
How to give a good research talk
Andreas Zeller

Goals of the Seminar

• Find your way into scientific cha!enges!

• Structure and present scientific material"

• Train your social and communication skills

The Purpose of your Talk

The Purpose of your Talk

The Purpose of your Talk

• Make the audience read your paper  
(and talk about it)!

• Give them an intuitive feel for your idea"

• Engage, excite, provoke them!

• Make them glad they came

Preparation

• Check the material!

• Identify central topics and claims!

• Outline the talk!

• Make a detailed sketch

Ask Yourself

• Do the claims hold?!

• Are the examples illustrative?!

• Can I do better in presenting?!

• What are the central claims, anyway?!

• And how are they supported?

Ask Yourself

• If someone remembers one thing from
my research talk, what should it be?

The Perfect Talk

• Hug0Pratt!

Your Audience

• Have read all your earlier papers!

• Thoroughly understand Computational
Complexity of Bio-inspired Computation in
Combinatorial Optimization!

• Are eagerly awaiting your latest and greatest!

• Are fresh, alert, and ready for action

have never heard of you
have heard of it, but wish they had not

could not care less

just came back from lunch
and are ready for a nap

Your Audience

Organizing Your Talk

• Motivation!

• Solution (including failures)!

• Results!

• Conclusion

Motivation

• Present the general topic
A vi!age in the woods"

• Show a concrete problem  
(and make it the audience’s problem)
Wicked dragon attacks the peasants"

• Show that the state of the art is not enough
Peasants’ forks can not pierce dragon armor

Solution + Results

• Show new approach and its advantages
Hero comes with vorpal blade and fights dragon"

• Show how approach solves concrete problem
Vorpal blade goes snicker-snick; dragon is slayed"

• Does the approach generalize?
Would this work for other dragons, too? Why?

Examples: Your main Weapon

• Motivate work!

• Convey basic intuition!

• Illustrate idea in action!

• Use examples first, generalize afterwards

Outline

• Tell a story!

• Make slides invisible!

• Use examples, lots of examples!

• Connect to the audience!

• Hope for questions and feedback

Outlines

• Don’t use talk outlines at the beginning!

• Don’t use talk outlines in between!

• Actually, don’t use talk outlines at a!!

• Better: Use a diagram after 5 minutes!

• Think of this diagram as a memorizable image

CHABADA

Checking App Behavior Against App Descriptions

Alessandra Gorla · Ilaria Tavecchia⇤ · Florian Gross · Andreas Zeller
Saarland University

Saarbrücken, Germany
{gorla, tavecchia, fgross, zeller}@cs.uni-saarland.de

ABSTRACT
How do we know a program does what it claims to do? After clus-
tering Android apps by their description topics, we identify out-
liers in each cluster with respect to their API usage. A “weather”
app that sends messages thus becomes an anomaly; likewise, a
“messaging” app would typically not be expected to access the cur-
rent location. Applied on a set of 22,500+ Android applications,
our CHABADA prototype identified several anomalies; additionally,
it flagged 56% of novel malware as such, without requiring any
known malware patterns.

1. INTRODUCTION
Checking whether a program does what it claims to do is a long-

standing problem for developers. Unfortunately, it now has become
a problem for computer users, too. Whenever we install a new app,
we run the risk of the app being “malware”—that is, to act against
the interests of its users.

Research and industry so far have focused on detecting malware
by checking static code and dynamic behavior against predefined
patterns of malicious behavior. However, this will not help against
new attacks, as it is hard to define in advance whether some pro-
gram behavior will be beneficial or malicious. The problem is that
any specification on what makes behavior beneficial or malicious
very much depends on the current context. In the mobile world, for
instance, behavior considered malicious in one app may well be a
feature of another app:

• An app that sends a text message to a premium number to
raise money is suspicious? Maybe, but on Android, this is a
legitimate payment method for unlocking game features.

• An app that tracks your current position is malicious? Not if
it is a navigation app, a trail tracker, or a map application.

• An application that takes all of your contacts and sends them
to some server is malicious? This is what WhatsApp does
upon initialization, one of the world’s most popular mobile
messaging applications.

