Glossary of Z notation

Names

a,b	identifiers
d, e	declarations (e.g., $a : A; b, \ldots : B \ldots$)
f,g	functions
m,n	numbers
p,q	predicates
s,t	sequences
x,y	expressions
A,B	sets
C,D	bags
Q,R	relations
S,T	schemas
X	schema text (e.g., $d, d \mid p \text{ or } S$)

Definitions

a == x	Abbreviation definition
$a ::= b \dots$	Free type definition (or $a ::= b \langle\!\langle x \rangle\!\rangle)$
[a]	Introduction of a given set (or $[a,]$)
a_	Prefix operator
_ <i>a</i>	Postfix operator
_ <i>a</i> _	Infix operator

Logic

true	Logical true constant
false	Logical false constant
$\neg p$	Logical negation
$p \wedge q$	Logical conjunction
$p \lor q$	Logical disjunction
$p \Rightarrow q$	Logical implication ($\neg p \lor q$)
$p \Leftrightarrow q$	Logical equivalence $(p \Rightarrow q \land q \Rightarrow p)$
$\forall X \bullet q$	Universal quantification
$\exists X \bullet q$	Existential quantification
$\exists_1 X \bullet q$	Unique existential quantification
let $a ==$	$x; \dots \bullet p$ Local definition

Sets and expressions

x = y	Equality of expressions
$x \neq y$	Inequality $(\neg (x = y))$
$x \in A$	Set membership
$x \notin A$	Non-membership $(\neg (x \in A))$
Ø	Empty set
$A\subseteq B$	Set inclusion
$A \subset B$	Strict set inclusion ($A \subseteq B \land A \neq B$)
$\{x, y,\}$	Set of elements
$\{X \bullet x\}$	Set comprehension
$\lambda X \bullet x$	Lambda-expression – function
$\mu X \bullet x$	Mu-expression – unique value

1 /	
let $a ==$	$x; \dots \bullet y$ Local definition
if p then	x else y Conditional expression
(x, y, \ldots)	Ordered tuple
$A \times B \times \dots$	Cartesian product
$\mathbb{P}A$	Power set (set of subsets)
$\mathbb{P}_1 A$	Non-empty power set
$\mathbb{F} A$	Set of finite subsets
$\mathbb{F}_1 A$	Non-empty set of finite subsets
$A \cap B$	Set intersection
$A \cup B$	Set union
$A \setminus B$	Set difference
$\bigcup A$	Generalized union of a set of sets
$\bigcap A$	Generalized intersection of a set of sets
first x	First element of an ordered pair
second x	Second element of an ordered pair
#A	Size of a finite set

Relations

$A \longleftrightarrow B$	Relation ($\mathbb{P}(A \times B)$)
$a \mapsto b$	Maplet ((a, b))
$\operatorname{dom} R$	Domain of a relation
$\operatorname{ran} R$	Range of a relation
$\operatorname{id} A$	Identity relation
$Q ec{} R$	Forward relational composition
$Q \circ R$	Backward relational composition ($R \stackrel{\circ}{,} Q$)
$A \lhd R$	Domain restriction
$A \triangleleft R$	Domain anti-restriction
$R \rhd A$	Range restriction
$R \triangleright A$	Range anti-restriction
R(A)	Relational image
$iter \ n \ R$	Relation composed n times
\mathbb{R}^n	Same as $iter \ n \ R$
R^{\sim}	Inverse of relation (R^{-1})
R^*	Reflexive-transitive closure
R^+	Irreflexive-transitive closure
$Q\oplus R$	Relational overriding ($(\operatorname{dom} R \triangleleft Q) \cup R$)
a <u>R</u> b	Infix relation

Functions

$A \longrightarrow B$	Partial functions
$A \longrightarrow B$	Total functions
$A \rightarrowtail B$	Partial injections
$A \rightarrowtail B$	Total injections
$A \twoheadrightarrow B$	Partial surjections
$A \longrightarrow B$	Total surjections
A ightarrow B	Bijective functions
$A \twoheadrightarrow B$	Finite partial functions
$A \succ \!\!\!\! \boxplus B$	Finite partial injections
f x	Function application (or $f(x)$)

