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ABSTRACT

Interacting with objects often requires following a protocol—for
instance, a specific sequence of method calls. These protocols are
not always documented, and violations can lead to subtle problems.
Our approach takes code examples to automatically infer legal se-
quences of method calls. The resulting patterns can then be used
to detect anomalies such as “Before calling next(), one normally
calls hasNext()”. To our knowledge, this is the first fully auto-
matic defect detection approach that learns and checks method call
sequences. Our JADET prototype has detected yet undiscovered
defects and code smells in five popular open-source programs, in-
cluding two new defects in ASPECTJ.

Categories and Subject Descriptors: D.2.4 [Software/Program
Verification]: Class invariants, Statistical methods; F.3.2 [Seman-
tics of Programming Languages]: Program analysis; F.3.3 [Studies
of Program Constructs]: Control primitives, Object-oriented con-
structs

General Terms: Algorithms, Design, Reliability

1. INTRODUCTION
When interacting with an object, the program has to follow the
rules mandated by its interface. For individual methods, the com-
piler checks whether the caller is allowed to invoke the method, and
whether its arguments are correctly typed. The interplay of multi-
ple methods, though—in particular, whether a specific sequence of
method calls is allowed or not—is neither specified nor checked
at compile time. Only if the program fails at run-time may the
programmer discover that she would have been required to, say,
call Stack.push() before invoking Stack.elements() or, to
check an iterator’s value using Iterator.hasNext() before in-
crementing it with Iterator.next(). Consequently, illegal call
sequences may still loom in the code even though all tests pass.

In this paper, we propose mining object usage models from code
examples—representations of typical object usage as possible se-
quences of method calls. These patterns can be used to automat-
ically find locations in programs that deviate from normal object
usage—that is, defect candidates.
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In Section 2, we describe how to extract object usage models
from JAVA code—finite state automata with anonymous states and
transitions labeled with feasible method calls (Figure 1(a–b)). For
instance, the iter model tells us the typical interaction with a
JAVA iterator object: Typically, hasNext() is called first (in a loop
condition), and then either the interaction ends (the loop exits), or
next() is called and the loop starts again. Our approach focuses on
modeling objects from the point of view of single methods, using
intraprocedural analysis only. This allows us to get comprehensive
results guaranteed by static analysis and yet remain scalable.

In Section 3, we extract patterns such as “next() can precede
hasNext()” from models (Figure 1(c)). These patterns are col-
lected over the entire code body and then fed into a classifier which
identifies locations that violate these patterns (Figure 1(d–e))—that
is, likely defect locations. Section 4 summarizes our experiences
with five popular open-source programs. Our JADET prototype de-
tects a large number of code smells in these programs, including
a previously undiscovered ASPECTJ defect where next() never

precedes hasNext()—the first loop iteration always exits.
This is not the first work to extract and check temporal object

behavior. However, it is the first to automatically do both for indi-
vidual objects, and therefore can find errors undetected by others.
Our main advantage is being able to find program-specific tem-
poral patterns without the need of any external input apart from
the program itself. In Section 5, we discuss the related work in
mining temporal object behavior and detecting defects automati-
cally, and highlight the contributions of the present approach. Sec-
tion 6 closes with a conclusion and consequences for future work.
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Figure 1: How JADET works. JADET extracts object usage

models from JAVA methods. The resulting method call patterns

are fed into a classifier which detects abnormal usage.
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public Stack createStack () {
Random random = new Random ();
int size = random.nextInt ();
Stack stack = new Stack ();
for (int i = 0; i < size; i++)

stack.push (random.nextInt ());
stack.push (-1);
return stack;

}
public void addElements (Vector dest, Vector src)
throws TooLargeException, TooSmallException {

if (src.size () > dest.size ())
throw new TooLargeException ();

if (src.size () < dest.size ())
throw new TooSmallException ();

for (int i = 0; i < dest.size (); i++)
dest.set (i, (Integer) dest.get (i) +

(Integer) src.get (i));
if (dest instanceof Stack)

((Stack) dest).push (-1);
}
public void test ()
throws TooLargeException, TooSmallException {

Stack s1 = createStack ();
Stack s2 = createStack ();
try {

addElements (s2, s1);
} catch (TooLargeException e) {

s1.setSize (s2.size ());
addElements (s2, s1);

}
}

Figure 2: Code exercising vector-manipulating methods.

2. MINING USAGE MODELS
In order to show, how we mine object usage models from code,

we will consider the sample source code shown in Figure 2. We
want to create models of objects from the point of view of the
methods they occur in. So for instance we create a model of the
random variable in createStack(), or of the dest parameter of
addElements(), etc. More generally, we are going to create mod-
els for the following objects:

• Every object that is created (via new) in a method—for in-
stance, the variable random in createStack().

• Method parameters—such as the dest and src parameters
of addElements().

• Return values—such as the return value of the call to
createStack() in the test() method.

• Exceptions—such as e from the catch clause in test().

We will call such objects abstract objects.
Our approach takes a set of JAVA classes as input and produces

models for all abstract objects existing in methods defined in those
classes. This is a two step process. In the first step, we create
a model for each method. This model represents the behavior of
the method and is similar to a control flow graph. In the second
step, we use this method model to construct the set of object usage
models of abstract objects occurring in the analyzed method.

