The Web of the Future

Gerhard Weikum
weikum@cs.uni-sb.de
http://www-dbs.cs.uni-sb.de

Challenges:
• Performance and QoS Guarantees
• World-wide Failure Masking and Continuous Availability
• Intelligent Information Search

Importance of quality guarantees not limited to Web → e.g., DFG graduate program at U Saarland

From Best Effort To Performance & QoS Guarantees

"Our ability to analyze and predict the performance of the enormously complex software systems ... are painfully inadequate"
(Report of the US President’s Technology Advisory Committee)

• Very slow servers are like unavailable servers
• Tuning for peak load requires predictability of workload × config → performance function
• Self-tuning requires mathematical models
• Stochastic guarantees for huge #clients
 \[P \{\text{response time} \leq 5 \text{ s}\} > 0.95 \]

Example: Video (& Audio) Server
Partitioning of continuous data objects with variable bit rate into fragments of constant time length \(T\)
Periodic scheduling in rounds of duration \(T\)

Stochastic model:
\[T_{\text{total}} = T_{\text{sock}} + \sum_{i=1}^{n} T_{\text{sock}} + T_{\text{trans}} + N \cdot f \cdot \sigma \cdot \text{response} \]
\[\sum_{i=1}^{n} P[T_{\text{total}} > t] \leq \inf \left[e^{-\theta / f} / f \cdot \sigma \cdot \text{response} \right] \]
Chernoff Bound

Auto-configure server: admission control, #disks, etc.

The Need for World-Wide Failure Masking

Please review and place your order
Place your order

Your server command (process id #20) has been terminated. Re-run your command (severity 13) in
/export/home/WWW/your-reliable-eshop.biz/mdb_1300_db.mbl

The Need for Performance and QoS Guarantees

Check Availability
(Look-Up Will Take 8-25 Seconds)

Internal Server Error.
Our system administrator has been notified. Please try later again.

Outline
✓ Performance and QoS Guarantees
✓ Continuous Service Availability
• Intelligent Information Search
• State of the Art & Research Challenges
• Focused Crawling
Crawling, Analysis, and Indexing of Web Documents

- Crawling
- Surfing Internet Cafes
- In Internet cafes with or without Web Suit
- Extraction of relevant words
- Linguistic methods: stemming
- Construction of weighted features (terms)
- Thesaurus (Ontology)
- Index (B-tree)
- URLs

Vector Space Model for Content Relevance

- Query \(q \in \{0,1\}^F \)
- Documents are feature vectors \(d_i \in \{0,1\}^F \)
- e.g., using \(d_i = w_i / \sqrt{\sum w_j^2} \) \(w_i = \frac{freq(f_i, d_i)}{\max freq(f_i, d)} \) \(\log \frac{\# docs}{\# docs with f_i} \)
- Similarity metric: \(\text{sim}(d_i, q) = \sum_{j=1}^{F} d_{ij} \cdot q_j \)

Dimension of a Large-Scale Search Engine

- > 10 Terabytes raw data
- > 10 Mio. terms
- > 150 Mio. queries per day
- < 1 sec. average response time
- < 30 days index freshness
- > 1000 Web pages per second crawled

High-end server farm:
10 000 Intel servers each with
> 1 GB memory, 2 disks, and partitioned, mirrored data, distributed across all servers, plus load balancing of queries, remote administration, etc.

(In-) Effectivity of Web Search Engines

- AltaVista: Fermat’s last theorem
- Google: Moment-generating Functions; Chernoff’s Theorem: http://www.siam.org/catalog/mcc10/bahadur.htm
- Yahoo: Moment-generating Functions; Chernoff’s Theorem: http://www.siam.org/catalog/mcc10/bahadur.htm
- Mathsearch: No matches found.

Dimensions of a Large-Scale Search Engine

- > 10 Terabytes raw data
- > 10 Mio. terms
- > 150 Mio. queries per day
- < 1 sec. average response time
- < 30 days index freshness
- > 1000 Web pages per second crawled

High-end server farm:
10 000 Intel servers each with
> 1 GB memory, 2 disks, and partitioned, mirrored data, distributed across all servers, plus load balancing of queries, remote administration, etc.
From Observations to Research Avenues

Key observation:
yes, there are ways to find what you are searching, but intellectual time is expensive!
→ requires „intelligent“ automation

Research Avenues:
- Structure and annotate information: XML
- Organize documents „semantically“: ontologies
- Leverage machine learning: automatic classification
- More computer time for better result: focused crawling

Goal:
should be able to find results for advanced info request in one day with < 5 min intellectual effort that the best human experts can find with infinite time

Challenge: Expert Web Queries
- Where can I download an open source implementation of the ARIES recovery algorithm?
- Find the text and notes of the western song Raw Hide.
- What are Chernoff-Hoefding bounds?
- Find Fermat’s last/Wile’s theorem in MathML format.
- Are there any theorems isomorphic to my new conjecture? Find related theorems.
- Which professors from D are teaching DBS and have research projects on XML?
- Which Shakespeare drama has a scene where a woman talks a Scottish nobleman into murder?
- Who was the Italian woman that I met at the PC meeting where Moshe Vardi was PC Chair?

