How Do ProgramUnderstandingools Affect
How Programmer$JnderstandPrograms?

M.-A.D. Storey*

K. Wongf

H.A. Muller

fSchoolof ComputingScience *Departmenbf ComputerScience

SimonFraserUniversity
BurnabyBC, Canada

Abstract

In this paper, we explore the question of whether pro-
gram understanding tools enhance or change the way that
programmersunder stand programs. The strategiesthat pro-
grammers use to comprehend programs vary widely. Pro-
gram under standing tools should enhance or ease the pro-
grammer’s preferredstrategies, rather than impose a fixed
strategy that may not always be suitable. We present ob-
servations from a user study that compares three tools
for browsing program source code and exploring software
structures. In this study, 30 participants used these tools
to solve several high-level program understanding tasks.
Thesetasksrequired a broad range of comprehension strate-
gies. We describe how these tools supported or hindered the
diverse comprehension strategies used.

Keywords Programcomprehensionprogramunder
standingtools, reverseengineeringsoftwaremaintenance,
softwarevisualization userstudy

1 Introduction

It is widely acceptedhattime spentunderstandingx-
isting programsis a significantproportionof the time re-
guiredto maintain,debugandreuseexistingcode.In partic-
ular, programswhich haveevolvedovera numberof years
arevery difficult to understandTheseprogramshavebeen
maintainedy variousprogrammersvith differentprogram-
ming stylesandmaybe unnecessarilgomplexandlargein
size. To makematterswvorse the sourcecodeof legacysys-
temsmaybetheonly sourceof informationthatis complete
andupto date.

A varietyof techniqguesiavebeerproposedo assispro-

grammersn the difficult task of programcomprehension.

In particular programunderstandingools are designedo
helpprogrammersinderstandoftwareduringmaintenance.
Thesetools are developedo facilitate the comprehension

Universityof Victoria
Victoria, BC, Canada

strategiesisedby programmerso achievespecificmainte-
nancetasks. However therearea wide variety of compre-
hensionstrategieghat programmersise. For a majortask,
maintaineranay needto switchamonga numberof strate-
gies. Unfortunately tool designersnay only havean intu-
itive notionof whatfeaturesarebeneficial.A tool mayim-
posestrategieshatareunsuitabléecausef thetypeof pro-
gram,becaus®f thekind of task,or becausef theindivid-
ualuser Whatis neededireexperimentabbservationshat
studytheinfluenceof programunderstandingoolson their
userswhensolving realisticmaintenancéasks. Only then
canwe be surethatthesetools enhancénow programmers
understangbrograms.

Oneof our researchyoalsis to developmore effective
tools for programunderstanding Although manyprogram
understandingools alreadyexist, we havenoticedthatthe
majority of thesetools have not beenadoptedby indus-
trial maintainers. In general,the testingof the effective-
nessof manytoolshasbeenseriouslylacking. Thevalueof
manyresearchdeashavenotbeenadequatelpubstantiated
throughempiricalstudies.In addition,by notevaluatingex-
istingtoolsandapproacheaye areunableto discovemhich
approacheareeffectiveandefficient,andmoreimportantly
whichonesarenot. Fortheseeasonswe arecurrentlyeval-
uatingseveraprogramunderstandingpolsthroughaseries
of userstudiesaswell asusingnaturalisticobservatioech-
niques[10] to studysoftwaremaintainerdo investigatere-
qguirementdor effective tool supportduring programcom-
prehension.

This paperdescribesan experimentin which 30 par
ticipants were observedperforminga variety of program
understandindasksusingthreetools: Rigi, SHriMP, and
SNiFF+. Rigi [22] is a reverseengineeringsystemthat
presentssoftware subsystemstructuresusing an interac-
tive, multi-window graph editor and displaysthe source
code through separatetext editor windows. The Simple
HierarchicalM ulti- Perspectivé SHriMP) tool [37] displays
softwarearchitecturaldiagramsusing nestedgraphs. This

interfaceembedsourcecodeinsidethegraphnodesandin-
tegrateshyperteximetaphofor following low-leveldepen-
dencieswith animatedpanning,zooming,andfisheye-view
actionsfor viewing high-levelstructures. The SNiFF+sys-
tem[31] is a commercialjntegrateddevelopmenenviron-
mentfor C andC++ thatprovidessourcecodebrowsingand
crossreferencindeatures.

