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Abstract

In this paper, we explore the question of whether pro-
gram understanding tools enhance or change the way that
programmers understand programs. The strategies that pro-
grammers use to comprehend programs vary widely. Pro-
gram understanding tools should enhance or ease the pro-
grammer’s preferredstrategies, rather than impose a fixed
strategy that may not always be suitable. We present ob-
servations from a user study that compares three tools
for browsing program source code and exploring software
structures. In this study, 30 participants used these tools
to solve several high-level program understanding tasks.
These tasks required a broad range of comprehension strate-
gies. We describe how these tools supported or hindered the
diverse comprehension strategies used.

Keywords: Programcomprehension,programunder-
standingtools, reverseengineering,softwaremaintenance,
softwarevisualization,userstudy.

1 Introduction

It is widely acceptedthat time spentunderstandingex-
isting programsis a significantproportionof the time re-
quiredto maintain,debugandreuseexistingcode.In partic-
ular, programswhich haveevolvedovera numberof years
arevery difficult to understand.Theseprogramshavebeen
maintainedby variousprogrammerswith differentprogram-
mingstylesandmaybeunnecessarilycomplexandlargein
size.To makemattersworse,thesourcecodeof legacysys-
temsmaybetheonly sourceof informationthatis complete
andup to date.

A varietyof techniqueshavebeenproposedtoassistpro-
grammersin the difficult taskof programcomprehension.
In particular, programunderstandingtools aredesignedto
helpprogrammersunderstandsoftwareduringmaintenance.
Thesetools aredevelopedto facilitate the comprehension

strategiesusedby programmersto achievespecificmainte-
nancetasks.However, therearea wide varietyof compre-
hensionstrategiesthatprogrammersuse. For a major task,
maintainersmayneedto switchamonga numberof strate-
gies. Unfortunately, tool designersmayonly havean intu-
itive notionof whatfeaturesarebeneficial.A tool mayim-
posestrategiesthatareunsuitablebecauseof thetypeof pro-
gram,becauseof thekind of task,or becauseof theindivid-
ualuser. Whatis neededareexperimentalobservationsthat
studytheinfluenceof programunderstandingtoolson their
userswhensolving realisticmaintenancetasks. Only then
canwe be surethat thesetools enhancehow programmers
understandprograms.

Oneof our researchgoalsis to developmoreeffective
tools for programunderstanding.Althoughmanyprogram
understandingtoolsalreadyexist,we havenoticedthat the
majority of thesetools have not beenadoptedby indus-
trial maintainers. In general,the testingof the effective-
nessof manytoolshasbeenseriouslylacking.Thevalueof
manyresearchideashavenotbeenadequatelysubstantiated
throughempiricalstudies.In addition,by notevaluatingex-
istingtoolsandapproaches,weareunableto discoverwhich
approachesareeffectiveandefficient,andmoreimportantly,
whichonesarenot. Forthesereasons,wearecurrentlyeval-
uatingseveralprogramunderstandingtoolsthroughaseries
of userstudies,aswell asusingnaturalisticobservationtech-
niques[10] to studysoftwaremaintainersto investigatere-
quirementsfor effective tool supportduringprogramcom-
prehension.

This paperdescribesan experimentin which 30 par-
ticipantswere observedperforminga variety of program
understandingtasksusing threetools: Rigi, SHriMP, and
SNiFF+. Rigi [22] is a reverseengineeringsystemthat
presentssoftwaresubsystemstructuresusing an interac-
tive, multi-window graph editor and displaysthe source
code through separatetext editor windows. The Simple
HierarchicalMulti-Perspective(SHriMP)tool [37] displays
softwarearchitecturaldiagramsusingnestedgraphs. This



interfaceembedssourcecodeinsidethegraphnodesandin-
tegratesahypertextmetaphorfor following low-leveldepen-
dencieswith animatedpanning,zooming,andfisheye-view
actionsfor viewing high-levelstructures.TheSNiFF+sys-
tem[31] is a commercial,integrateddevelopmentenviron-
mentfor C andC++thatprovidessourcecodebrowsingand
crossreferencingfeatures.

Beforeour experiment,we suspectedthateachtool pri-
marily supporteda specificsetof comprehensionstrategies.
To gain someinsight, we focusedon observingthe strate-
giesusedby theparticipantsastheyperformedasetof high-
level programunderstandingtasks. We discusshow well
theseimplicit strategies,embodiedby the tools’ features,
supportedthesetof strategiespreferredby theusers.

As a result of our observations,we conjecturethat to
effectively supportsoftwaremaintenance,programunder-
standingtoolsneedto:

� supporta combinationof comprehensionstrategies;
� providewaysto easilyenterandeffortlesslyswitchbe-

tweenstrategieswhile solvinga task;and
� reducecognitiveoverheadastheprogramis explored.

Section2 outlinesseveralcognitivemodelsof program
comprehensionthathavebeenproposed.Section3describes
theevaluatedtoolsandSection4 detailstheexperimentde-
sign. Section5 reportson a numberof observationsthat
aroseastheuserstried to solveseveralcomprehensiontasks
with thetools.Section6 interpretstheobservationsanddis-
cusseshowwell thetoolssupportedvariouscomprehension
strategies.Finally, Section7 concludesthepaper.

2 Program Comprehension

Researchershave conductedmany studiesto observe
how programmersunderstandprograms.As a result,sev-
eralcognitivemodelsof programcomprehensionstrategies
havebeenproposedto describethe behaviorof thesepro-
grammers.

2.1 Strategies

Bottom-up. Shneiderman[30] proposedthatprogramsare
understoodbottom-up, by readingsourcecode and then
mentallychunkinglow-level softwareartifactsinto mean-
ingful, higher-levelabstractions.Theseabstractionsarefur-
thergroupeduntil ahigh-levelunderstandingof theprogram
is formed.

Pennington[23] also observedprogrammersusing a
bottom-upstrategyinitially gatheringstatementandcontrol-
flow information. Thesemicro-structureswere chunked
andcross-referencedby macro-structuresto formaprogram
model. A subsequentsituation model was formed, also

bottom-up,usingapplication-domainknowledgeto produce
a hierarchyof functionalabstractions.

Top-down. Brooks[5] suggestedthatprogramsareunder-
stoodtop-down, by reconstructingknowledgeabouttheap-
plicationdomainandmappingthatto thesourcecode.This
strategybeginswith aglobalhypothesisabouttheprogram.
This initial hypothesisis refined into a hierarchyof sec-
ondaryhypotheses.Verifying or rejectinga hypothesisde-
pendsheavilyonthepresenceor absenceof beacons (cues).

SolowayandEhrlich[32] observedthatatop-downstrat-
egyis usedwhentheprogramor typeof programis familiar.
Theyalsoobservedthatexpertprogrammersrecognizedpro-
gramplansandexploitedprogrammingconventionsduring
comprehension.

Knowledge-based. Letovsky[18] theorizedthatprogram-
mersareopportunisticprocessorscapableof exploitingei-
therbottom-upor top-downcues.Thistheoryhasthreecom-
ponents:a knowledgebasethatencodesthe programmer’s
applicationandprogrammingexpertise;amentalmodelthat
representsthe programmer’s currentunderstandingof the
program;andanassimilationprocessthatdescribeshowthe
mentalmodelevolvesusing the programmer’s knowledge
baseandprograminformation.