⇤Ilaria Tavecchia is now with S.W.I.F.T., Brussels, Belgium.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’14 Hyderabad, India
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

1. App collection 2. Topics

"Weather",
"Map"…

"Travel",
"Map"…

"Theme"

3. Clusters

Weather
 + Travel

Themes

Access-LocationInternet Access-LocationInternet Send-SMS

4. APIs 5. Outliers

Figure 1: Detecting applications with unadvertised behavior.
Starting from a collection of “good” apps (1), we identify their
description topics (2) to form clusters of related apps (3). For
each cluster, we identify the APIs used, grouped by related per-
mission (4), and can then identify outliers that use APIs that are
uncommon for that cluster (5).

The question thus is not whether the behavior of an app matches
a specific pattern or not; it is whether the program behaves as ad-
vertised. In all the examples above, the user would be informed and
asked for authorization before any questionable behavior. It is the
covert behavior that is questionable or downright malicious.

In this paper, we attempt to check implemented app behavior
against advertised app behavior. Our domain is Android apps,
so chosen because of its market share and history of attacks and
frauds. As a proxy for the advertised behavior of an app, we use
its natural language description from the Google Play Store. As a
proxy for its implemented behavior, we use the set of Android ap-
plication programming interfaces (APIs) that are used from within
the app binary. The key idea is to associate descriptions and API us-
age to detect anomalies: “This ‘weather’ application accesses the
messaging API, which is unusual for this category.”

Specifically, our CHABADA approach1 takes five steps, illustrated
in Figure 1 and detailed later in the paper:

1. CHABADA starts with a collection of 22,500+ “good” An-
droid applications downloaded from the Google Play Store.

1CHABADA stands for CHecking App Behavior Against Descrip-
tions of Apps. “Chabada” is a French word for the base ternary
rhythm pattern in Jazz.

Slide Contents

• Concentrate on the bare necessities
(e.g. at most 5 bullets per slide)!

• Do not present full sentences on a slide,
because these are far too long and hard to read;
also, they may tempt you in reading them loud.

Death by Powerpoint

Stemming
looking for a restaurant, a bar, a pub or just to have fun in
london? search no more! this application has all the
information you need:
• you can search for every type of food you want: french,
british, chinese, indian etc.
• you can use it if you are in a car, on a bicycle or walking
• you can view all objectives on the map
• you can search objectives
• you can view objectives near you
• you can view directions (visual route, distance and
duration)
• you can use it with street view
• you can use it with navigation
keywords: london, restaurants, bars, pubs, food,
breakfast, lunch, dinner, meal, eat, supper, street view,
navigation

Stemming
looking for a restaurant, a bar, a pub or just to have fun in
london? search no more! this application has all the
information you need:
• you can search for everi type of food you want: french,
british, chinese, indian etc.
• you can use it if you are in a car, on a bicycle or walking
• you can view all objectives on the map
• you can search objectives
• you can view objectives near you
• you can view directions (visual route, distance and
duration)
• you can use it with street view
• you can use it with navigation
keywords: london, restaurants, bars, pubs, food,
breakfast, lunch, dinner, meal, eat, supper, street view,
navigation

look restaur bar pub just fun
london search

search

applic
inform need

can

can
can
can
can
can

can
can

search

search

everi type food

food

want french
british chines indian etc

us car bicycl walk
view object map

object
objectview

view
near

direct visual rout
durat

us
us

street view
navig

keyword london restaur bar pub
breakfast lunch dinner meal eat supper street view
navig

distanc

Stemming

look restaur bar pub just funlondon search applic

inform needcan search everi type food want french

british chines indian etc car bicycl walk

can canus view object map visual rout

searchcan cansearch object view distanc

can objectview neardirectdurat

can canus usstreet view navig

foodkeyword london restaur bar pub view

breakfast lunch dinner meal eat supper street navig

Make Slides Invisible

• Focus on clarity!

• Avoid all that distracts from the message!

• Slides should support your (spoken) word!

• Always prefer diagrams over text!

• Avoid bullet lists (like this one)

“Travel” Cluster

Maths

fh,ε(x, y) = εEx,y

∫ tε

0
Lx,yε(εu)ϕ(x) du

= h

∫
Lx,zϕ(x)ρx(dz)

+ h

[
1
tε

(
Ey

∫ tε

0
Lx,yx(s)ϕ(x) ds − tε

∫
Lx,zϕ(x)ρx(dz)

)

+
1
tε

(
Ey

∫ tε

0
Lx,yx(s)ϕ(x) ds − Ex,y

∫ tε

0
Lx,yε(εs)ϕ(x) ds

)]

= hL̂xϕ(x) + hθε(x, y)
(64)

State abstraction abs:V → S

Concrete state v = (x1, x2, . . . , xn)v ∈ V

xi

with
– Return value of an inspector

Trace t =
[

(v1,m1, v
′

1), (v2,m2, v
′

2), . . .
]

vi ∈ V mi and – name of a mutatorwith

Transition condition
∃(v,m,v

′
) ∈ t · abs(v) = s ∧ abs(v′) = s′

s
m
!→ s

′ s, s′ ∈ Swith iff

Formal Background

Model with transitions s
m
!→ s

′ s, s′ ∈ Sand states

Maths

• Avoid maths.!