Beforeour experimentwe suspectedhat eachtool pri-
marily supported specificsetof comprehensiostrategies.
To gain someinsight, we focusedon observingthe strate-
giesusedby theparticipantastheyperformedasetof high-
level programunderstandindgasks. We discusshow well
theseimplicit strategiesembodiedby the tools’ features,
supportedhe setof strategiepreferredby theusers.

As a resultof our observationswe conjecturethat to
effectively supportsoftwaremaintenanceprogramunder
standingioolsneedto:

¢ supporta combinationof comprehensiostrategies;

¢ providewaysto easilyenterandeffortlesslyswitchbe-
tweenstrategiesvhile solvinga task;and

¢ reducecognitiveoverheadsthe programis explored.

Section2 outlinesseveralcognitivemodelsof program
comprehensiothathavebeenproposedSectior3 describes
theevaluatedoolsandSectiond detailsthe experimente-
sign. Section5 reportson a numberof observationghat
aroseastheuserdriedto solveseveratomprehensiotasks
with thetools. Section6 interpretgheobservationanddis-
cussehow well thetoolssupportedrariouscomprehension
strategiesFinally, Section7 concludeghe paper

2 Program Comprehension

Researcherfave conductedmany studiesto observe
how programmerainderstangprograms. As a result, sev-
eral cognitivemodelsof programcomprehensiostrategies
havebeenproposedo describethe behaviorof thesepro-
grammers.

21 Strategies

Bottom-up. ShneidermafB80] proposedhatprogramsare
understoodbottom-up, by reading sourcecode and then
mentally chunkinglow-level softwareartifactsinto mean-
ingful, higherlevel abstractionsTheseabstractiongrefur-
thergroupeduntil ahigh-levelunderstandingf theprogram
is formed.

Pennington[23] also observedprogrammersusing a
bottom-upstrategyinitially gatheringstatemenandcontrol-
flow information. Thesemicro-structureswvere chunked
andcross-referencdaly macro-structureto formaprogram
model. A subsequensituation model was formed, also

bottom-up usingapplication-domaiknowledgeto produce
ahierarchyof functionalabstractions.

Top-down. Brooks[5] suggestethatprogramsareunder
stoodtop-down, by reconstructingknowledgeaboutthe ap-
plicationdomainandmappingthatto the sourcecode.This
strategybeginswith a globalhypothesisaboutthe program.
This initial hypothesisis refinedinto a hierarchyof sec-
ondaryhypothesesVerifying or rejectinga hypothesige-
pendsheavilyonthepresencer absencef beacons (cues).

SolowayandEhrlich[32] observedhatatop-downstrat-
egyis usedwhentheprogramor typeof programis familiar.
Theyalsoobservedhatexperprogrammersecognizegbro-
gramplansandexploitedprogrammingconventiongluring
comprehension.

Knowledge-based. Letovsky[18] theorizedhatprogram-
mersareopportunisticprocessorgapableof exploiting ei-

therbottom-upor top-downcues.Thistheoryhasthreecom-
ponents:a knowledgebasethat encodeghe programmels

applicationandprogrammingexpertiseamentalmodelthat
representghe programmeis currentunderstandingf the
program;andanassimilatiorprocesshatdescribehowthe
mentalmodel evolvesusing the programmeis knowledge
baseandprograminformation.

Inquiry episodes area key partof the assimilationpro-
cess. Such an episodeconsistsof a programmerasking
a question, conjecturingan answey and then searching
throughthe codeand documentatiorio verify or rejectthe
conjecture.

Systematic and as-needed. Littmanet al. [20] observed
thatprogrammersiseeithera systematic approachreading
thecodein detailandtracingthroughcontrolanddataflow,
ortheyuseanas-needed approachfocusingonlyonthecode
relatedto thetaskat hand.

Solowayet al. [33] combinedthesetwo theoriesas
macro-strategieaimedto understandhe softwareatamore
globallevel. In thesystematieanacro-strategythe program-
mertracegheflow of thewholeprogramandperformssim-
ulationsasall of thecodeanddocumentatioris read.How-
ever this strategyis lessfeasiblefor larger programs. In
themorecommonlyusedas-needethacro-strategyhepro-
grammeriooks at only what they think is relevant. How-
ever moremistakesouldoccursinceimportantinteractions
mightbe overlooked.