Inquiry episodes area key partof theassimilationpro-
cess. Such an episodeconsistsof a programmerasking
a question, conjecturingan answer, and then searching
throughthe codeanddocumentationto verify or rejectthe
conjecture.

Systematic and as-needed. Littman et al. [20] observed
thatprogrammersuseeithera systematic approach,reading
thecodein detailandtracingthroughcontrolanddataflow,
or theyuseanas-needed approach,focusingonlyonthecode
relatedto thetaskat hand.

Soloway et al. [33] combinedthesetwo theoriesas
macro-strategiesaimedto understandthesoftwareatamore
globallevel. In thesystematicmacro-strategy, theprogram-
mertracestheflow of thewholeprogramandperformssim-
ulationsasall of thecodeanddocumentationis read.How-
ever, this strategyis lessfeasiblefor larger programs. In
themorecommonlyusedas-neededmacro-strategy, thepro-
grammerlooks at only what they think is relevant. How-
ever, moremistakescouldoccursinceimportantinteractions
mightbeoverlooked.

Integrated approaches. Von MayrhauserandVans[41]
combinedthe top-down,bottom-up,andknowledge-based
approachesinto asinglemetamodel.Theyproposedthatun-
derstandingis built concurrentlyatseverallevelsof abstrac-
tionsby freely switchingbetweenthethreecomprehension
strategies.
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VonMayrhauserandVans[41] combinedSoloway’stop-
downmodelwith Pennington’sprogramandsituationmod-
els. In theirexperiments,theyobservedthatsomeprogram-
mersfrequentlyswitchedbetweenall threeof thesemod-
els.Theyformulatedanintegratedmetamodelwhereunder-
standingisbuilt concurrentlyatseverallevelsof abstractions
by freelyswitchingbetweenthethreecomprehensionstrate-
gies.

2.2 Factors affecting comprehension strategies

Most researchersrealizethat certainfactorswill influ-
encethecomprehensionstrategyadoptedby a programmer
[35, 39]. Thesefactorsalsoexplaintheapparentlywidevari-
ationin thecomprehensionstrategiesdiscussedabove.The
variationsareprimarily dueto:

� differencesamongprograms,
� aspectsof thetaskathand,and
� variedcharacteristicsof programmers.

To appreciatehowprogrammersunderstandprograms,these
factorsmustbeconsidered[35]. Thesefactorsarefurtherex-
ploredin Section4 within thecontextof ourexperiment.

With experience,programmers“know” whichstrategyis
themosteffectivefor thegivenprogramandtask.A change
of strategymaybeneededbecauseof someanomalyof the
programor somepeculiarityof therequestedtask.Program
understandingtools shouldenhanceor easethe program-
mer’s preferred strategies,ratherthanimposea fixed strat-
egythatmaynotalwaysbesuitable.

Thenextsectiondescribesthreetoolswhichcanbeused
to browsesourcecodefor programunderstandingandsoft-
waremaintenancepurposes.

3 Program Understanding Tools

Understandinga softwareprogramis often a difficult
processbecauseof missing,inconsistent,or eventoo much
information.Thesourcecodeoftenbecomesthesolearbiter
of howthesystemworks. Many softwarevisualizationand
browsingtools provide information that is useful for pro-
gramunderstanding.Softwarevisualizationtoolsusegraph-
ical andtextualrepresentationsfor thenavigation,analysis
andpresentationof softwareinformationto increaseunder-
standing[25]. For instance,severalsoftwarevisualization
toolsshowanimationsto teachwidely usedalgorithmsand
datastructures[2, 7, 6, 8, 29, 34,36]. Anotherclassof tools
showsthe dynamicexecutionof programsfor debugging,
profiling andfor understandingrun-timebehavior[15, 28].
Othersoftwarevisualizationtoolsmainly focusonshowing
textualrepresentations,someof whichmaybepretty printed
to increaseunderstanding[1, 13]orusehypertextin aneffort

to improvethe navigabilityof the software[24]. Typogra-
phyplaysasignificantrole in theusefulnessof thesetextual
visualizations.

Manytoolspresentrelevantinformationin theform of a
graphwherenodesrepresentsoftwareobjectsandarcsshow
the relationsbetweenthe objects. This methodis usedby
PECAN [27], Rigi [22], VIFOR [26], Whorf [16], CARE
[19], Hy+ [21] andImagix4D[14] tools.Othertoolsusead-
ditionalprettyprintingtechniquesor otherdiagramstoshow
structuresor informationaboutthesoftware.For example,
theGRASPtool usesa control structure diagram to display
controlconstructs,controlpathsandtheoverallstructureof
programmingunits[9].

Thissectiondescribesthreeprogramunderstandingtools
in detailthatwestudiedin theuserexperiment.

3.1 Rigi

Rigi is a programunderstandingtool thatsupportsa re-
verseengineeringapproachconsistingof parsinganddis-
coveryphases[22]. Parsingthesubjectsourcecoderesults
in aflatresource-flowgraphthatismanipulatedandexplored
using a grapheditor. The subsequentdiscoveryphaseis
semi-automaticandinvolvespattern-recognitionskills and
domainknowledge,where the reverseengineeridentifies
subsystemsin the flat graphthat form meaningfulabstrac-
tions. Thesesubsystemscan be recursivelycollapsedto
build a layeredhierarchy. This hierarchyservesasa back-
bonefor navigationalpurposesin thetool.

In Rigi, a subsystemcontainmenthierarchyis presented
using individual, overlappingwindows that eachvisually
display a specificslice of the hierarchy. Overview win-
dowsshowthesubsystemhierarchyin atree-likeform,with
arcsbetweenlevelstoshowcontainment.Childrenwindows
show the children nodescontainedin a subsystem. Pro-
jectionwindowsflattena (sub)hierarchyinto a singleview.
Nodesandarcsin thesewindowscanbefilteredby type,and
theycanbeselectedby nameandhighlightedusingasearch
dialog. However, Rigi doesnot directly supportsearching
throughthesourcecodetext. Nodeandarcinformationwin-
dows providea detailedreport of local dependenciesand
neighboringnodes.Text editorwindowscanbeopenedfor
certainlow-levelnodestoshowtherelevantsourcefile, posi-
tionedto thestartof theappropriatecodefragment.Thewin-
dowsareall distinguishedby labelsin their title bars. Fig-
ure1 showssomeof thewindowtypesandtoolsin Rigi.

Rigi’s main focusis its supportfor uncoveringsubsys-
tem abstractionsandthe creationof subsystemhierarchies
Thisinformationcanbeusedasaform of documentationfor
subsequentprogramunderstandingduringsoftwaremainte-
nance.In theexperimentdescribedin thispaper, weconsid-
eredhow Rigi couldbeusedfor browsingpreviouslycom-
posedhierarchiesof subsystemabstractions.
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Figure1: TheRigi System.
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Figure2: A SHriMPView.
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3.2 SHriMP views

For exploringsoftware,theSHriMP visualizationtech-
nique[37] usesanested-graphformalism[12] to presentthe
structureof a softwaresystemin a singlewindow. A nested
graphhascomposite nodes thatcontainothernodes,forming
a hierarchicalstructurethat canbenavigated.Thesecom-
positenodestypically representsoftwaresubsystemsandare
openedto showtheir childrenby doubleclicking them. In
a nestedgraph,a composite arc representsoneor morearcs
betweenlower-levelnodesin thehierarchy. A compositearc
canbeopenedby doubleclicking it to showtheconstituent
arcs(someof whichmayalsobecomposite).