2.1 Step 1: Creating a method model
In the first step of the mining process, we create a method model.
The states of this model are based on locations in the code, whereas
transitions are labeled with instructions. More precisely, each state
corresponds to exactly one instruction and represents the place in

stack.push (random.nextInt ());

i < size;

stack.push (-1);

i < size;

i++;

int i = 0;

Stack stack = new Stack ();

int size = random.nextInt ();

Random random = new Random ();

stack.push(...)

Figure 3: Method model of the createStack() method.

the code just before this instruction. For every predecessor of an
instruction, there is a transition between the state corresponding to
the predecessor and the state corresponding to the instruction.

Additionally, there is single exit state to which all states corre-
sponding to return instructions are connected to it with an epsilon
transition. The structure of such a model mirrors the code structure
and the model itself is closely related to the control flow graph of
the analyzed method—with the difference that instructions are la-
bels of transitions instead of states.

A method model is mined on the bytecode level (i.e. with states
based on locations in the bytecode and transitions based on byte-
code instructions). For the purposes of the presentation, though,
we will assume this happens on the source code level. Figure 3
shows the method model constructed by applying the mining algo-
rithm described above to the createStack() method code from
Figure 2. By convention, we mark the transition to the exit state by
a transition without destination state.

In the method model, exceptions that may be thrown by the code
being analyzed are treated specially. For every instruction in the
code, we infer the set of all exceptions that may be thrown as a re-
sult of executing this instruction. For example, in case of a method
call, we would create a set consisting of all exceptions declared as
being thrown by the callee. For each such exception, there are two
principal possibilities: either the exception is handled inside the
method being analyzed or it is propagated to the caller.

If the exception is handled, the situation is straightforward: ex-
ception-handling code is itself represented in the method model, so
we just need to add an appropriate transition. In order to recognize
a transition as representing an exception being thrown, we annotate
its label with the exception’s class name.

If the exception is propagated to the caller, we add a new state
to the model. In order to distinguish this exceptional state from all
others, it is labeled with the exception’s class name and represents
the exit from the method with the specified exception being thrown.
Then we add an appropriate transition to this state, just as in the
case of an exception that is handled.

The test() method in Figure 2 gives an example of how to
treat exceptions. The call inside the try block may either return
normally or throw one of two exceptions: TooLargeException or
TooSmallException. In the resulting method model, there are ex-
actly three transitions outgoing from the state corresponding to this
call. The first one has as its destination the exit state and is labeled
just with the method call. The second has as its destination the

36



stack.<init>() stack.push(...)

stack.push(...)

Figure 4: Object usage model of the stack variable defined in

the createStack() method.

state corresponding to the first instruction inside the catch block
and is labeled with the method call annotated with the name of the
exception’s class (in this case TooLargeException). The third
transition has as its destination the state marked with the name of
the unhandled exception’s class: TooSmallException.

2.2 Step 2: Creating an object usage model
In the second step of the mining process, the method model is pro-
jected onto the abstract object whose model we want to create. For
instance, in case of createStack(), we have a method model;
now we want to break this down to a separate model for each ab-
stract object obj within createStack(). This is done by replacing
all transitions by epsilon transitions that do not call a method on obj

nor use obj as a parameter to some method call.
In order to take local aliasing into account, we apply a data-flow

analysis to discover all places in the code where the object might be
a target or a parameter of a method call. Labels of the non-epsilon
transitions are transformed by replacing each method call with the
full name and signature of the method being called. Additionally,
if the object of interest was used as a parameter of a method call,
the label of the corresponding transition is annotated with the posi-
tion(s) of this object in the parameter list of the method call. Lastly,
in order to reduce the number of states and thus improve compre-
hension, the epsilon transitions are removed. Such a model, with
states based on locations in the code and transitions based on in-
structions that use the modeled object as an argument or a target of
a method call, is called an object usage model.

Special attention must be paid to objects that are cast in the pro-
gram. A common pattern is to take an object from a collection or
an object resulting from a method call and cast it to several differ-
ent types depending on the outcome of the instanceof operation.
What this amounts to is essentially having a set of multiple concrete
objects with different types, all of which, however, are represented
by the same abstract object. Our analysis treats casts accordingly:
each cast induces creation of a new object usage model for the ab-
stract object being cast. Each of those models describes usage of
the concrete object it represents, including the usage that happens
before the object is cast. We found this usage to be actually quite
common and it was the main reason we do not treat casts in them-
selves as inducing abstract objects.

As an example of casts, consider the method addElements()

from Figure 2. The dest variable is an instance of the Vector

class, but inside the code there is one place where it is cast to the
Stack class (which is a subclass of the Vector class). This means
that there are two object usage models created for this variable.
The first one models the dest variable as a Vector only and the
second models the dest variable as a Stack.

To create an usage model for the stack variable defined in the
createStack() method, we transform the method model from the
Figure 3 to the model shown in Figure 4. For the purposes of the
presentation, the names of the labels have been simplified by re-
moving method signatures and just indicating the number of their
parameters using ellipsis instead. In all subsequent models, epsilon
transitions will be depicted using dashed lines (with the only ex-
ception being the “entry” and “exit” transitions).

Table 1: The pattern {start() ≺ stop(), lock() ≺

unlock()} is common to three methods, but violated by get()

Temporal property

start() ≺ lock() ≺ eof() ≺

Method stop() unlock() close()

get() × ×

open() × ×

hello() × × ×

parse() × ×

In practice, all abstract objects in a method share one method
model (because they all occur in the same method); the data-flow
analysis is conducted only once for each method, simultaneously
creating the models for all abstract objects.