Integrated approaches. Von Mayrhauserand Vans[41]
combinedthe top-down,bottom-up,and knowledge-based
approachemto asinglemetamodelTheyproposedhatun-
derstandings built concurrentlyat severalevelsof abstrac-
tions by freely switchingbetweerthe threecomprehension
strategies.

VonMayrhauseandVang41] combinedsolowaystop-
downmodelwith Penningtors programandsituationmod-
els. In theirexperimentsthey observedhatsomeprogram-
mersfrequently switchedbetweenall threeof thesemod-
els. Theyformulatedanintegratednetamodelvhereunder
standings built concurrentlyatseveralevelsof abstractions
by freely switchingbetweerthethreecomprehensiostrate-
gies.

2.2 Factorsaffecting comprehension strategies

Most researchersealizethat certainfactorswill influ-
encethe comprehensiostrategyadoptedby a programmer
[35, 39]. Thesdactorsalsoexplaintheapparentlyvide vari-
ationin the comprehensiostrategiesliscussedbove.The
variationsareprimarily dueto:

o differencesamongprograms,
¢ aspect®f thetaskathand,and
¢ variedcharacteristicef programmers.

To appreciatdnowprogrammersinderstangrogramsthese
factorsmustbeconsidered35]. Thesdactorsarefurtherex-
ploredin Sectiond within the contextof our experiment.

With experienceprogrammersknow” whichstrategyis
themosteffectivefor thegivenprogramandtask. A change
of strategymay be neededecaus®f someanomalyof the
programor somepeculiarityof therequestedask. Program
understandindools should enhanceor easethe program-
mer's preferred strategiesratherthanimposea fixed strat-
egythatmaynotalwaysbesuitable.

Thenextsectiondescribeshreetoolswhichcanbeused
to browsesourcecodefor programunderstandingndsoft-
waremaintenanc@urposes.

3 Program Understanding Tools

Understandinga softwareprogramis often a difficult
procesdecaus®f missing,inconsistentpr eventoo much
information. Thesourcecodeoftenbecomeshesolearbiter
of howthe systemworks. Many softwarevisualizationand
browsingtools provide information that is useful for pro-
gramunderstandingSoftwarevisualizationtoolsusegraph-
ical andtextualrepresentationfor the navigation,analysis
andpresentatiomf softwareinformationto increaseunder
standing[25]. For instance severalsoftwarevisualization
toolsshowanimationgo teachwidely usedalgorithmsand
datastructureg2, 7, 6, 8, 29, 34,36]. Anotherclassof tools
showsthe dynamicexecutionof programsfor debugging,
profiling andfor understandingun-timebehavior[15, 28].
Othersoftwarevisualizationtools mainly focuson showing
textualrepresentationspomeof whichmaybe pretty printed
toincreaseinderstandinfil, 13] or usehypertextin aneffort

to improvethe navigability of the software[24]. Typogra-
phy playsa significantrole in theusefulnessf thesetextual
visualizations.

Manytools presentelevaninformationin theform of a
graphwherenodesepresensoftwareobjectsandarcsshow
the relationsbetweerthe objects. This methodis usedby
PECAN [27], Rigi [22], VIFOR [26], Whorf [16], CARE
[19], Hy+[21] andimagix4D[14] tools. Othertoolsusead-
ditional prettyprintingtechniquesr otherdiagramso show
structureor informationaboutthe software. For example,
the GRASPtool usesa control structure diagramto display
controlconstructsgontrol pathsandthe overall structureof
programmingunits[9].

Thissectiondescribeshreeprogramunderstandingpols
in detailthatwe studiedin the userexperiment.

31 Rigi

Rigi is a programunderstandingool thatsupportsare-
verseengineeringapproachconsistingof parsingand dis-
coveryphase422]. Parsingthe subjectsourcecoderesults
in aflatresource-flovgraphthatis manipulateé@ndexplored
using a grapheditor. The subsequentliscoveryphaseis
semi-automati@nd involves pattern-recognitiorskills and
domain knowledge,where the reverseengineeridentifies
subsystem the flat graphthat form meaningfulabstrac-
tions. Thesesubsystemgan be recursivelycollapsedto
build a layeredhierarchy This hierarchyservesasa back-
bonefor navigationapurposesn thetool.