TheSHriMPtechniqueintegratesfisheye-view[11] and
pan+zoom[3] approachesfor magnifyingnodesof interest
in the graph. A fisheyeview simultaneouslydisplaysboth
contextanddetail,with objectsof interestmagnifiedandless
relevantobjectsdemagnified.Thepan+zoomapproachal-
lows theuserto panandzoomaroundtheview withoutdis-
tortion,butcritical informationmightbepannedoff theedge
of the view. Thenagain,sometasksmay not needmuch
for contextualcuesas the programmerfocuseson a well-
localizedfragmentof programcode.

As with Rigi, certainlow-levelsoftwareartifactsaretied
to specificfragmentsof sourcetext (e.g.,a functionbody).
For SHriMP, however, thesecodefragmentsaredisplayed
within the nodesof the nestedgraph. Moreover, function
calls,datatypereferences,andvariablereferencesarepre-
sentedasclickablehypertextlinks in thefragments.SHriMP
integratesthis hypertextmetaphorfor following low-level
dependencieswith animatedpanning,zooming,andfisheye-
view actionsover the nestedgraph. Consequently, follow-
ing a link to anotherfunction pansand zoomsthe view
so that this function’s code is presentedwithin its node.
Alternatively, the usercan view the hypertextcodeusing
the NetscapeNavigatorweb browser. SHriMP currently
lacksasearchingtool, hasnofiltering capability, andis still
somewhatunreliable. Figure 2 showsa SHriMP view of
a Monopolyprogram(the testprogramusedin our experi-
ments).

3.3 SNiFF+

SNiFF+is acommercialsoftwaredevelopmentenviron-
mentthatprovidesprojectmanagement,sourcecodebrows-
ing, crossreferencing,andsearchingfeatures[31]. These
featuresareaccessedthroughseveralintegratedtools,each
with awindowcontainingmenusof options.Thesetoolsop-
erateon a symboltable that is generatedby SNiFF+ from
parsingthesourcecode.

The ProjectWindow lists the headerand implementa-
tion filesof theprogram.Thellllll Browseraccessesthe
symboltableto displaylistsof functions,constants,macros,

variables,etc. Thesesymbolscan be filtered by namein
the lists. The SourceEditor window displaysa view of
thesourcecodewith coloringof somesyntacticconstructs.
The CrossReferencerwindow displaysa dependencytree
of whata symbolrefersto or is referredby. The Retriever
window displaysthe resultof a textualsearchthroughthe
sourcecode.To managethemanywindows,ausercanreuse
anexistingwindow;to avoidreusingawindow, theusercan
“freeze” its contentsby clicking acheckboxonthewindow.
Thewindowsareall distinguishedby labelsin theirtitle bars
anddifferencesin interior layout. Figure3 showssomeof
thewindowtypesandtoolsavailablein SNiFF+.

4 User Study

This sectiondescribesa userstudy to evaluatethe ef-
fectivenessof threeprogramunderstandingtools on typi-
cal,high-levelprogramunderstandingtasks.Thisstudywas
conductedat theUniversityof Victoria in Spring1997.

4.1 Goals

We hadfour maingoalsin mind.

1. Studythe factorsaffecting the participant’s choiceof
comprehensionstrategy(seeSection2.2).

2. Observewhetherthe threetools would effectively en-
hancetheparticipant’spreferredcomprehensionstrate-
gieswhile solvingthetasks.

3. Devisea frameworkfor characterizingthemoreeffec-
tive tools.

4. Providefeedbackfor thedevelopersof theseandother
similar tools.

4.2 Participants

For theexperiment,30 participantswererecruitedfrom
a computersciencecourseon human-computerinteraction
at theUniversityof Victoria. Five of theparticipantswere
graduatestudentsand 25 were senior undergraduatestu-
dents. Prior to the actualexperimentalsessions,we asked
eachparticipantto completeaquestionnaireabouttheirpro-
grammingexperienceandrelevantdomainknowledge.

4.3 Experimental design

Threeprogramunderstandingtools,Rigi, SHriMP, and
SNiFF+werecompared.Eachtool interfacewastestedby
askingtheparticipantsto completea seriesof programun-
derstandingtasksunder controlledand supervisedcondi-
tions. The 30 participantswere randomlyassignedto the
threetools.
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Figure3: TheSNiFF+SoftwareDevelopmentEnvironment.
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A two-hoursessionwith eachof the participantscon-
tainedsix time-limited phases:orientation(5 min), train-
ing tasks(20min), practicetasks(20min), formaltasks(50
min), post-studyquestionnaire(15 min), andpost-studyin-
terviewanddebriefing(10min).

Orientation

The experimenterbeganthe experimentby briefly orient-
ing the participant. Eachparticipantwasremindedof the
purposeof theexperiment—toevaluatetheeffectivenessof
a programunderstandingtool. The participantwould also
learnsomebasicfeaturesof a tool to helpunderstandsoft-
ware.Thedifferentphasesof thesessionwereoutlinedand
the participantwas assuredthat the collectedinformation
wouldremainanonymous.Also,wementionedthatthepar-
ticipantshouldnotfeelunduepressuretoproducethe“right”
answeror feel rushedto finish all the tasksin the limited
time. We weremoreinterestedin observinghow thegiven
tool wasusedto solvea particulartask.

Training

During the training phase,the experimenterdemonstrated
a predefinedsubsetof the tool’s features—minimal,but
enoughfor theupcomingtasks. Defining a suitablesubset
of featureswasnecessary. Omittedbut availableessential
featurescouldaffect thecomprehensionstrategyof thepar-
ticipant. Too manytool featurescouldoverloadanddisori-
enttheuser. We tried to strikea workabletradeoff, takinga
flexible approachof explainingconvenience featuresasap-
propriateto receptiveusers.

Toward the end of training, the experimenterdemon-
stratedhowto solvesomesimplequeriessuchasfindingall
functionscalledby main() in a smallC program.

Practice tasks

The purposeof the practicetaskswasto allow the partici-
pantto becomefamiliar with thetool andits finer pointsin
a freestylesetting. The participantwasencouragedto ex-
plore andaskquestionsaboutthe tool. The practicetasks
involvedusingtheassignedtool to browsea Hangmanpro-
gramwrittenin C.Thisprogramcontained300linesof code
in 12 files. Thesetasksprogressedin difficulty to allow the
participantto graspthetool featuresandcombinethemap-
propriately. Forexample,onepracticetaskrequiredthepar-
ticipantto discoverthepurposeof avariablecalledErrors
andto find thefunctionsusingthis variable.

Formal tasks
During the formal part of the session,the participantper-
formedseveraltaskson a Monopolygameprogram.These
taskswere videotaped(with the participant’s permission)

andtheexperimenterrecordedobservations.Theparticipant
wasencouragedto “think-aloud” astheydid thetasks.The
formal tasksweredesignedto be typical of what a main-
tenanceprogrammerwould be askedto do. Also, these
tasksweredistinctly differentandsomewhatbroaderthan
the training andpracticetasks. We did not want the par-
ticipantto merelymimic a similar solutionfrom a previous
task.After all, wewereinterestedin observinghowthepar-
ticipantwouldchooseto solvethesetaskswith theassigned
tool. Theseobservationsarereportedin Section5.