3. FINDING ANOMALIES
In this paper, the main application for object usage models is identi-
fying programming patterns. We define a programming pattern (or
simply pattern) as a set of temporal properties over method calls.

As an example of a pattern, consider the set P = {hasNext() ≺

next(), next() ≺ hasNext()}, where m ≺ n means that
there is a possibility of calling m before calling n (not necessarily
directly). This pattern P is exhibited by iter object usage model
in Figure 1(b).

3.1 Mining programming patterns
To discover patterns such as the one above, we first need to mine
temporal properties over method calls from the program being an-
alyzed. Initially, we do this on a per-object usage model basis, so
that for each object usage model O, we create a control flow rela-

tion R(O) = {(m, n) | n can be called after m}. This relation is by
definition transitive. (Note that m and n can be methods of different
classes, because object usage models also contain methods called
with the modeled object as a parameter.)

Intuitively, control flow relation R(O) for an object usage model
O contains all such pairs of method calls (m, n) for which there
exists a path through the model O on which m occurs before n (not
necessarily directly, i.e. the edges corresponding to m and n do not
have to be adjacent).

In the next step, we produce for every method M a set of tempo-
ral properties T (M) satisfied by M , defined as T (M) = {m ≺ n |

(m, n) ∈ R(O) for some O created by analyzing M}.
After we have created sets of temporal properties over method

calls for all methods, we need to mine common patterns from those
sets. To do this, we use an approach called frequent itemset min-

ing [15]. Frequent itemset mining takes as an input a set S =

{S1, . . . , Sk}, where each Si = {si1
, . . . , simi

} is a set of proper-

ties, as well as a support threshold min_support. It produces as an
output a set of patterns P = {P1, . . . , Pn} that occur in at least
min_support sets. Formally, if we define support(T ) = |{Si ∈

S | T ⊆ Si }|, which is the number of sets of properties that include
all properties from pattern T , frequent itemset mining guarantees
that T ∈ P iff support(T ) ≥ min_support.

Intuitively, support of a pattern is the number of methods that
respect that pattern (i.e. exhibit all temporal properties constituting
the pattern). Applying frequent itemset mining to the set S contain-
ing all T (M) sets will discover a set of all patterns that are exhibited
by at least min_support methods.
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of the corresponding pattern.

However, according to our definition, if we have two patterns
P1 and P2, where P2 is a proper subset of P1 (i.e. each temporal
property present in P2 is also present in P1, but not vice versa) and
yet they both have the same support, both will end up in the final
set of patterns. P2 does not contribute anything to our knowledge,
because it occurs only in the same methods in which P1 does, and
so we do not want it to be included in the results. To achieve this,
we will restrict ourselves to such patterns, for which every proper
superset has less support. Such patterns are called closed.

As an example of frequent itemset mining, consider Table 1.
In this example, S = {T (get()), T (open()), T (hello()), T (parse())},
where the sets of temporal properties are T (get()) = {start() ≺

stop(), eof() ≺ close()}, T (hello()) = {start() ≺ stop(),
lock() ≺ unlock(), eof() ≺ close()}, and so on. If we as-
sume a support threshold min_support = 2, frequent itemset min-
ing will produce as an output the set P = {P1, P2} consisting of
two patterns: P1 = {start() ≺ stop(), eof() ≺ close()}

and P2 = {start() ≺ stop(), lock() ≺ unlock()}. P1 has
a support of 2 (because only two methods exhibit all its temporal
properties: get() and hello()) and P2 has a support of 3 (it is
exhibited by methods open(), hello() and parse()).

3.2 Detecting anomalies
Frequent patterns minded from code express normal object usage.
A pattern that is respected by many methods but violated by few
represents an anomaly and is the focus of our interest.

How do we detect pattern violations? A methods M violates a
closed pattern P if another (closed) pattern P ′ ⊂ P exists such that
M respects all properties of P ′ but not all of P . In Table 1 method
get() violates pattern P = {start() ≺ stop(), lock() ≺

unlock()}, because P ′ = {start() ≺ stop()} is a closed sub
pattern of P , for example.

However, not all violation are equally likely to point to real de-
fects. We consider the ratio between the number of methods that
respect a pattern P and those that violates it: patterns that are re-
spected by many and violated by few methods are likely to be gen-
uine defects. This ratio is the confidence for a violation, defined
as s/(s + v) where s is the support of a violated pattern, and v

the number of violations. The confidence for get() in Table 1
violating pattern P is 3/4 because P has support 3, and P ′ has
support 4, leading to one violation. The support is a value between
zero and one, and expressed as a percentage. For practical pur-
poses, only violations exceeding a minimum confidence (parameter
min_confidence) are considered.

Detecting all violations exceeding a minimum confidence would
require to look at all closed patterns in a table like Table 1. Our key
insight is that each pattern corresponds a block in the cross table
over methods and properties. And a pattern violation corresponds
to an imperfect block, like shown on the left of Figure 5. Indeed,
such an imperfect block is really a composition of two blocks (or
patterns): a slim and tall block, and a wider and short block. They
correspond to P ′ and P in our definition of violations above.