In Rigi, asubsystentontainmentierarchyis presented
using individual, overlappingwindows that eachvisually
display a specificslice of the hierarchy Overview win-
dowsshowthesubsystenhierarchyin atree-likeform, with
arcsbetweerevelsto showcontainmentChildrenwindows
show the children nodescontainedin a subsystem. Pro-
jectionwindowsflattena (sub)hierarchynto a singleview.
Nodesandarcsin thesewindowscanbefilteredby type,and
theycanbeselectedy nameandhighlightedusingasearch
dialog. However Rigi doesnot directly supportsearching
throughthesourcecodetext. Nodeandarcinformationwin-
dows provide a detailedreport of local dependencieand
neighboringnodes.Text editorwindowscanbe openedor
certainlow-levelnodego showtherelevansourcdile, posi-
tionedto thestartof theappropriateodefragment.Thewin-
dowsareall distinguishedy labelsin their title bars. Fig-
ure1 showssomeof thewindow typesandtoolsin Rigi.

Rigi’s mainfocusis its supportfor uncoveringsubsys-
tem abstractionsandthe creationof subsystenhierarchies
Thisinformationcanbeusedasaform of documentatioffior
subsequentrogramunderstandinguring softwaremainte-
nance.ln theexperimentescribedn this paperwe consid-
eredhow Rigi could be usedfor browsingpreviouslycom-
posedhierarchieof subsystenabstractions.

]
Finish

]
Input ‘
L A
e
/ -

¢ 2 L] uc. B85

] (] v
DataStructures FlayerGlobals CemmandiGlobals /

] -

Node "Play" (1050901} selected

Flle Edit Search Preferences Shell Macro Windows Help

gets the names of the players

Misc Houses

8p:

1, J;
buf[257];

Mowhlg RellingDice 7 Prcperes
- JER | =

Nodle *Buyingaselling" (1050759) s

Mortgage
I 1 -

8 nodes selected

num_play=get_int ("How many players? ")) <=0 ||
wm_play > MR PL)
printf("Sorry. HNumber must range from 1 to 9in")

break;

= (PLAY *) calloa(num play, sizeof (PLAY));
. < num play; i++) {

Search Name: getplayers

M search Entlre Graph

_l Unknown _| Flle _I Globalvar
_| Collapse _| Proc _I

f("Player %d’s name: ", i H
sp = buf; (#sp=getchar(]) != "\n’; zp++)]
continue;

Apply | Done |

Select | Done I

Figurel: TheRigi System.

Back | Zoom In | Zoom Out | Show ALl |

Quit

MonopolyFProgram

Control

B |2 |eS 7] L

Gener lobals

DI X

Figure2: A SHriMP View.

3.2 SHriMP views

For exploringsoftware the SHriMP visualizationtech-
nigue[37] usesanested-grapformalism[12] to presenthe
structureof a softwaresystemin asinglewindow. A nested
graphhascomposite nodesthatcontainothernodesforming
a hierarchicalstructurethat canbe navigated. Thesecom-
positenodedypically represensoftwaresubsystemandare
openedo showtheir childrenby doubleclicking them. In
anestedyraph,a composite arc representeneor morearcs
betweeriower-levelnodesn thehierarchy A compositerc
canbe openedy doubleclicking it to showthe constituent
arcs(someof which mayalsobe composite).

The SHriMP techniqueintegratedisheye-view[11] and
pan+zoon(3] approachefor magnifyingnodesof interest
in the graph. A fisheyeview simultaneoushdisplaysboth
contextanddetail,with objectsof interestmagnifiedandless
relevantobjectsdemagnified.The pan+zoomapproachal-
lows theuserto panandzoomaroundtheview without dis-
tortion, butcritical informationmightbe pannedff theedge
of theview. Thenagain,sometasksmay not needmuch
for contextualcuesas the programmerfocuseson a well-
localizedfragmentof programcode.