Numbers

Z	Set of integers
N	Set of natural numbers $\{0, 1, 2,\}$
\mathbb{N}_1	Set of non-zero natural numbers $(\mathbb{N} \setminus \{0\})$
m + n	Addition
m - n	Subtraction
m * n	Multiplication
$m \operatorname{div} n$	Division
$m \mod n$	Modulo arithmetic
$m \leq n$	Less than or equal
m < n	Less than
$m \ge n$	Greater than or equal
m > n	Greater than
$succ \ n$	Successor function $\{0 \mapsto 1, 1 \mapsto 2,\}$
$m \dots n$	Number range
min A	Minimum of a set of numbers
max A	Maximum of a set of numbers

Sequences

$\operatorname{seq} A$	Set of finite sequences
$\operatorname{seq}_1 A$	Set of non-empty finite sequences
iseq A	Set of finite injective sequences
$\langle \rangle$	Empty sequence
$\langle x, y, \dots \rangle$	Sequence $\{1 \mapsto x, 2 \mapsto y,\}$
$s \cap t$	Sequence concatenation
$^{/s}$	Distributed sequence concatenation
heads	First element of sequence $(s(1))$
tail s	All but the head element of a sequence
$last \ s$	Last element of sequence $(s(\#s))$
front s	All but the last element of a sequence
rev s	Reverse a sequence
squashf	Compact a function to a sequence
$A \mid s$	Sequence extraction ($squash(A \lhd s)$)
$s \restriction A$	Sequence filtering ($squash(s \triangleright A)$)
s prefix t	Sequence prefix relation ($s \cap v = t$)
s suffix t	Sequence suffix relation $(u \cap s = t)$
s in t	Sequence segment relation $(u \cap s \cap v = t)$
disjoint A	Disjointness of an indexed family of sets
A partition	B Partition an indexed family of sets

Bags

bag A	Set of bags or multisets $(A \rightarrow \mathbb{N}_1)$
	Empty bag
$\llbracket x, y, \ldots \rrbracket$	Bag $\{x \mapsto 1, y \mapsto 1,\}$
$count \; C \; x$	Multiplicity of an element in a bag
$C \ \sharp x$	Same as $count C x$
$n\otimes C$	Bag scaling of multiplicity
$x \in C$	Bag membership
$C \sqsubseteq D$	Sub-bag relation
$C \uplus D$	Bag union

- $C \uplus D$ Bag difference
- $items\,s$ Bag of elements in a sequence

Schema notation

C	Vertical schema.
$\begin{bmatrix} S \\ d \end{bmatrix}$	New lines denote ';' and ' \wedge '. The schema
	name and predicate part are optional. The
p	schema may subsequently be referenced by
	name in the document.
d	Axiomatic definition.
$\frac{a}{p}$	The definitions may be non-unique. The pred- icate part is optional. The definitions apply
1 *	globally in the document.
$\mathbf{E}^{[a,\ldots]}$	Generic definition.
d	The generic parameters are optional. The def-
p	initions must be unique. The definitions apply globally in the document.
$S \cong [X]$	Horizontal schema
[<i>T</i> ;]]	Schema inclusion
z.a	Component selection (given $z:S$)
θS	Tuple of components
$\neg S$	Schema negation
pre S	Schema precondition
$S \wedge T$	Schema conjunction
$S \vee T$	Schema disjunction
$S \Rightarrow T$	Schema implication
$S \Leftrightarrow T$	Schema equivalence
$S \setminus (a,)$	Hiding of component(s)
$S \upharpoonright T$	Projection of components
S ; T	Schema composition (S then T)
$S \gg T$	Schema piping (S outputs to T inputs)
$S[a/b,\ldots]$	Schema component renaming (<i>b</i> becomes a , etc.)
$\forall X \bullet S$	Schema universal quantification
$\exists X \bullet S$	Schema existential quantification
$\exists_1 X \bullet S$	Schema unique existential quantification
Conventio	ons
9	Turnet to an annuation

a?	Input to an operation
a!	Output from an operation
a	State component before an operation
a'	State component after an operation
S	State schema before an operation
S'	State schema after an operation
ΔS	Change of state (normally $S \wedge S'$)
$\Box C$	No change of state (normally
20	$[S \wedge S' heta S = heta S']$)
	Jonathan P. Bowen
	University of Reading, Department of Computer Science
	Whiteknights, PO Box 225, Reading, Berks RG6 6AY, UK
	Email: J.P.Bowen@reading.ac.uk
	URL: http://www.cs.reading.ac.uk/people/jpb/