Computing all blocks in a cross table efficiently is provided by
Formal Concept Analysis. Blocks form a hierarchy, as shown on
the right in Figure 5. Another insight is that imperfect blocks are al-
ways formed by two neighboring blocks in the hierarchy. Our min-
ing implementation COLIBRI thus computes the concept lattice and
inspects all neighboring blocks in order to find all violations [20].

A cross table may have exponentially many patterns. Mining can
be still made efficient because support for patterns decreases mono-
tonically in the lattice from the top down. COLIBRI computes only
the topmost patterns (or blocks) that both exceed a minimum sup-
port (parameter min_support) and from these violations that exceed
the minimum confidence.

3.3 Ranking anomalies
Anomalies discovered by the process described above are interest-
ing, but there are typically several of them and of course not all of
them are true defects. Investigating every single anomaly is time-
consuming and would defeat one of the main advantages of our
approach: full automatization.

To solve this problem, we developed a method to rank anoma-
lies. We wanted our ranking method to favor anomalies that are
violations of a frequently occurring pattern by a relatively small

number of methods. We also wanted it to favor anomalies that
violate “rare” patterns, i.e. those that are dissimilar from others,
because we have noticed that some classes induce many meaning-
less patterns with many anomalies. This is the case, for instance,
for the StringBuffer class. A common usage pattern of this
class is that we call append(String) and then at some later point
toString() on that same object. This leads to marking the code
that calls append(int), but not append(String) as anomalous,
whereas it is clear that this is definitely not a defect.

To achieve the goals stated above, we assign a number, called de-

fect indicator, to each anomaly and then rank them in the descend-
ing order of their indicators. The defect indicator of an anomaly is
defined as ind = u · s/v , where s is the support of the pattern being
violated, v is the number of methods in which the violation occurs,
and u is the so-called uniqueness factor. In order to calculate the
uniqueness factor, we first have to do the following steps:

• We assign to each pattern P the set of classes C(P), methods
called on which are part of the pattern. For instance, in case
of a pattern P = {X.x() ≺ Y.x(), Y.x() ≺ Y.y()} we would
have C(P) = {X, Y }.

• We assign to each JAVA class C the number na(C) of anoma-
lies, for which the pattern they violate contains a call to one
of the methods of the class C . Formally, na(C) = |{A | A is
an anomaly violating a pattern P , where C ∈ C(P)}|. This
tells us the number of anomalies that are related to C .

• We assign to each pattern P the number np(P) being the
maximum over na(C)’s for all classes C ∈ C(P). Intuitively,
if we consider the class in C(P) that most often occurs in
other anomalies (i.e. these anomalies violate patterns con-
taining calls to methods defined by this class), then np(P)

tells us the number of those occurrences.
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The uniqueness factor of an anomaly A is defined as 1/np(P),
where P is a pattern violated by the anomaly A. This number is
equal to 1 if each class from C(P) occurs only in P (indicating
uniqueness of P and thus also A). The more anomalies violat-
ing patterns having something in common with P , the smaller the
uniqueness factor of the anomaly.1

4. EXPERIMENTS
We have implemented a prototype called JADET (for “Java A-

nomaly Detector”) that implements mining of object usage mod-
els. To evaluate the effectiveness of JADET, we have applied it to
several complex Java projects (see Table 2): ACT-RBOT, which is a
cognitive agent based social simulation toolkit/production system2;
ASPECTJ, an aspect-oriented extension to the JAVA programming
language3; AZUREUS, a bittorrent client4; COLUMBA, an email
client5 and MUSICOMP, a melody generator6. All the experiments
were performed under the following conditions:

• We analyzed all methods whose libraries were available. Sur-
prisingly, this was not the case for all methods. In the case
of ACT-RBOT, the libraries included in the project “jar” file
had conflicting versions which prevented us from analyzing
thirty methods in one of such libraries. The MUSICOMP ap-
plication code contained a call to a method in one of WEKA

classes that was not defined by that class. In AZUREUS, we
missed the Apple Cocoa-Java classes. In ASPECTJ, the pack-
age org.aspectj.bea.jvm was missing.

• A violation is characterized by three numbers: the support
of the pattern being violated, the confidence of the viola-
tion, and the number of properties missing7. We considered
a violation as an anomaly if the following three conditions
where met: (1) its support exceeded 20, (1) its confidence ex-
ceeded 90%, and (3) it did not miss more than two properties.
These constants were obtained by empirically testing a few
alternatives in order to balance the number of false positives
and true negatives, but we did not systematically investigate
if these are the optimal values.

4.1 Case study: AspectJ
The largest program in our set is ASPECTJ, a compiler for the AS-
PECTJ language. ASPECTJ is an extension to the JAVA program-
ming language making it possible to express cross-cutting concerns
that can be later compiled into the bytecode. This is a sufficiently
complex, big and mature project to put our technique to a good test.

4.1.1 Object usage models

JADET analyzed 36,044 out of 36,045 methods defined in ASPECTJ
and created 253,084 models in less than 14 minutes on a 1.83GHz
Intel Core Duo.

Figure 6 shows a model of a java.util.Stack object mined
from one of the methods in ASPECTJ. From this model, we can
see that the stack was first created, then elements have been pushed
to it in a loop and finally an enumeration of all the elements was

1A somewhat similar idea of clustering execution profiles based
on their similarity to find the faulty ones has been evaluated by
Dickinson et al. [10] and found very effective.
2http://sourceforge.net/projects/act-rbot/
3http://www.eclipse.org/aspectj/
4http://azureus.sourceforge.net/
5http://columbamail.org/drupal/
6http://sourceforge.net/projects/musicomp/
7this can be thought of as the width of the hole in the block

st.nextToken()

s.elements()

s.push(...)

s.<init>()

Figure 6: Stack model mined from ASPECTJ.