Challenge: (Meta-) Portal Building
- Who are the top researchers in the database system community? Who is working on using machine learning techniques for searching XML data?
- What are the most important results in large deviation theory?
- Find information about public subsidies for plumbers. Find new EU regulations that affect an electrician’s business.
- Which gene expression data from Barrett tissue in the esophagus exhibit high levels of gene A01g?
- Are there metabolic models for acid reflux that could be related to the gene expression data?

Outline
✓ Performance and QoS Guarantees
✓ Continuous Service Availability
 • Intelligent Information Search
✓ State of the Art & Research Challenges
 • Focused Crawling

Our Research Agenda

Focused Crawling

critical issues:
 - classifier accuracy
 - feature selection
 - quality of training data

Performance and QoS Guarantees
Continuous Service Availability
Intelligent Information Search
State of the Art & Research Challenges
Focused Crawling

null
Naives Bayes Classifier with Bag-of-Words Model

\[
\begin{align*}
\text{estimate } P(d|c_k) \text{ for } f \text{ as } f \sim P(f|d|c_k) P(d|c_k) \\
\text{with term frequency vector } \vec{f} \\
= \Pi_{c_k} P(f|d|c_k) P(d|c_k) \\
\text{with feature independence} \\
= \Pi_{c_k} \left(\frac{\text{length}(d)}{f_i} \right) P_k^{m_i} \prod_{i=1}^{m} \frac{f_i}{P_k} \\
\text{with multinomial distribution of each feature} \\
= \left(\frac{\text{length}(d)}{f_1 f_2 \cdots f_m} \right) P_k^{m_1} P_k^{m_2} \cdots P_k^{m_n} \\
\text{with binomial distribution of each feature vector and} \\
\begin{cases}
\frac{n}{k_1 k_2 \cdots k_n} & \text{if } \sum_{i=1}^{n} f_i = \text{length}(d) \\
= & \text{otherwise}
\end{cases}
\end{align*}
\]

Example of Naive Bayes (2)

classification of \(d_7\): (0 0 1 2 0 0 3 0)

\[
P(d|c_k) = \frac{m_k!}{f_1! f_2! \cdots f_m!} P_k^{m_1} P_k^{m_2} \cdots P_k^{m_n}
\]

for \(k=1\) (Algebra): \[
6 \left(\frac{f_1^3 f_2^3 f_3^3 f_4}{12^3} \right) = \frac{216}{6} = 36
\]

for \(k=2\) (Calculus): \[
6 \left(\frac{f_1^3 f_2^3 f_3^3 f_4}{12^3} \right) = \frac{216}{6} = 36
\]

for \(k=3\) (Stochastics): \[
6 \left(\frac{f_1^3 f_2^3 f_3^3 f_4}{12^3} \right) = \frac{216}{6} = 36
\]

Result: assign \(d_7\) to class \(C_3\) (Stochastics)

Classification using Support Vector Machines (SVM)

Training:
Compute \textit{separating hyperplane } \(w^T \bar{x} + b = 0\) that maximizes the min.
Distance of all positive and negative samples to the hyperplane

Decision:
Test new vector \(\bar{x}\) for membership in \(C\): \(w^T \bar{x} + b > 0\)

Feature Selection for Hierarchical Classification

Recursively assign new document to best positively tested topic

For topic \(C_i\) based on most discriminative features:
select features \(X\) with highest mutual information
(relative entropy, Kullback-Leibler divergence)

\[
MI(X_i, C_i) = \sum_{X \in \{X_i\}} \frac{P(X \cap C_i) \log \frac{P(X \cap C_i)}{P(X \cap C)}}{P(C)}
\]

Best features for Data Mining (vs. Web IR vs. XML):
mine, knowledge, OLAP, pattern, discov, cluster, dataset, ...