Questionnaire
Uponfinishingtheformaltasks,theparticipantwasaskedto
completea brief usabilityquestionnaire.Thequestionnaire
consistedof 15 questionsin five setsof three. The ques-
tionsin a setwereactuallysubtlerewordingsof eachother,
a commonlyusedtechniqueto offsetthechancethata sub-
ject might misinterpreta questionandsupplyanerroneous
answer. All thequestionswererandomlyordered.Thesets
weredesignedto gatheropinionson:

1. overalleaseof use,

2. pleasantnessof use,

3. confidencein resultsgenerated,

4. ability to generateresults,and

5. ability to find dependencyrelationships.

The questionnairealsoprovideda spacefor generalcom-
ments.

Interview and debriefing
Finally, an informal interview was conductedto stimulate
the participantinto revealingthoughtsnot expressedwhile
answeringthequestionnaire.

4.4 Experimenter’s handbook

A detailedexperimenter’shandbookwaswrittenfor each
tool to providesomeconsistencyandcontrolover the run-
ning of eachexperimentalsession. Generalinstructions
(commonto all tools) outlined the structureof the exper-
iment, the rulesof conduct,and variousproceduresto be
followed by the experimenter. Tool-specificdescriptions
containeddetailedinstructionsfor eachof the experimen-
tal phases.Forexample,thedescriptionsof thetrainingand
practicetasksdetailedthefeaturesto betaught.Attachedto
thehandbookwereformstobefilled outby theexperimenter
(observationsandinterviewquestions)andbytheparticipant
(formal taskquestionsandusabilityquestionnaire).A fresh
copyof thehandbookwasusedfor eachsession.
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4.5 Experimental variables

This subsectionexploressomeof thefactorsthatwould
affect theparticipants’performanceandchoiceof compre-
hensionstrategyin ourexperiment.

Test program
The formal tasks involved understandinga text-based,
Monopolygameprogram,written in C. This programcon-
tains1700lines of codein 17 files, with only sparsecom-
ments.Thecontrolflow of this programis fairly complex,
dueto somegotosandatableof functionpointersfor most
commandsin thegame.

For Rigi andSHriMP, oneof theauthorscreateda sub-
systemhierarchyfor MonopolyusingtheRigi grapheditor.
The subsystemsweremostly basedon the modularization
of thesourcecodeinto files. Higher-level subsystemswere
formedto gatherrelatedmodulestogetherandsimplify the
graph. The selectionof meaningfulsubsystemnameswas
particularlyimportant.

Task complexity
Wetriedto devisehigher-levelprogramunderstandingtasks
for theformal tasks.Sometasksrequiredtheparticipantto
understandpart of the programto answera questionabout
its functionality. For example,one taskaskedthe partici-
pantto determineif acertainfeaturewasimplementedin the
program.Othertasksrequireda deeperunderstanding,ask-
ing the participantto describehow to changethe program
to implementa new feature. For example,onetaskasked
theparticipantto describehowto changearule in thegame.
However, sincetheusersdid not actuallyneedto makethe
changes,theycouldtakeanonchalantapproachto themain-
tenancetasksandmakeeducatedguessesat the solutions.
Observationsfor mostof the assignedtasksaredetailedin
Section5.

User expertise
Thelevelof expertiseandskill affectsa user’sperformance
by contributingsignificantlyto understandinga programor
learninga tool’s interface.A pre-studyquestionnaireasked
aboutC programmingexperience,maintenanceexperience,
numberof yearsasaprogrammer, experiencewriting games,
etc. However, it hasbeenshownthat programmingexpe-
riencedoesnot correlatehighly with programmingprofi-
ciency[40].

Domain knowledgeabout the Monopoly board game
could be an assetby providing usefulpreconceptions.To
strive for consistencyacrossparticipants, we set up a
Monopolyboardbesideeachparticipantand,if needed,ex-
plainedtherulesof thegame.Weencouragedthemtoreview
therulesandusetheboardthroughouttheformal tasks.

In thefollowing section,wereportonsomeobservations
from theformal tasksin thestudy.

5 Results

In this section,we describesomeobservationsfrom the
formal tasks,an analysisof the questionnaires,andsome
findingsfrom theinterviews.

5.1 Formal Tasks

Due to the focus on complextasks,the most interest-
ing resultswerein observinghow the usersperformedthe
programunderstandingtaskswith theassignedtool andthe
Monopolyprogram.

The formal tasksresultedfrom a brainstormingsession
amongtheexperimenters.Theyweredesignedwithout de-
tailed knowledgeof the code,and were thereforenot tai-
loredto suit thecodeor theprogramstructure.Therewere
seventasksin threeclasses:preparatory(Tasks1 and2),
high-levelprogramunderstanding(Tasks3,4, 7),andmain-
tenance(Tasks5 and6).

Theterms”some”, ”many” and”a few” areusedto de-
scribepatternsof tool usagesandbehaviours.Exactnum-
berswerenot possiblebecausethreeusersrequestednot to
bevideotaped.

Task 1: Look at the real Monopoly game until you under-
stand the general concept and rules of the game. Have you
played Monopoly before?

This taskqueriedtheamountof Monopolyknowledgethat
eachuserhad.All users(exceptone)werefamiliar with the
game. We did not askthis questionin the pre-studyques-
tionnairetoavoidinggivingahint thatMonopolyknowledge
wouldbeuseful.

Task 2: Spend a while browsing the program using the
provided software maintenance tool and try to gain a high
level understanding of the structure of the program.

For this task,wesawa hugevariationin approaches.Some
usersspentaslittle astwominutesandthenaskedtocontinue
with thenexttask,whereasothershappilyspent20minutes
or morebrowsingtheprogram.Usersbrowsingtheprogram
in detailsetthemselvesa taskor goal for understandingthe
program.Interestingly, someuserspredictedtasksthatwere
to follow.

In SNiFF+, one typical approachwasto usethe Sym-
bol Browserandselectthemain() functionfrom thelist of
functions.Oncefound,theuserswouldreadthesourcecode
of thefunctionandfollow callsto otherfunctions,perusing
themto varyinglevelsof detail.
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Mostof theRigi andSHriMPusersspenta few minutes
viewingthevisualdisplayof thesubsystemhierarchybefore
readinganycode.In Rigi, manyusersstartedby openingan
Overviewwindow to displaythe hierarchy. Two usersno-
ticed that the Play subsystemwasthe deepestin the hier-
archyandguessedthat this subsystemwould beimportant.
Othersthoughtthat theGeneralGlobals subsystemwould
beimportant.

In SHriMP, thevisible subsystemswerefocal pointsfor
furtherexploration.Of particularinterestweretheControl,
Setup, Play, DataStructures and GeneralGlobals sub-
systems.Someuserswould jump quickly to thecode,read
thecodefor main(), andfollow a few hyperlinksto other
calledfunctions,referenceddatastructures,oraccessedvari-
ables.Somewouldthenreturntoahigh-levelviewandopen
othersubsystemnodesto exploredetailsin otherpartsof the
hierarchy.