Map.put(c,...)

Map.put(c,...)AjTypeImpl.<init>(c)

AjTypeImpl.<init>(c)Map.get(c)

Map.containsKey(c)

Figure 7: Class model mined from ASPECTJ.

requested. This model illustrates well the difference between ap-
proaches that base model states on object states and our approach
that bases model states on locations in the code.

Although the first call to push() is bound to change the state of
the object (from empty to non-empty), it does not result in state-
changing transition in our model. This is because there is no dif-
ference between the first and the subsequent calls to push from the
user’s perspective. They are all part of a code that puts elements
into the stack. If this code were split in, say, two loops, this would
be represented in the model by two loops, as well. Similarly, the
call to elements() that does not change the state of the stack is
depicted as a state-changing transition in our model, because the
way the stack is used has changed. We no longer put elements into
it, but rather we extract them.

Another model is shown in Figure 7. This model does not con-
tain a single call with the object being modeled used as a target. Be-
cause of this, limiting model creation to include only such method
calls (and not including “external” method calls) would result in
an empty model. The model produced by JADET is quite interest-
ing as it encompasses operations on several different classes in one
entity. It shows how ASPECTJ’s internal mapping between JAVA

classes (java.lang.Class) and ASPECTJ type implementations
(AjTypeImpl) works.

This model has been mined from the method called getAjType,
which gets an AjTypeImpl object corresponding to a given Class

object (subsequently called c). As we can see, the method uses
a Map object to represent the mapping. It first checks whether the
class c is already present in the map as a key. If it is not, new type
implementation is created and the map is updated (the rightmost
path in the model). If the class c is present in the map, it is checked
whether the corresponding type implementation is up-to-date. If it
is not, new type implementation is created and the map is updated
(the leftmost path in the model). If the type implementation is up-
to-date, nothing else remains to be done (the middle path).

Overall, the mining process resulted in more than 250,000 mod-
els being created, and thus we found it impossible to investigate
them all. Instead, we looked at a small sample of models mined
and selected a number that we found interesting and that were small
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Table 2: Details of the JADET case study subjects

# Methods Mining time

Program # Classes Analyzed Total # Models # Patterns # Anomalies Models Anomalies

ACT-RBOT 0.8.2 2,492 26,501 26,531 187,137 436 192 9:03 0:53
ASPECTJ 1.5.3 2,957 36,044 36,045 253,084 666 276 13:19 3:47
AZUREUS 2.5.0.0 3,585 22,359 22,367 157,313 1244 365 7:28 0:50
COLUMBA 1.2 1,165 6,894 6,894 54,371 97 64 2:06 0:11
MUSICOMP 1.0 beta 347 2,078 2,079 17,321 3 3 1:02 0:04

c.getComponentType()

c.isArray()

c.getName()

Figure 8: Class model mined from ASPECTJ.

st.<init>()

st.nextToken()

st.countTokens()

Figure 9: StringTokenizer model mined from ASPECTJ.

st.nextToken()

st.<init>()

st.hasMoreTokens()

Figure 10: StringTokenizer model mined from ASPECTJ.

enough to present (see also Figures 8, 9 and 10). Due to the fact
that our small sample already contained a large fraction of interest-
ing models, we are confident that the remaining set contains many
more models that could be suitable for program understanding.

4.1.2 Programming patterns and anomalies

Mining programming patterns, finding violations, filtering and rank-
ing anomalies for ASPECTJ took less than 4 minutes and reported
276 anomalies. Those anomalies encompassed 790 violations, oc-
curring in 295 methods (recall that one anomaly may consist of sev-
eral violations, each in a different method; also, one method may
contain several violations). Figure 11 shows the frequency distri-
bution of a number of violations exhibited by a single method.

We inspected these 790 violations manually. Two of them were
defects, five were code smells (meaning any program property that
indicates something may go wrong [14]) and 84 pointed to code
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Figure 11: Frequency distribution of a number of violations

exhibited by a single method in ASPECTJ.

that could be improved with respect to readability and/or maintain-
ability (we will call such results “hints”). Five violations have not
been classified, because the source code of the corresponding meth-
ods is not part of the ASPECTJ, even though the methods them-
selves are. The remaining 694 violations were false positives.

Our ranking method proved successful. The Top 10 anomalies
(see Table 3) encompassed 15 violations, out of which two were
defects (ranked 1st and 7th), three were code smells, one was a hint
and nine were false positives (we actually examined eleven anoma-
lies as the Top 10, because anomalies in the 10th and 11th position
had identical defect indicators). It is important to notice that both
defects and three out of five code smells were ranked in the Top 10.
This reduces the impact of the large number of false positives. In
practice, a programmer could spend time only on highly ranked
violations and still hope to find the most interesting ones.

Let us now take a closer look at the defects that we have found.
Figure 12 shows part of the method that contained the first defect
(#165631 in the ASPECTJ bug database). The loop in this code
processes only the first element returned by the iterator, even though
it should process all of them. The pattern that is violated in this case
is P = {hasNext() ≺ hasNext(), hasNext() ≺ next()};
and it is the property hasNext() ≺ hasNext() which is missing
in the faulty method.
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Table 3: Top 10 anomalies for ASPECTJ.