As with Rigi, certainlow-level softwareartifactsaretied
to specificfragmentsof sourcetext (e.g.,a function body).
For SHriMP, however thesecodefragmentsare displayed
within the nodesof the nestedgraph. Moreover function
calls, datatype referencesandvariablereferencesrepre-
sentedasclickablehypertextinksin thefragments SHriMP
integrateghis hypertextmetaphorfor following low-level
dependenciesith animateganningzooming,andfisheye-
view actionsoverthe nestedgraph. Consequentlyfollow-
ing a link to anotherfunction pansand zoomsthe view
so that this function’s codeis presentedwithin its node.
Alternatively, the usercan view the hypertextcode using
the NetscapeNavigatorweb browser SHriMP currently
lacksasearchingool, hasnofiltering capability andis still
somewhatunreliable. Figure 2 showsa SHriMP view of
a Monopoly program(the testprogramusedin our experi-
ments).

3.3 SNiFF+

SNiFF+is acommerciakoftwaredevelopmenénviron-
mentthatprovidesprojectmanagemensourcecodebrows-
ing, crossreferencingandsearchingeatures31]. These
featuresareaccessethroughseveraintegratedools,each
with awindow containingmenusof options. Theseoolsop-
erateon a symboltablethatis generatedy SNiFF+from
parsingthe sourcecode.

The ProjectWindow lists the headerandimplementa-
tion files of theprogram.Thellllll Browseraccessethe
symboltableto displaylists of functions,constantsmacros,

variables,etc. Thesesymbolscan be filtered by namein
the lists. The SourceEditor window displaysa view of
the sourcecodewith coloring of somesyntacticconstructs.
The CrossReferencewindow displaysa dependencyree
of whata symbolrefersto or is referredby. The Retriever
window displaysthe resultof a textualsearchthroughthe
sourcecode.To managehemanywindows,ausercanreuse
anexistingwindow; to avoidreusingawindow, theusercan
“freeze”its contentduy clicking a checkboxonthewindow.
Thewindowsareall distinguishedy labelsin theirtitle bars
anddifferencesn interior layout. Figure3 showssomeof
thewindowtypesandtoolsavailablein SNiFF+.

4 User Study

This sectiondescribesa userstudyto evaluatethe ef-
fectivenesof three programunderstandindools on typi-
cal, high-levelprogramunderstandingasks.This studywas
conductedatthe University of Victoriain Spring1997.

41 Goals

We hadfour maingoalsin mind.

1. Studythe factorsaffecting the participants choiceof
comprehensiostrategy(seeSection2.2).

2. Observewhetherthe threetools would effectively en-
hanceheparticipants preferredcomprehensiostrate-
gieswhile solvingthetasks.

3. Deviseaframeworkfor characterizinghe moreeffec-
tive tools.

4. ProvidefeedbacKor thedeveloper®f theseandother
similartools.

4.2 Participants

Forthe experiment30 participantavererecruitedfrom
a computersciencecourseon human-computeinteraction
at the University of Victoria. Five of the participantsvere
graduatestudentsand 25 were senior undegraduatestu-
dents. Prior to the actualexperimentakessionsye asked
eachparticipanto completea questionnair@abouttheir pro-
grammingexperiencandrelevantdomainknowledge.

4.3 Experimental design

Threeprogramunderstandingools, Rigi, SHriMP, and
SNiFF+werecompared.Eachtool interfacewastestedby
askingthe participantgo completea seriesof programun-
derstandingtasksunder controlled and supervisedcondi-
tions. The 30 participantswere randomlyassignedo the
threetools.

init_monops (f
init _players |
main (f)

reg char *ap;

rey int i, 3

char buf [25T];

blew_it:
for (i:] |
if {{oum_play=get_int ("How many players? ")) <=0 ||
mum_play > MRX_PL)
printf ("Sorry. Mumber must range fram 1 to ®wn");
else
break;
b
cur b = play = (PLAY #) callocimum play, sizeof [PLAY));

|
_
_
L
L
|
_
_
|
_
|
|
_
|
|
_

ot 17

3 monopoly.proj
_' ey
w v mm play [2] monopol ¥ . proj
g

v name_list [5]

W v plr_st: name [2] T - . # define MAX_PL] j= maximm mumber of players
! menepely - prel char *name_list [MAX_PL+2], s+ list of players’ names
mm play > MAX PL)

w iv plr_st::mone:

strcase

Figure3: The SNiFF+SoftwareDevelopmenEnvironment.