Task 3: In the computer game, how many players can play
at any one time?

In Monopoly, the main() function calls the
getplayers() function, which most users exam-
ined. The getplayers() function promptsthe player
to enter a numberbetweenone and nine for the desired
numberof players. The enterednumberis thencompared
to MAX PL (amacrodefinedin themonop.h headerfile).

In SNiFF+,theuserslookedfor MAX PL usingtheSym-
bol Browser. However, theyoftenthoughtthatMAX PLwas
a constantor variableanddid not think to checkthe list of
macros. As a last resort,someusersusedthe Retrieverto
find thedefinitionof MAX PL.

The parserusedby Rigi and SHriMP to generatethe
graphsdid not emit information about macros. Conse-
quently, therewasno MAX PL nodein the graph. In Rigi,
someuserstried to use its name-basedselectionfeature
to find a MAX PL node. Since this node did not exist,
mostusersthenresortedto searchingfor “*.h” nodesand
openingthe correspondingheaderfiles oneby one. They
skimmedor searchedthrougheachfile to find theMAX PL
macro. Most usershad difficulties seeingthe highlighted
“*.h” nodesin theOverviewwindow, becauseof thesmall
sizeof thenodes.Rescalingthenodeslargerwasa cumber-
someactionin Rigi.

In SHriMP, theusersalsowantedto searchfor thedef-
inition of MAX PL andthusfound the lack of a searchtool
frustrating.Withoutasearchtool, theusersresortedto pick-
ing out thenodesthatrepresentedheaderfiles. Thisprocess
wasfeasiblesincetherewereonly 17filesanda few header
files. Someuserssaidthat thereshouldhavebeena hyper-
link from theoccurrenceof MAX PL to its definition.How-
ever, the parsercould not producethis informationfor the
hypertextgenerator.

Task 4: Does the program support a “computer” mode
where the computer will play against one opponent?

FromTask3,manyusersrecalledthatthegetplayers()
functionpromptedfor oneto nineplayers.This ledmanyto
believe,incorrectly, thattheprogramsupporteda computer
mode. However, mostusers(with someprodding)decided
to checktheirhypothesisby studyingthecodefurther.

In SNiFF+andRigi, themainstrategywastosearchfor a
stringsuchas“computer,” “auto,”or “AI.” OneSNiFF+user
lookedin the SymbolBrowserfor a file that implemented
themode.OneRigi userguessedthattheremightbestrings
like “your turn” and“my turn.” Sincetherewasnocomputer
mode,thesesearchesdid not yield anythinguseful. Conse-
quently, mostSNiFF+andRigi usersreadthe codesome-
whatsystematicallyby following thecontrolflow andlook-
ing for clues. The lack of anybeaconsto supporttheir hy-
pothesisled theusersto concludethemodedid not exist.

In SNiFF+, therewere severalways to get the defini-
tion of a calledfunction (somemoreconvenientthanoth-
ers). Typically, usersusedthe SymbolBrowser, Retriever,
or CrossReferencer. However, mostuserspreferreda hy-
pertextapproachof clickingordouble-clickingonafunction
call andjumping to the called function’s definition. They
wereperplexedthat this did not “work.” Actually, this ac-
tion canbeinvokedfrom a menubutwasintentionally(and
perhapsunfortunately)left off ourminimalfeaturesubsetfor
training. In mostinstances,we taughtthisconveniencefea-
turelaterin theexperimentto avoidanyunduefrustration.

In Rigi, readingcodesystematicallyby following the
controlflow is quitecumbersome.Theusershadto usethe
searchdialog, enterthe nameof the called function, click
a button to highlight its node,locatethat nodevisually in
a crowdedOverviewwindow, anddouble-clickthenodeto
opena texteditoronthesourcefile containingthefunction.
Going from an artifact in a graphwindow to its codein a
texteditorwashardenough;doingtheoppositewasnoteven
supported.This lack of integrationwasvery annoyingto
someusers.

In SHriMP, thelackof asearchfeaturewasfrustratingfor
theusers.Theycouldnot quickly look for a beaconor cue
to verify their belief in a computermode.Theseuserswere
forcedto browsethecodeandfollow functioncallssystem-
atically. However, this browsingwasfairly easy, aidedby
clickablehyperlinksin thecodefrom functioncalls to their
functionbodies.Theanimatedviewseemedtohelptheusers
maintainasenseof orientationwhile browsingtheprogram.

Task 5: There should be a limited total number of ho-
tels and houses; how is this limit implemented and where is
it used? If this functionality is not currently implemented,
would it be difficult to add? What changes would this en-
hancement require?
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In therealMonopolygame,thereare32housesand12 ho-
tels.Thelimited totalnumberof housescanbeusedby sea-
sonedplayersin their playingstrategy. Forexample,by us-
ing up all thehousesandnot building hotels,otherplayers
maybepreventedfrom gettinghousesfor their properties.

This taskwasparticularlyinterestingsincetheselimits
werenot implementedin the program. Also, hotelswere
implicitly representedasfive houses,makingthe required
changesmoredifficult thanfirst expectedby theusers.

The participantsfirst looked for someevidenceof the
total limits. In SNiFF+,this involvedsearchingfor strings
suchas“max,” “house,”and“hotel” in thesourcetext. A
fewusersexploitedtheirMonopolyknowledgeandsearched
for “32” and “12.” In SNiFF+, the Retriever returned
62 matchesfor “house,” but only one for “hotel” (in a
printf() string).Theusersquickly realizedthatthehotel
limit waslikely not implemented.Whenthesearchstrategy
failed to quickly produceananswer, the usersswitchedto
lookingatheaderfilesfor possiblehints,suchasrelatedcon-
stantsor macros.Whenno limits wereclearlyevident,the
usersresortedtobrowsingthesourcecodesystematically. A
similar initial processoccurredfor theRigi users.

In SNiFF+,theusersbrowsedthehouses.cfile, which
seemedappropriatefor finding thehouselimit sinceit con-
tained the functions buy houses() and buy h() for
buyinghouses.However, oneor two usersdid not immedi-
ately think of browsinghouses.c andbecamefrustrated
trying to find anyrelevantcode.

In Rigi and SHriMP, the subsystemcalled Buy-
ing&Selling was an important cue, which most users
noticed.TheRigi usersspenta lot of time lookingat nodes
in the Overviewwindow and openingChildren windows,
whereasthe SHriMP usersfound the relevantnodesmore
quickly. This was perhapsdue to easiernavigation in
SHriMP and becauseRigi hides node labels by default
in Overview windows. The Buying&Selling subsystem
containeda House subsystem,which in turn containedthe
buy houses() andbuy h() functionnodes.

Oncethe usersfound the housebuying functions,they
wereeasilyableto suggesttheappropriatechangesin fairly
generalterms. However, mostusersfailed to mentionthat
thecodefor sellinghouses(andbreakingup hotels)would
alsoneedto beconsidered.

Task 6: Where and what needs to be changed in the code to
implement a new rule which states that a player in jail (and
not just visiting) cannot collect rent from anyone landing on
his/her properties?

