more effort:

[[<init>, openPort, auth, quit]]

The following would be the solution only considering the automata structure:

[[<init>, openPort, auth]] (this is incorrect!)

But since it was asked for a sequence of messages and the above is not a complete message, this

answer would be wrong.

Hint: The first bracket is starting the sequence of messages – in this case with only one message – the second bracket is

indicating the start of the first message.

b) Design a set of test cases that achieve transition coverage with as

little effort as possible
To achieve transition coverage, we need to use each edge of the graph at least once. The following is

a possible solution, covering all edges out of {<init>, openPort, authSend, data, mail, helo, rcpt,

authReceive, quit, auth, quit}:

[[<init>, openPort, helo, data, mail, quit],

 [<init>, openPort, authSend, rcpt, authReceive, auth, quit]]

There are many other solutions, but all of them use the transitions above only in a different order. A

valid solution cannot have more transitions.

3. Structural Testing

a) For each of the following coverage criteria, provide an input to

decoded that achieves 100% coverage:
The given function was exhaustively discussed in the lecture slides “11 – Structural Testing”.

1. Statement coverage

To ensure 100% statement coverage, simply each statement of the function needs to be executed at

least once. The following input achieves statement coverage:

“a+b+%23+%xy”

2. Branch coverage

For 100% branch coverage every branch in the control flow graph (CFG) needs to be executed at least

once. 100% branch coverage always implies 100% statement coverage (the other way doesn’t always

hold). For the given program it is not possible to construct an input that has 100% statement

coverage but less than 100% branch coverage – therefore we can simply take the input string from

above as a solution:

“a+b+%23+%xy”

What is the difference between statement coverage and branch coverage? Let’s consider the

following function:

int check(bool criterion) {

 if (criterion) {

 std::cout << “criterion is true\n”;

 }

std::cout << “end of method\n”;

}

For the call

check(true);

we have 100% statement coverage, since all statements are executed. But still the first decision has

only executed to true but not to false – therefore we achieve only 50% branch coverage.

3. Branch and condition coverage

To achieve 100% condition coverage, not only every decision (a Boolean expression composed of
conditions and zero or more Boolean operators – normally given as an if-statement) has to be
evaluated to both true and false at least once, but also every condition (Boolean expression
containing no Boolean operators). Here are some examples to explain the difference between
decisions and conditions:

One decision, three conditions:

if ((a && b) || c) {...}

One decision, one condition:

if (3 + 2 == 10 – 5) {...}

In the given function, we have only one decision that consists of more than one condition and that is

the following:

if (digit_high == -1 || digit_low == -1) {

Therefore we can simply take the input string we created for 100% branch coverage above and

additionally make sure we have 100% condition coverage as well. We get the following input string:

“a+b+%23+%ay%xb”

4. MC/DC coverage

Achieving 100% MC/DC coverage is a little bit more sophisticated than achieving 100% coverage for

the criteria above.

So let us first make clear what 100% MC/DC coverage means. For condition coverage, each condition

of a decision has to be at least once true and once false. This can lead to two necessary runs for a

decision with many conditions therefore missing many possible combinations. On the other hand,

trying all possible combinations (also called Multiple condition coverage) leads to a combinatorial

explosion of 2n runs for n conditions. For 6 conditions, we would already need 64 runs. So either we

lose some tests which might be important or we’ll have an exploding runtime.

MC/DC coverage tries to solve this dilemma by simply executing the important combinations to avoid

exponential blowup. Now which combinations are important? Simple: The ones in which conditions

actually influence the result of the decision.

This leads us to the following: For 100% MC/DC coverage

- Each decision has taken the value true and false at least once (branch testing)

- Each condition has taken the value true and false at least once (condition testing)

- Each condition in the decision independently affects the decision’s outcome

Now let’s go back to the given function. We have only one decision with more than one condition, so

let’s investigate that one:

if (digit_high == -1 || digit_low == -1) {...}

We’ll first create a truth table for the conditions of the decision:

A: digit_high == -1

B: digit_low == -1

A B Result

True True True

True False True

False True True

False False False

Now we extend the table such that it indicates which test cases can be used to show the

independence of each condition:

A B Result A B

1 True True True

2 True False True 4

3 False True True 4

4 False False False 2 3

To show the independence of A we need test case 2 and 4.
To show the independence of B we need test case 3 and 4.
The resulting minimal set of test cases therefore is: {2, 3, 4}.

Thus we need to ensure the following:

digit_high == -1, digit_low != -1

digit_high != -1, digit_low == -1

digit_high != -1, digit_low != -1

This can be achieved using the following input:

“a+b+%23+%ay%xb%ab”

Hint: If you feel you need a more detailed explanation on MC/DC, I’d like to recommend the talk “MC/DC in a nutshell” by Christopher
Ackermann which can be found here: http://www.cs.umd.edu/~atif/Teaching/Fall2006/StudentSlides/MCDC_Coverage_02.ppt

5. Loop boundary coverage

For achieving 100% loop boundary coverage, we need to execute each loop

- Exactly zero times

- Exactly one time

- More than once

The following three test cases ensure 100% loop boundary coverage:

{“”, “a”, “abc”}

http://www.cs.umd.edu/~atif/Teaching/Fall2006/StudentSlides/MCDC_Coverage_02.ppt

4. Mixed Bag

1. Functional testing tests against the specification

True

2. Structural testing attempts to find missing functionality

Wrong

Structural tests are based on the code structure and cover the implemented behavior. Missing

functionality is not implemented and will therefore not be tested by structural testing.

3. The OO hierarchy principle defines team structure

Wrong

The OO hierarchy principle introduces inheritance which is the ability for a class to extend or override

functionality of another class. It has nothing to do with team structure.

4. Weyuker’s hypothesis states that coverage criteria are only intuitively defined.

True

5. The V model is an important design pattern.

Wrong

The V model is a systems development model. It tries to simplify the understanding of the

development of complex systems.