A two-hoursessionwith eachof the participantscon-
tainedsix time-limited phases:orientation(5 min), train-
ing tasks(20 min), practicetasks(20 min), formaltasks(50
min), post-studyquestionnairg¢15 min), andpost-studyin-
terviewanddebriefing(10 min).

Orientation

The experimentebeganthe experimentby briefly orient-
ing the participant. Eachparticipantwasremindedof the
purposeof theexperiment—tevaluatehe effectivenesof
a programunderstandingool. The participantwould also
learnsomebasicfeaturesof a tool to help understandoft-
ware. Thedifferentphase®f the sessiorwereoutlinedand
the participantwas assuredhat the collectedinformation
would remainanonymousAlso, we mentionedhatthe par
ticipantshouldnotfeelunduepressuré¢o producehe“right”

answeror feel rushedto finish all the tasksin the limited
time. We weremoreinterestedn observinghow the given
tool wasusedto solvea particulartask.

Training
During the training phasethe experimentedemonstrated
a predefinedsubsetof the tool's features—minimal but
enoughfor the upcomingtasks. Defining a suitablesubset
of featureswas necessary Omitted but availableessential
featurescould affect the comprehensiostrategyof the par
ticipant. Too manytool featurescould overloadanddisori-
enttheuser We tried to strikeaworkabletradeof, takinga
flexible approactof explainingconvenience featuresasap-
propriateto receptiveusers.

Toward the end of training, the experimenteidemon-
stratedhowto solvesomesimplequeriessuchasfindingall
functionscalledby mai n() in asmallC program.

Practicetasks

The purposeof the practicetaskswasto allow the partici-
pantto becomefamiliar with the tool andits finer pointsin
a freestylesetting. The participantwas encouragedo ex-
plore and ask questionsaboutthe tool. The practicetasks
involved usingthe assignedool to browsea Hangmarpro-
gramwrittenin C. This programcontained00linesof code
in 12files. Thesetasksprogressedh difficulty to allow the
participantto graspthetool featuresand combinethemap-
propriately Forexample pnepracticetaskrequirecthepar
ticipantto discovertthepurposef avariablecalledEr r or s
andto find thefunctionsusingthis variable.

Formal tasks

During the formal part of the sessionthe participantper
formedseverataskson a Monopoly gameprogram.These
taskswere videotaped(with the participants permission)

andtheexperimenterecordedbservationsTheparticipant
wasencouragedtb “think-aloud” astheydid thetasks.The
formal taskswere designedo be typical of what a main-
tenanceprogrammerwould be askedto do. Also, these
taskswere distinctly differentand somewhatroaderthan
the training and practicetasks. We did not want the par
ticipantto merelymimic a similar solutionfrom a previous
task. After all, we wereinterestedn observinghowthe par
ticipantwould chooseo solvetheseaaskswith theassigned
tool. Theseobservationgrereportedn Section5.

Questionnaire

Uponfinishingtheformaltasks theparticipantvasaskedo
completea brief usability questionnaireThe questionnaire
consistedof 15 questiondn five setsof three. The ques-
tionsin a setwereactuallysubtlerewordingsof eachother
a commonlyusedtechniqueo offsetthe chancehata sub-
ject might misinterpreta questionandsupplyanerroneous
answer All the questionsvererandomlyordered.The sets
weredesignedo gatheropinionson:

1. overalleaseof use,

2. pleasantnessf use,

3. confidencen resultsgenerated,

4. ability to generateesultsand

5. ability to find dependencyelationships.

The questionnairelso provideda spacefor generalcom-
ments.

Interview and debriefing

Finally, an informal interview was conductedo stimulate
the participantinto revealingthoughtsnot expressedavhile
answeringhequestionnaire.