As peopleplay Monopoly, they may follow popularvaria-
tionsto theofficial rules[4]. Implementingsuchavariation
in theprogramwould bea realisticmaintenancetask. This
taskaskstheuserto implementa variationwhereplayersin

jail losetheircitizenship.
A high-levelsolution is that whena player landson a

propertywith housesorhotels,checkif theproperty’sowner
is in jail. Therefore,to fulfill this task in moredetail, two
piecesof codeneededto belocated:

1. codeto determineif a playeris in jail (andnot justvis-
iting), and

2. codeto tracka player’spositionon theboard.

We sawtwo basicapproachesusedto solvethis task,with
somelookingfor jail relatedcodefirst andotherslookingfor
playerpositioncodefirst. We suspecttheorderingof words
in thetaskor userexperiencewith boardgameprogramshad
aneffect.

A commonmistakewasthatmanyusersproposedcheck-
ing whetherthecurrentlyactiveplayerwasin jail (andper-
hapscheckingif otherplayerslandonhisproperties).Some
realizedthis approachwaswrongandswitchedto thehigh-
levelsolutionabove.

By thisstagein thetasks,mostusersunderstoodthatthe
programcontaineda playerdatastructure. Many guessed
that therewould bea field to recordif a playerwasin jail.
Therewereactuallytwo relatedfields: in jail andloc.
Manyusersmistakenlysuggestedthatthein jail variable
beused.However, thisvariablecountedthenumberof turns
thata playerhadbeenin jail anddid not accuratelyreflect
whetherthe playerwasin jail. Theloc field shouldhave
beencomparedtoamacrocalledJAIL to testif aplayerwas
truly in jail. Very few usersnoticedthis subtlety.

Manyuserscorrectlyguessedthattheyneededtofindthe
rent functions,to adda condition for not payingrent to a
userin jail. Thechangeneededto beaddedto therent()
functiondefinedin therent.c file. The top of this func-
tion alreadyhasa condition for not payingrent when the
ownerof the propertyhasthe propertymortgaged.Some
usersrealizedthe similarity of this conditionwith the nec-
essarychange.

In SNiFF+,therent.c file wasevidentin afile listing.
In Rigi andSHriMP, however, theRent subsystemwasper-
hapspoorlyplacedin theBuying&Selling subsystem(or the
latterpoorlynamed).PlacingtheRent subsystemhigherin
thehierarchymight havehelped.Interestinglyenough,this
didnotseemtoundulyimpacttheseusers(perhapschalleng-
ing theimportanceof higher-levelsubsystemsfor relatively
smallprograms).In SHriMP, theusersbrowsedtheMoving
subsystem,zoomedinto theshow move() functioncode,
thenfollowed a hyperlink to rent(). In Rigi, the users
searchedfor therent() functionby name.

Task 7: Overall, what was your impression of the structure
of the program? Do you think it was well written?
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Theanswersto thistaskwerevaried,partlydueto themixed
skill levelsof theusers.Many Rigi andSHriMP usersper-
ceivedthesubsystemhierarchyasanintrinsicaspectof the
programitself (notpartlyfabricated).Theymadecomments
like “everythingwaswhereI thoughtit shouldbe” and“the
subsystemshadvery logical names.”Someuserswereap-
palledat the presenceof gotos andfunction pointersand
theabsenceof comments.Without subsystemabstractions,
the SNiFF+userstendedto focuson the file structureand
codingstyle.

5.2 Questionnaires

The usability questionnaireconsistedof useropinions,
with eachansweron a five point scalefrom strongly dis-
agree,disagree,neutral,agree,to stronglyagree. We dis-
cardedtheanswersfrom thefirst user(who usedRigi), be-
causewehadmodifiedthequestionnairefor thesubsequent
users(i.e., the scale,somewording, andnumberof ques-
tions).Consequently, for eachof thefive questionsetsin the
usabilityquestionnaire,therewasasampleof 27answersfor
Rigi and30answersfor SHriMPandSNiFF+.

We comparedthe tools pairwise in eachset using a
two-sample,single-tailedZ test. For easeof use, Rigi
wasdeemedworsethanSHriMP (P = 0.004)andSNiFF+
(P = 0.02). For pleasantnessof useandconfidencein re-
sults,the differenceswerenot statisticallysignificant. For
the ability to generateresults,Rigi wasjudgedworsethan
SHriMP(P= 0.06)andSNiFF+(P= 0.05).Fortheability to
find dependencies,Rigi wasconsideredbetterthanSHriMP
(P= 0.06)andSNiFF+(P= 0.08). In general,thequestion-
naireanalysisshowednosignificantdifferencesbetweenthe
SHriMPandSNiFF+tools.

5.3 Interviews

Theinterviewswereparticularlyusefulfor collectingin-
formationaboutthe finer pointsof the userinterfacesand
how theycouldbe improved. The interviewandquestion-
nairecommentsareimportantin thattheywerenotableim-
pressionsstill freshonthemindsof theusers.Theseimpres-
sionscouldserveasusefulfeedbackfor thetools’developers
andguidethedesignersof othertools.

For SNiFF+,manyuserscommentedthat theyliked the
Retriever, CrossReferencer, andSymbolBrowserwindows
and that the tool was intuitive. However, someusershad
concernswith theconfusingmultitudeof differentwindows,
themanagementandreuseof thesewindows,andthedepen-
denciesamongthewindows.Someuserswantedto click or
double-clickona functionnamein theeditorasanintuitive
hypertext-likeway to seethe body of the function. Some
kind of globalmoduleoverviewwasdesiredby afew users,

althoughtheProjectWindowpartly providedthis featurein
a textuallisting.

For Rigi, someuserssaid they liked the ability to se-
lectnodesby name,butwantedto searchthroughthesource
codeaswell. Someliked thevariousoverviewandsubsys-
temviewsfor showinga graphicaloverviewof the system
andthe projectionview for seeinglow-level dependencies
in a singlewindow. However, theoverviewwindowof tiny
nodeswasfoundtoo dense;betterautomaticscaling,high-
lighting,andlayoutcapabilitieswererequested.A few users
desiredbetterfeedbackwhenaview wasalreadyopen,such
asautomaticallybringingcertainwindowsto thefront rather
thanopeninganothercopy. A few usershaddifficultiesun-
derstandingthe significanceof the differentcolorsusedto
distinguishnodetypes.Oneusersuggestedusingiconsfor
nodesandanotherwishedfor a color legendfor the node
types.

For SHriMP, severalusersmentionedthat theyappreci-
atedthe hypertext-stylenavigationof codefragments,the
hierarchicalrepresentationof the subsystems,andthe arcs
for showingdependencies.A few liked theability to zoom
in to seecodeandzoomout to seea moreglobal picture.
However, a few usersfelt that the large numberof visible
arcswasoverwhelminganda coupleusersmentionedthat
someof theanimationeffectswereoverdone.MostSHriMP
userswishedfor a searchcapabilityof somesortanda few
askedfor betterfiltering. Therewereafewcomplaintsabout
thechoiceor placementof userinterfacecontrolsto activate
anoperation(e.g.,mousebindings,menubuttons).As with
Rigi, a few SHriMPuserswantedto seelocalvariablesand
macroconstantsasnodes;thisproblemis dueto theparsing
techniqueweusedandis not truly a fault of thetwo tools.

Mostuserssaidtheywould try theassignedtool againif
it wasimprovedtoaddresstheircommentsandmadereadily
available.

Thefollowing sectionfurtherinterpretshowthetoolsen-
hancedprogramcomprehension.