Rank Defect ind. Support Uniq. factor Anomaly type

1 174.25 697 0.250 defect

2 174.00 696 0.250 code smell
3 25.00 50 0.500 hint
4 20.00 20 1.000 false positive
5 19.67 59 1.000 3 × false positive
6 19.00 38 0.500 false positive
7 14.87 119 0.125 defect

8 13.00 26 1.000 2 × code smell
9 12.00 24 1.000 2 × false positive

10 11.50 23 0.500 false positive
10 11.50 23 0.500 false positive

private boolean verifyNIAP (...) {

...

Iterator iter = ...;

while (iter.hasNext ()) {

... = iter.next ();

...

return verifyNIAP (...);

}

return true;

}

Figure 12: A defect in ASPECTJ. The loop body is executed at

most once.

public void visitCALOAD (CALOAD o) {

Type arrayref = stack().peek(1);

Type index = stack().peek(0);

indexOfInt(o, index);

arrayrefOfArrayType(o, arrayref);

}

Figure 13: Another defect in ASPECTJ. The method should

check the array type, and call constraintViolated() if the

check fails.

The second defect (#41069 in the BCEL bug database8) is much
more subtle. It occurs in the method visitCALOAD(), shown in
Figure 13. Here, P = {stack() ≺ constraintViolated(),

stack() ≺ stack()} is the pattern that is violated (all of the
methods were defined in the InstConstraintVisitor class). The
task of visitCALOAD() is to check whether a given CALOAD byte-
code instruction is legal. This instruction is part of a family of
array loading instructions (AALOAD, BALOAD, CALOAD, etc.), each
of which takes an array and an index from the stack and pushes
back the value contained in the array under the given index. These
instructions all differ by the expected type of the elements in the
array; for CALOAD, for instance, this is char.

In order for the instruction to be legal, two conditions must be
satisfied: The first element on the stack must be an array of appro-
priate type and the second element on the stack must be an integer.
If these conditions are not satisfied, the method is required to call
the constraintViolated() method.

The faulty method checks the second condition and the first half
of the first condition, i.e. it checks whether the first element on

8BCEL is used as part of ASPECTJ and the defect is located in a
method defined by one of BCEL’s classes

public String getRetentionPolicy () {

...

for (Iterator it = ...; it.hasNext();) {

... = it.next();

...

return retentionPolicy;

}

...

}

Figure 14: A code smell in ASPECTJ. The loop body is executed

at most once—but this is not a defect, since the object iterated

upon has at most one element, too.

the stack is an array, but not if the array is of an appropriate type.
It does this using two helper methods which perform the actual
check and call constraintViolated() themselves if the check
fails. However, neither helper checks whether the array is of an
appropriate type. Thus, visitCALOAD method itself would have to
do the check and, in case it fails, call constraintViolated().
And this is this call that JADET discovered to be missing.

One should note that the first defect could have been found by
tools that check for code violating a fixed set of rules, because the
pattern here is very general, and constitutes an anomaly in almost
every JAVA program. Finding the second defect, though, requires
domain knowledge that cannot be coded in a universal rule. Thus,
to find the defect, it is necessary to infer domain-specific patterns
first, as exemplified by our approach.

Let us now take a look at the code smell ranked in the 2nd po-
sition. It is of interest to us, because it has a very high defect in-
dicator (nearly as high as the defect on the 1st position) and yet is
not a defect itself. The code of the anomalous method is shown in
Figure 14. It is very similar to the code of the defect shown in Fig-
ure 12 and, indeed, the pattern that is violated here is also very sim-
ilar: P = {hasNext() ≺ hasNext(), hasNext() ≺ next(),
next() ≺ hasNext(), next() ≺ next()}. The last two prop-
erties are missing in the anomalous method, i.e. it is not possible to
call next twice on the same iterator object.

This time, however, this is not a defect. The collection through
which the code iterates is a list of so-called retention policies asso-
ciated with an annotation. Each annotation may have at most one

retention policy associated with it, and so the collection holds at
most one element. This is not documented in the code; it is clear
that a simple if instead of a for loop should have been used.9

4.2 More experiments
Table 2 lists all programs we have tried JADET on. In each case,
we looked at the Top 10 anomalies and classified them manually.10

The summary of these experiments can be found in Table 4. Note
that each anomaly may encompass more than one violation (as there

9The acute reader may have noticed that the patterns in this exam-
ple and in the first defect are different, when in fact they should not
be. The reason for this is impreciseness of the dataflow analysis.
The for loop in the code smell we have just examined is enclosed
in another loop and the iterator “reaches” the hasNext instruction
of the next iteration of the outer loop just before it is “killed”. We
plan to solve this problem as part of the future work on increasing
the precision of the analysis.

10The ACT-RBOT program contained libraries it used included in
its own “jar” file instead of them being packaged in different “jar”
files. As a result, only five of Top 10 anomalies were anomalies in
the program itself and these were the only ones we examined.
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Table 4: A classification of the top 10 anomalies for the case

study subjects. In all investigated programs, JADET makes sug-

gestions that improve code quality.