• Formulae are for papers, not slides!

• Few people can read + understand complex
formulae in 30 seconds!

• Demonstrate that the formal foundation can
be presented on demand

Examples

• Examples are more important than maths!

• Have one example throughout your talk to
illustrate the key idea!

• Use additional examples for specifics!

• Your audience will get excited by the example –
and read your paper for the full foundations

216 Structural Testing

 { char *eptr = encoded;

char *dptr = decoded;

int ok = 0;

char c;

c = *eptr;

if (c == '+') {

*dptr = ' ';

}

while (*eptr) {

True

*dptr = '\0';

return ok;

}

False

True

int digit_high = Hex_Values[*(++eptr)];

int digit_low = Hex_Values[*(++eptr)];

if (digit_high == -1 || digit_low == -1) {

True

ok = 1;

}

True

else {

*dptr = 16 * digit_high + digit_low;

}

False

++dptr;

++eptr;

}

False

False

 elseif (c == '%') {

else

*dptr = *eptr;

}

int cgi_decode(char *encoded, char *decoded)

A

C

B

D E

F G

H I

L

M

Figure 12.2: The control flow graph of function cgi decode from Figure 12.1

Draft version produced August 1, 2006

A

B

C

D E

GF

H I

L
M

“test”
✔

✔

✔

✔

✔

✔
✔

216 Structural Testing

 { char *eptr = encoded;

char *dptr = decoded;

int ok = 0;

char c;

c = *eptr;

if (c == '+') {

*dptr = ' ';

}

while (*eptr) {

True

*dptr = '\0';

return ok;

}

False

True

int digit_high = Hex_Values[*(++eptr)];

int digit_low = Hex_Values[*(++eptr)];

if (digit_high == -1 || digit_low == -1) {

True

ok = 1;

}

True

else {

*dptr = 16 * digit_high + digit_low;

}

False

++dptr;

++eptr;

}

False

False

 elseif (c == '%') {

else

*dptr = *eptr;

}

int cgi_decode(char *encoded, char *decoded)

A

C

B

D E

F G

H I

L

M

Figure 12.2: The control flow graph of function cgi decode from Figure 12.1

Draft version produced August 1, 2006

A

B

C

D E

GF

H I

L
M

“test”
✔

✔

✔

✔

✔

✔
✔

0

25

50

75

100

Abdeckung

63

216 Structural Testing

 { char *eptr = encoded;

char *dptr = decoded;

int ok = 0;

char c;

c = *eptr;

if (c == '+') {

*dptr = ' ';

}

while (*eptr) {

True

*dptr = '\0';

return ok;

}

False

True

int digit_high = Hex_Values[*(++eptr)];

int digit_low = Hex_Values[*(++eptr)];

if (digit_high == -1 || digit_low == -1) {

True

ok = 1;

}

True

else {

*dptr = 16 * digit_high + digit_low;

}

False

++dptr;

++eptr;

}

False

False

 elseif (c == '%') {

else

*dptr = *eptr;

}

int cgi_decode(char *encoded, char *decoded)

A

C

B

D E

F G

H I

L

M

Figure 12.2: The control flow graph of function cgi decode from Figure 12.1

Draft version produced August 1, 2006

A

B

C

D E

GF

H I

L
M

“test”
✔

✔

✔

✔

✔

✔
✔

“a+b”

✔

0

25

50

75

100

Abdeckung

72

216 Structural Testing

 { char *eptr = encoded;

char *dptr = decoded;

int ok = 0;

char c;

c = *eptr;

if (c == '+') {

*dptr = ' ';

}

while (*eptr) {

True

*dptr = '\0';

return ok;

}

False

True

int digit_high = Hex_Values[*(++eptr)];

int digit_low = Hex_Values[*(++eptr)];

if (digit_high == -1 || digit_low == -1) {

True

ok = 1;

}

True

else {

*dptr = 16 * digit_high + digit_low;