6 Discussion

Webelievethatprogramunderstandingtoolsshouldsup-
portavarietyof comprehensionstrategies,facilitateswitch-
ing amongthesestrategies,andreducecognitiveoverhead
whenbrowsinga largesoftwaresystem.In this section,we
critiquetheeffectivenessof thetoolsfor supportingprogram
comprehension.In addition,we discusssomeof thebiases
that may haveinfluencedthe observedbehaviorsand de-
scribeareasof furtherresearch.

6.1 Support for comprehension strategies

Preferred comprehension strategies not always supported
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For all threetools, therewere times when the users’pre-
ferred comprehensionstrategieswere not adequatelysup-
ported. For example,SNiFF+wasmoresuitedto bottom-
up approaches;few facilities were availablefor showing
higher-level information about the programstructure. In
Rigi, manyusershadproblemstrying to systematicallyread
codeand follow the control flow. In SHriMP, the biggest
problemwasthe lack of a searchingtool, which wasoften
thedesiredapproachfor findingcuesorbeaconstoverify hy-
potheses.

Rigi and SHriMP communicated a mental map of the pro-
gram structure

From the answersto Task 7 and other observations,the
graphical subsystemhierarchy presentedby Rigi and
SHriMP was effective at conveyinga mental map of the
program. Many usersmentionedthat the presentedstruc-
ture was logical andhelpedthemunderstandthe program.
However, we alsosuspectthat by imposinga structureon
theMonopolyprogram,theusersperceivedit asbeingmore
modularthanit actuallywas.

Naming of subsystems critical in Rigi and SHriMP

Thenamingof subsystemnodeswascritical to theeffective-
nessof Rigi andSHriMP. Forexample,theBuying&Selling
subsystemwasan importantcuewhentrying to locatethe
housesandhotel limits for Task5. However, a bettername
for this subsystemmight havebeenTransactions, sinceit
also containedthe Rent and Mortgage subsystems.The
usersfoundrent-relatedcodeby othermeansin Task6.

Expressive searching tools lacking in Rigi and SHriMP

In Rigi andSHriMP, thelackof a searchingtool to find text
stringsin the sourcecodedefinitelyhinderedthe users.In
Rigi, someusersmistakenlythoughttheyweresearchingfor
stringsin the coderatherthansearchingfor nodelabelsin
thegraph.However, theability to searchonnodelabelswas
very useful. In contrast,theSHriMP usersfelt constrained
whentheycouldnot evensearchfor nodes.SomeSHriMP
userscommentedthat theycouldprobablydo betterwith a
searchingtool suchasgrep.

“Sightseeing” behaviors observed in SHriMP

WenoticedthatsomeSHriMPuserstendedto sightsee when
they navigatedto a particularpart of the program. They
would examinenearbynodesandstorethatknowledgefor
lateruse.This sortof informationgatheringis reflectiveof
theopportunisticbehaviorsdescribedby Letovsky.

In SHriMP, however, theseopportunisticbehaviorswere
augmentedby a feeling of “flying” becauseof the ani-
matedeffects when moving betweennodes. Also, previ-
ously browsedSHriMP subsystemnodesactedas impor-
tantnavigationalcues.In essence,somesubsystemsbecame

thumbnail images,servingasa history mechanismto indi-
catepreviouspathsof interest.Althoughthe codewasnot
readablein thesmallernodes,thecodelayout,length,inden-
tation,andcoloredhyperlinksall providedimportantrecog-
nition cues.

6.2 Support for switching between comprehension
strategies

Of crucial importanceis the ability to switch from one
comprehensionstrategyto another. Thesebehaviorshave
beendocumentedby von MayrhauserandVansin [42]. We
alsoobservedusersfrequentlyswitchingbetweena variety
of comprehensionstrategiesduringourexperiments.

Switching between top-down and bottom-up strategies eas-
ier in SHriMP

We noticedthat theSHriMP tool bettersupportsfrequently
switchingbetweentop-downandbottom-upcomprehension
strategies.We sawuserszoomingin andout betweenthe
low-level codeandmoreabstractsubsystemlevels. Zoom-
ing out to higher-level views was often donewhena user
pausedto rethink a strategy, to obtainmorecontext,or to
switchbetweensubtasks.

In Rigi, navigatingfrom a text editorview of thesource
codeto thegraphicalview of thesubsystemhierarchywas
not well supported. SNiFF+ was lacking in higher-level,
subsystemviews.

Switching between systematic and as-needed strategies sup-
ported in SNiFF+

SNiFF+ supportedboth systematicand as-neededap-
proachesto understanding.SNiFF+listedall programfiles
in the ProjectWindow, which the usercouldview one-by-
oneor as-needed(e.g.,only theheaderfiles). SNiFF+also
listedall thedefinedfunctionsanddatatypesin theSymbol
Browser and allowed easy accessto the corresponding
sourcecode for systematicor as-neededbrowsing. The
Retrieverwindow allowed the userto searchthe codefor
cues to verify current hypotheses. The use of a search
mayhavebeenopportunistic,but therunningof thesearch
itself is a systematicscanof thecode. By havingall these
windows easily accessible,a user could switch between
systematicandas-neededstrategiesto suit thetaskathand.

6.3 Reducing cognitive overhead

For larger softwaresystems,the true strengthof a pro-
gramunderstandingtool lies in its ability to managethein-
herentlylarge amountsof information. Although our test
programwasrelativelysmall, therewereseveralissuesre-
lated to managingcomplexity, minimizing disorientation,
andreducingcognitiveoverhead.
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Multiple windows disorienting in Rigi and SNiFF+

Both Rigi and SNiFF+ are capableof representinglarger
softwaresystems.However, themultiplewindow approach
usedby thesetools often disorientedthe users. The users
werefacedwith thedifficult taskof accuratelyconceptualiz-
ing andintegratingtheimplicit relationshipsamongthecon-
tentsof individual windows. In SNiFF+, the reuseof ex-
istingwindowswasnot well acceptedby someusers.They
preferredto opennewwindowsandwantedwindowsfrozen
by default,butoftencomplainedaboutthemultitudeof win-
dows that the freezingfeaturewould cause. A few men-
tionedthatthisaspectof SNiFF+wouldbesomething“to get
usedto.”

Fisheye views infrequently used in SHriMP

Fisheyeviewswerethoughttobeuseful,sincetheyprovided
theability to view bothdetailandcontextat thesametime.
Someusersdid occasionallyusethefisheyeview methodin
SHriMP, especiallywhentheywantedto seehow a nodeof
interestinteractedwith therestof theprogram.However, we
noticedthatusersoftenwouldnot usethefisheyeview fea-
ture. Instead,theyzoomedin to seedetailandthenzoomed
outwhenmorecontextwasdesired.

Therecouldbeseveralreasonsfor this behavior. First,
thehypertextcodein thenodesalreadyprovidedsomecon-
text throughthecoloredhyperlinksto calledfunctionsand
referenceddatatypes. Second,thepan+zoommethodwas
efficiently implementedand,therefore,contextualinforma-
tion was just oneclick away. Third, the SHriMP version
usedin theexperimentdid notsupportmultiplefocal points
(achiefadvantageof its fisheyealgorithmoverpan+zoom).
Someuserswantedto expandmultiple,non-adjacentnodes,
butwereunabletodoso.Finally, wesuspectthatthefisheye
viewmethodis morebeneficialwhencreatingsubsystemhi-
erarchies,ratherthanbrowsingexistinghierarchies.Forthis
task,morecontextis neededwhenassigningnodesto differ-
entsubsystemsin a subsystemhierarchy.