Program # Defects # Code # Hints # False
smells positives

ACT-RBOT 0.8.2 2 0 13 4
ASPECTJ 1.5.3 2 3 1 9
AZUREUS 2.5.0.0 1 2 6 4
COLUMBA 1.2 0 0 3 17
MUSICOMP 1.0 beta 0 0 4 6

5 5 27 40

may be many methods that violate the same pattern in the same
way) and thus Top-10 anomalies may in fact mean “15 violations”,
as in the case of ASPECTJ. As can be seen, JADET is most effective
on large programs, resulting in a large number of models. This is
expected, because in order to find patterns (and thus be able to find
violations), there must be enough data to support them. Also, our
approach benefits from stability and consistency of the source code
that makes the defects “stick out”.

Our results show that JADET can find new defects in software,
even in mature code like ASPECTJ. The second defect in ASPECTJ
could not have possibly been found by any other existing tool;
as illustrated in the examples, the main strength of our approach
lies in it being able to construct project-specific patterns and viola-
tions thereof.

Additionally, our approach is fully automatic; the programmer is
only required to take a look at the found anomalies and to decide
whether they are real defects or not (admittedly, she has to be com-
petent enough and the time needed to classify anomalies is highly
dependent on the level of competencee; this problem, however, is
shared by all unsound approaches to defect detection). In particu-
lar, she does not have to specify patterns nor in any way configure
the tool to fit to the particular project that is to be analyzed. JADET

is also very practical, having small execution times and a ranking
system in place, thus freeing the user from the burden of examining
all anomalies to select the most interesting ones.

4.3 Threats to validity
Out of five defects we have found in the test programs, four have
been confirmed by the tool developers. The only defect that has
not been confirmed is the second defect in ASPECTJ. The reason
for this is that even though we found this defect by analyzing AS-
PECTJ, this is a defect in BCEL and we submitted the bug report
to the BCEL bug database. The project, however, is in a stag-
nation phase right now and bug reports are not being processed.
Nevertheless, we created a small, incorrect .class file that passes
verification by BCEL because of the issue we have discovered, so
we know this is a real defect, even though we do not have any con-
firmation from the developers.

The main threat to the validity of our results are errors in the
code that creates object usage models that are used as a basis for
generating patterns. We have spent a long time on checking for
correctness of the models that have been created for various pro-
grams. We have also created programs for which we constructed
models by hand and then checked whether those created by JADET

were identical. In the process we have found defects in the model-
creating code and those defects have been subsequently removed.
We assume that any remaining defects (and imprecisions induced

by not having points-to analysis) affect only a very small number
of models.

Another threat is that we have investigated only five programs
and it is possible that our results do not generalize. We have tried
to mitigate this risk by choosing programs that have very different
purposes and including two quite big, commonly used projects as
subjects: ASPECTJ and AZUREUS.

Other potential problems include defects in frequent itemset min-
ing or in the code that looks for violations and ranks anomalies.
We think such errors are very improbable: the code that does fre-
quent itemset mining and violations extraction is mature and has al-
ready been used several different projects and none of these projects
discovered any defects in it. The code that ranks violations, on the
other hand, is very simple and well tested, so that we expect it to
be correct as well.

5. RELATED WORK

5.1 Mining temporal program behavior
Mining object usage models was inspired by the work of Eisenbarth
et al. on object process graphs [11]. Object usage models are simi-
lar to their object process graphs, but we focus on modeling objects
from the point of view of single methods, without using expensive
points-to analysis, and thus our approach scales to large programs.

Dynamic analysis has also been used to produce program mod-
els. Dallmeier et al. [7] use so-called inspectors to discover state
of the object at runtime. Lorenzoli et al. [23] use anonymous states
and transitions described by method calls annotated with param-
eters. Quante and Koschke [26] create dynamic object process
graphs and Xie et al. [34] create abstract-object-state machines with
states being described by possible return values of method calls.
These approaches capture only true program behavior instead of a
conservative approximation, but this also means that they need ex-
tensive test cases to produce at least somewhat complete results and
automatic defect detection possibilities are limited.

Other researchers used approaches such as grammar learning [3]
or based on model checking [2, 16, 21]. These techniques are not
fully automatic. Ammons et al. [3] require manual annotations to
relate functions to objects, while Alur et al. [2] and Henzinger et
al. [16] rely on initial predicates to be able to get the first abstraction
of the program. Liu et al. [21] require specifying sets of functions
as input and find instantiations of six categories of rules over those
functions.

The PERRACOTTA tool of Yang and Evans [36] also mines tem-
poral rules of program behavior. Their approach can only discover
behavior that fits into templates (such as alternation) provided by
the user. Williams and Hollingsworth [33] mine software reposito-
ries to find function usage patterns where one function is directly
called after another one (perhaps conditionally), which is more lim-
ited than our approach. Some research has also been done in the
area of supporting programmers by providing them with examples
of usages of a particular API. Tools that address this problem in-
clude MAPO by Xie and Pei [35], PROSPECTOR by Mandelin et
al. [24] and XSNIPPET by Sahavechaphan and Claypool [29].

Cook and Wolf [6] have written the seminal work on inferenc-
ing finite-state machines from event sequences, where they com-
pare Markov methods, neural networks, and grammar inference as
means to construct models; their work applies on software devel-

opment processes, though.
All of the approaches that mine temporal properties produce rep-

resentations that can also be used as specifications. In addition,
there are also approaches that suggest various formalisms for spec-
ifications of temporal behavior. These approaches include the type-

42



state concept by Strom and Yemini [30], protocols by Yellin and
Strom [37], interface automata by de Alfaro and Henzinger [1] and
the idea of treating objects as regular processes presented by Nier-
strasz [25].