Feature Space Construction & Meta Strategies

\begin{itemize}
\item possible strategies:
 \begin{itemize}
 \item single term frequencies or \textit{i}tfidf with \(n\) n-grams
 \item term pairs within proximity window (e.g., support vector, match anchor......)
 \item text terms from hyperlink neighbors
 \item anchor text terms from neighbors
\end{itemize}
\item meta strategies (over \(m\) feature spaces for class \(k\)):
 \begin{itemize}
 \item unanimous decision: \(C_i = 1\) if \(\sum_{f \in \mathcal{F}} \rho(f, C_i) = m\)
 \item weighted average: \(C_i = 1\) if \(\sum_{f \in \mathcal{F}} \rho(f, C_i) \geq \tau\)
\end{itemize}
\item strategy \(\nu\) with best ratio of estimated precision to runtime cost
\end{itemize}

\[\text{with } \hat{\rho} \text{ estimator } \frac{\hat{\rho}(\nu)}{\hat{\rho}(\nu)} \text{ (Jaccard's) for precision of model } \nu \text{ for class } k \text{ based on leave-one-out training}\]
Link Analysis using Kleinberg’s HITS Algorithm

For web graph $G=(V,E)$ and topic-specific base set $B \subseteq V$ find

good authorities with authority score $x_p = \sum_{(p,q) \in E} y_q$
and good hubs with hub score $y_p = \sum_{(p,q) \in E} x_q$

Iterative approximation of principal Eigenvectors

$\dot{x} = A^T y$
$\dot{y} = A x$

High authority scores indicate good topic representatives

Implementation of the HITS Algorithm

1) Determine sufficient number (e.g., 50-200) of „root pages“ via relevance ranking (e.g., using tf*idf ranking)
2) Add all successors of root pages
3) For each root page add up to d successors
4) Compute iteratively the authority and hub scores of this „base set“ (of typically 1000-5000 pages)
 with initialization $x_i := y_i := 1/|\text{base set}|$
 and normalization after each iteration
 → converges to principal Eigenvector (Eigenvector with largest Eigenvalue in the case of multiplicity 1)
5) Return pages in descending order of authority scores (e.g., the 10 largest elements of vector x)

Drawbacks of HITS algorithm:
• relevance ranking within root set is not considered
• susceptible to „topic drift“ → extended variants of HITS

Experiment on Information Portal Generation (1)

for single-topic portal on „Database Research“

start with only 2 initial seeds: homepages of DeWitt and Gray

goal: automatic gathering of DBLP author homepages
 (with DBLP excluded from crawl)

learning phase for imroved feature selection and classification:
 depth-first crawl limited to domains of seeds
 followed by archetype selection and retraining (for high precision)
harvesting phase for building a rich portal:
 prioritized breadth-first crawl (for high recall)

Experiment on Information Portal Generation (2)

result after 12 hours (on commodity PC):
• 3 mio. URLs crawled on 30 000 hosts, 1 mio. pages analyzed,
• 0.5 mio. pages positively classified
• found 7000 homepages out of 30 000 DBLP authors,
 712 authors of the top 1000 DBLP authors
 with 267 among the 1000 best crawl results

+ postprocessing for querying and analysis:
 • ranking by SVM confidence, authority score, etc.
 • clustering, relevance feedback, etc.

Ongoing and Future Work

• Deep Web exploration with auto-generated queries
• Exploiting ontological knowledge
 e.g.: search for a „woman talking someone into murder“
• Construct richer feature spaces
• Exploiting linguistic analysis methods
 e.g.: „cut his throat“ → act: killing
 subject:... object:...
• Generalized links & semantic joins, e.g., named entities
• Identifying semantically coherent units
• Combining focused crawling with XML search
 → auto-annotation of HTML, Latex, PDF, etc. docs
 → cross-document querying à la XXL
• User guidance & portal admin methodology
• Exploitation of surf trails from user community

Example Ontology (based on WordNet)

woman, adult female – (an adult female person)
⇒ amazon, virago – (a large strong and aggressive woman)
⇒ donna – (an Italian woman of rank)
⇒ geisha, geisha girl – (...)
⇒ lady (a polite name for any woman)
⇒ wife – (a married woman, a man’s partner in marriage)
⇒ witch – (a being, usually female, imagined to have special powers derived from the devil)
Ongoing and Future Work

- Deep Web exploration with auto-generated queries
- Exploiting ontological knowledge
e.g.: search for a “woman talking someone into murder”
- Construct richer feature spaces
- Exploiting linguistic analysis methods
e.g.: “... cut his throat ...”

- Subject: ...
- Object: ...

- Generalized links & semantic joins, e.g. named entities
- Identifying semantically coherent units
- Combining focused crawling with XML search
 → auto-annotation of HTML, Latex, PDF, etc. docs
 → cross-document querying à la XXL
- User guidance & portal admin methodology
- Exploitation of surf trails from user community

Towards “Semantically Coherent” Units

- Teaching: DBS, IR, ...
- Research: XML, Auto-tuning, ...

Summary: Strategic Research Avenues

Challenges for next-decade Web information systems:
- Self-organizing systems built out of self-tuning components
 for performance and differentiated QoS guarantees
- Trouble-free, continuously available Web services
 with perfect failure masking to application programs
- Intelligent organization and searching of information
 based on synergy of DB, IR, CL, ML, and AI technologies
 → large-scale experiments
 → more and better theoretical underpinnings

Conceivable killer arguments:
- Infinite RAM & network bandwidth and zero latency for free
- Smarter people don’t need a better Web