Filtering effective in Rigi and SNiFF+

BothRigi andSNiFF+providetheability to filter irrelevant
informationin their views. Thesefilters wereusedvery ef-
fectivelyandincreasedthescalabilityof thesetoolsconsid-
erably. In Rigi, thenodelabelswerefilteredin theOverview
windows. This reducedsomevisual clutter, but the labels
of importantsubsystemnodeswere also filtered. Conse-
quently, theusershadto searchfor nodesby nameto high-
light thematchingnodesin theOverview, or theyhadto turn
off the nodelabel filter for a selectedsetof nodes. Some
usersfoundthisawkward.

Information overload in SHriMP

In SHriMP, many userswere overwhelmedby the large

amountof informationdisplayedin a singlewindow. The
biggestconcernwaswith the largenumberof visible arcs.
This concernincreasedwhencompositearcswereopened.
Thedisorientationcouldhavebeenrelievedby thejudicious
useof filters (if they hadbeenavailable). Indeed,two of
the userssuggestedthat all arcsshouldbe hiddenby de-
fault. Arcs of a giventypeor connectedto a selectedsetof
nodesshouldbedisplayedonly uponrequest.This feature
might bettersupportanas-neededcomprehensionstrategy.
Improving the accessto arcsandeffectively managingthe
openingandclosingof compositearcsareareasfor future
research.

6.4 Experimental biases

Thereweremanypracticaldifficultiesin runningastudy
of thiscomplexity. Althoughwedid notentirelypreventex-
perimentalbiasesfrom arising,we tried to realize,control,
andminimizethem.

In carryingoutthestudy,weusedfiveexperimenters.We
trainedtheexperimentersin advanceof theexperimentsand
encouragedthemto follow thehandbooks.Despitetheseef-
forts,inconsistenciesamongthesessionsrunbydifferentex-
perimentersaffectedtheobservations.Therewereafew in-
stanceswherean experimenterforgot to showan essential
featureof a tool, therebysignificantlyalteringthe compre-
hensionstrategiesused. The differentpersonalitiesof the
experimenterswould havealsointroduceda bias. The use
of theRigi andSHriMPtool designersasexperimentersin-
troducedyet anotherbias. For example,oneSHriMP user
knewtheSHriMPdesignerandworkedmoreintenselywith
thetool thanusual.Toreducethesebiases,werotatedtheex-
perimentersamongtwo or threetools,videotapedtheformal
tasksfor mostusers,andtriednotto revealthetool designer.

Videotapingandthink-aloudlikely affecteduserperfor-
mance[23]. A few userswere intimidatedby the testsit-
uation,andthreechosenot to bevideotaped.Participation
in thestudywasalsopartof a classassignment.However,
thestudentswerenotrequiredto participatein thestudyand
couldreadsomepapersinstead.

Thewordingof a taskaffectedthe strategiesused.For
example,if Task4 hadbeenrewordedto asktheuserto ver-
ify that thereis no computermode,the strategyusedmay
havebeeninitially moresystematic.By hinting that there
wasa computermode,coupledwith the apparentpossibil-
ity of asingleplayergame,theuserstookamoreadhocap-
proachto try to verify thatthemodeexisted.

6.5 Limitations and Future Work

We believethata statisticalanalysisof thetaskanswers
would not serveour particulargoalsin this study. Thereis
no singleright way for performingthe tasks,andattaching
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a scaleto the variety of possibleanswerswould introduce
otherbiases.Timingsfor thetasksalsocannotbeanalyzed,
sincetheinformationrequiredto answeronetaskmayhave
actuallybeengatheredastheuserperformedadifferenttask.
Manyusersspentconsiderabletimegatheringinformationas
partof Task1 (seeSection5). This informationwassubse-
quentlyusedto answerothertasks.

A detailedanalysisof the videotapedexperimentsmay
beuseful.Unfortunately, thepoorqualityof thevideotapes
makesthis difficult. By trying to discreetlyplacethecam-
eraat a distancefrom the user, the cameradid not always
pick up the verbal commentsmadeby the user. In retro-
spect,we shouldhaveusedtwo cameraspersession,with
onecameraaimedat thescreenandtheothercapturingthe
facial expressionsandverbalcommentsof theuser. In us-
ability experiments,however, themostusefulinformationis
oftengatheredfromwatchingusersandaskingfor feedback,
ratherthananalyzingvideotapedsessions[17]. Videotapes
aresuitablefor verifying detailsof particularbehaviors.

The experimentdescribedin this paperfollowed a pi-
lot studydescribedin [38]. In futureexperiments,we will
studyfewerbutmoreexperiencedparticipantsastheysolve
broadersoftwaremaintenancetasksovera longerperiodof
time. So far we havefocusedon observingusersexplor-
ing previouslyprepareddocumentationandsoftwarehierar-
chies.A reverseengineer(oneof theauthors)usedtheRigi
tool topreparethesoftwareabstractionspresentedin theRigi
andSHriMPviewsprior to theexperiments.Wenoticedthat
thenamingof subsystemnodesandthedepthof thehierar-
chywerecritical. It wouldthereforebeinterestingtoobserve
how tools, suchasRigi andSHriMP, areusedfor creating
softwaredocumentationratherthanmerelybrowsing previ-
ouslyprepareddocumentation.

Meanwhile,the users’commentstogetherwith our ob-
servationsfromthisexperimenthaveresultedin usefulfeed-
backfor thedevelopersof theseandothersimilar tools.

7 Conclusion

This paperreportsobservationsfrom an experimentto
comparethreetools(Rigi, SHriMP, andSNiFF+)for brows-
ing programsourcecodeandexploringsoftwarestructure.
In thisexperiment,weconsideredthefactorswhichaffected
theparticipant’s choiceof comprehensionstrategy. Impor-
tant factorsincludedtheprogramto beunderstood,charac-
teristicsof the tasksto be solved,aswell asprogramming
expertiseanddomainknowledgeto beexploited.

In general,we noticedthat the tools did enhancethe
users’preferredcomprehensionstrategieswhile solvingthe
tasks.Forexample,theability to view dependencyrelation-
shipsin all threetoolswasexploitedby mostof theusers.In
SHriMP, theability to switchseamlesslybetweenhigh-level

viewsandsourcecodewasconsidereda desirablefeature.
In someinstances,however, thetoolshinderedtheusers’

progress.Thelackof aneffectivesourcecodesearchingtool
in Rigi andSHriMPcausedsomeusersto changetheircom-
prehensionapproachfor someof the tasks.In SNiFF+,in-
sufficienthigh-levelinformationforcedsomeusersto adopt
a morebottom-upapproachfor understanding.

In apreviouspaper, wedevisedalist of cognitivedesign
elementswhich shouldbeaddressedduringthedesignof a
programunderstandingtool [35]. Wehopethatthesedesign
elements,togetherwith our observationsfrom this experi-
mentandfutureexperiments,will form thebasisof aframe-
work for characterizingmoreeffectiveprogramunderstand-
ing tools.
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