5.2 Automatic defect detection
Finding patterns was inspired by the PR-MINER tool of Li and
Zhou [19] who use frequent itemset mining to find sets of functions,
variables and data types that frequently appear together. In contrast,
our approach takes ordering into account and is thus able to find
defects (like the first defect in ASPECTJ) that could not be found
using PR-MINER.

In a recent work, Ramanathan et al. [27] describe CHRONICLER,
a tool for mining precedence relations among procedure calls. Their
approach is interprocedural and can thus find patterns spanning
multiple functions, but is restricted to “must precede” relations
(in contrast to our “can precede”) and is thus suited to finding
a different class of defects than our method. CHRONICLER is also
object-insensitive.

Our ranking method for anomalies was inspired by clustering
algorithm used by Dickinson et al. [10] to find faulty executions
based on their profiles. Dallmeier et al. [8] used differences in se-
quences of method calls between passing and failing runs to de-
tect defects, but they use dynamic analysis (so that they need a test
that fails in order to find a defect) and their granularity (finding
defective classes) is larger than ours (finding defective methods).
Weimer and Necula [31] learn pairs of matching functions (like
open and close) from method-call traces and look for violations
of these pairings in error-handling code only.

Livshits and Zimmermann [22] use software repositories to mine
coding patterns and look for their violations in the DYNAMINE

tool. In order to find a pattern, DYNAMINE needs to have it added
to the repository after the first revision and be confirmed using dy-
namic analysis afterwards. Kim et al. [18] developed BUGMEM,
using fixes mined from software repositories to construct patterns
of defects and their fixes. Both approaches require extensive his-
tory of software revisions in repository to be effective.

Yang and Evans [36] also focused on finding defects, but their
approach is limited to finding behavior that fits into templates pro-
vided by the user. Engler et al. [12] also used such a template-based
approach. Hovemeyer and Pugh [17] created FINDBUGS, which
statically looks for a priori specified bug patterns.

Fink et al. [13] look for violations of a specification given as
a typestate, so they can mark a sequence of method calls as faulty
only if it was specified as erroneous by the typestate. Reiss [28] de-
veloped the CHET system that allows programmers to specify the
way a component should be used and checks these specifications.
The SLAM tool by Ball and Rajamani [5] uses a model checker to
validate temporal safety properties. DeLine and Fähndrich [9] cre-
ated FUGUE, a tol that allows for specifying typestates for objects
and checking the code for conformance to those typestates. An-
toy and Hamlet [4] instrument code defining abstract data types to
check operations for conformance with an algebraic specification.
In each of those cases, the specification has to be entered manually.

6. CONCLUSIONS AND CONSEQUENCES
Our experiments with JADET have successfully demonstrated that
our approach can effectively detect new defects in software, even
in mature code like ASPECTJ. The approach is fully automatic, re-
quires few resources, and scales up to very complex systems. As
it leverages existing code to find anomalies, it automatically adapts
to the project conventions at hand. JADET is thus complementary
to existing approaches that focus on single methods or check uni-

versal programming rules; as a side effect, it promotes consistency
in object usage across the product code.

JADET is light-weight and yet effective, given the large percent-
age of true defects and code smells among the top ranked anoma-
lies. We expect an even higher detection rate in earlier software
production stages.

Despite these early successes, we still see much room for im-
provement. Our future work will focus on the following topics:

Improved code analysis. JADET has a number of limitations in
its current implementation when it comes to analyzing code.
It does not analyze the whole JAVA language: multithreading
and reflection are not supported and instructions that belong
to either of these categories are silently ignored during anal-
ysis. Fields are always treated as holding an unknown value.
Furthermore, JADET does not implement points-to analysis.
Addressing these issues would improve accuracy of usage
models and can easily be overcome by augmenting the tool.
However, this may hurt our goal of creating a tool that is
practical and scalable to large programs; and it is not certain
whether defect detection would improve as well.

Improved patterns. The patterns we are currently using reflect
only a small part of the knowledge present in models. In par-
ticular, we do not make a distinction between normal and
exceptional returns; we also abstract away most of the struc-
tural information present in the models. For instance, our
patterns can not distinguish between some set of methods
being called a fixed number of times and the same set being
called in a loop, even though this information is present in
the object usage models.

Negative examples. Another possible enhancement is extending
the definition of the pattern to include not only information
about things that are expected to happen, but also information
about things that are expected not to happen. As a simple
motivational example, consider a class that expects its clients
to call one of many “initializer” methods before performing
any other operation. This typically means that clients are
allowed to call exactly one of these methods. Expressing this
fact in patterns would allow us to discover cases where more
than one “initializer” method is called.

Portable models. Right now, identifying patterns and models re-
quires an existing code base that is “mostly correct”. In prac-
tice, it could therefore be helpful to reuse patterns from exist-
ing projects. While this is straight-forward for projects that
use the same classes directly, we are investigating measures
that would account for usage of similar classes, as well as
indirect class usage.

In general, we find that existing software encodes lots of knowl-
edge that can and should be leveraged for improving quality. We
hope that object usage models can make a small, but distinct con-
tribution for leveraging this knowledge.

For future and related work regarding object usage models, see

http://www.st.cs.uni-sb.de/models/
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