}

False

++dptr;

++eptr;

}

False

False

 elseif (c == '%') {

else

*dptr = *eptr;

}

int cgi_decode(char *encoded, char *decoded)

A

C

B

D E

F G

H I

L

M

Figure 12.2: The control flow graph of function cgi decode from Figure 12.1

Draft version produced August 1, 2006

A

B

C

D E

GF

H I

L
M

“test”
✔

✔

✔

✔

✔

✔
✔

“a+b”

✔

“%3d”

✔

✔

0

25

50

75

100

Abdeckung

91

216 Structural Testing

 { char *eptr = encoded;

char *dptr = decoded;

int ok = 0;

char c;

c = *eptr;

if (c == '+') {

*dptr = ' ';

}

while (*eptr) {

True

*dptr = '\0';

return ok;

}

False

True

int digit_high = Hex_Values[*(++eptr)];

int digit_low = Hex_Values[*(++eptr)];

if (digit_high == -1 || digit_low == -1) {

True

ok = 1;

}

True

else {

*dptr = 16 * digit_high + digit_low;

}

False

++dptr;

++eptr;

}

False

False

 elseif (c == '%') {

else

*dptr = *eptr;

}

int cgi_decode(char *encoded, char *decoded)

A

C

B

D E

F G

H I

L

M

Figure 12.2: The control flow graph of function cgi decode from Figure 12.1

Draft version produced August 1, 2006

A

B

C

D E

GF

H I

L
M

“test”
✔

✔

✔

✔

✔

✔
✔

“a+b”

✔

“%3d”

✔

✔

“%g”

✔

0

25

50

75

100

Abdeckung

100

Diagrams

• Use simple, clear diagrams!

• Convey exactly one message per diagram

App Classi!cation

Predicted as
Malicious!

Predicted as!
Benign

Malicious  
Apps 56 % 44 %

Benign  
Apps 16 % 84 %

With Clusters (our approach)

Correct Classi!cation
With Clusters (our approach)

Malicious Apps

Benign Apps

0 % 25 % 50 % 75 % 100 %

84 %

56 %

Visuals and Animation

• Visuals and animations are ok in diagrams!

• Every other use should be well motivated!

• Do not use them as decorations!

• Do not use them as distractions!

• Avoid overused graphic clichés

What’s Wrong?

Death by Powerpoint

Strive for Simplicity

• Simple messages get across easier!

• Simple examples fit on one slide!

• Simple slides make the audience listen!

• Simple claims tend to be general, too!

• Simple = Hard!

The Talk

• Do not read your slides (from paper or slides)!

• Speak slowly, loudly and clearly!

• Speak persona!y (Use “I”, not “one”)!

• Change your tone – and use pauses

The Jelly Factor

• Every presenter is nervous (and so am I)!

• Legs start shaking!

• Need for air!

• Brain goes into stand-by mode!

• … but nobody will notice, let alone worry

The Jelly Factor

Before the talk:!

• Wash your hands!

• Sit down!

• Go through your slides!

• Memorize the first sentences  
(no brain required)

Your Impression

7 %

38 %
55 %

Body language
Voice
Content

• Tell a story!

• Talk directly to the audience!

• Ask rhetorical questions
(“What should the poor peasants do?”)&

• Search eye contact to audience
(not to slides, not to professor)!

• Convey your own enthusiasm and excitement!

Connect to the Audience

Some Great Presenters

Steve Jobs

Lawrence Lessig

Concluding the Talk

• Refer to the beginning
…and they lived in peace henceforth&

• Summarize
…and the key point is:&

• Open issues
…but there are more dragons that loom in the dark&

• Consequences
If you ever see a dragon, …

Checking App Behavior
Against App Descriptions

Andreas Zeller
Saarland University, Saarbrücken, Germany

Joint work with Alessandra Gorla, Ilaria Tavecchia, and Florian Gross

http://www.st.cs.uni-saarland.de/chabada/

http://www.st.cs.uni-saarland.de/chabada/

Any Questions?

• Good research raises lots of questions!!

• Questions are great to connect to the audience  
and to direct and shape own work!

• The worst embarrassment is
to have no questions at a!

Dealing with Hard Questions

• Repeat question (helpful for audience + gives
time for preparing an answer)!

• In doubt: “I don’t know, but I’ll look into it”!

• Or: “Let’s just take this offline”!

• Be respectful to the audience – 
no punching in the lecture room

Summary

Summary