4.4 Experimenter’s handbook

A detailedexperimentéshandbookvaswrittenfor each
tool to provide someconsistencyand control overthe run-
ning of eachexperimentalsession. Generalinstructions
(commonto all tools) outlinedthe structureof the exper
iment, the rules of conduct,and various procedurego be
followed by the experimenter Tool-specificdescriptions
containeddetailedinstructionsfor eachof the experimen-
tal phasesFor examplethedescription®f thetrainingand
practicetasksdetailedthefeaturego betaught.Attachedto
thehandbookvereformsto befilled outby theexperimenter
(observationandinterviewquestionsandby theparticipant
(formaltaskquestionandusabilityquestionnaire)A fresh
copy of thehandboolkwasusedfor eachsession.

45 Experimental variables

This subsectiorexploressomeof the factorsthatwould
affect the participants’performanceand choiceof compre-
hensionstrategyin our experiment.

Test program

The formal tasks involved understandinga text-based,
Monopoly gameprogram,writtenin C. This programcon-

tains 1700lines of codein 17 files, with only sparsecom-

ments. The control flow of this programis fairly complex,

dueto somegot osandatableof functionpointersfor most

commandsn thegame.

For Rigi andSHriMP, oneof the authorscreateda sub-
systemhierarchyfor Monopolyusingthe Rigi grapheditor.
The subsystemsvere mostly basedon the modularization
of the sourcecodeinto files. Higherlevel subsystemsvere
formedto gatherrelatedmodulestogetherandsimplify the
graph. The selectionof meaningfulsubsystermameswas
particularlyimportant.

Task complexity

Wetriedto devisehigherlevelprogramunderstandingasks
for the formal tasks. Sometasksrequiredthe participantto

understangbart of the programto answera questionabout
its functionality. For example,one task askedthe partici-

pantto determinéf acertainfeaturevasimplementedn the
program.Othertasksrequireda deepemunderstandingask-
ing the participantto describehow to changethe program
to implementa new feature. For example,onetaskasked
theparticipantto describehowto changearulein thegame.
However sincethe usersdid not actuallyneedto makethe
changestheycouldtakeanonchalanapproacho themain-
tenanceasksand makeeducatedyuessest the solutions.
Observationgor mostof the assignedasksare detailedin

Sectionb.

User expertise

Thelevelof expertiseandskill affectsa usefsperformance
by contributingsignificantlyto understanding programor
learninga tool'sinterface.A pre-studyquestionnairasked
aboutC programmingexperiencemaintenancexperience,
numberof yearaasaprogrammerexperiencevriting games,
etc. However it hasbeenshownthat programmingexpe-
rience doesnot correlatehighly with programmingprofi-
ciency[40].

Domain knowledgeabout the Monopoly board game
could be an assetby providing useful preconceptions.To
strive for consistencyacrossparticipants,we set up a
Monopolyboardbesideeachparticipantand,if neededex-
plainedtherulesof thegame.Weencouragethemtoreview
therulesandusetheboardthroughoutheformal tasks.

In thefollowing sectionwe reportonsomeobservations
from theformal tasksin the study

5 Reaults

In this section,we describesomeobservationgrom the
formal tasks,an analysisof the questionnairesand some
findingsfrom theinterviews.

5.1 Formal Tasks

Due to the focus on complextasks,the mostinterest-
ing resultswerein observinghow the usersperformedthe
programunderstandingaskswith the assignedool andthe
Monopolyprogram.

Theformal tasksresultedfrom a brainstormingsession
amongthe experimentersTheyweredesignedvithout de-
tailed knowledgeof the code,and were thereforenot tai-
loredto suit the codeor the programstructure. Therewere
seventasksin threeclasses:preparatory(Tasks1 and 2),
high-levelprogramunderstandingTasks3, 4, 7), andmain-
tenancegTasks5 and6).

Theterms”some”, "many” and”a few” areusedto de-
scribepatternsof tool usagesandbehaviours.Exactnum-
berswerenot possiblebecausehreeusersrequestechot to
bevideotaped.

Task 1: Look at the real Monopoly game until you under-
stand the general concept and rules of the game. Have you
played Monopoly before?

This taskqueriedthe amountof Monopoly knowledgethat
eachuserhad. All users(exceptone)werefamiliar with the
game. We did not askthis questionin the pre-studyques-
tionnaireto avoidinggiving ahintthatMonopolyknowledge
would be useful.

Task 2: Spend a while browsing the program using the
provided software maintenance tool and try to gain a high
level understanding of the structure of the program.

Forthis task,we sawa hugevariationin approachesSome
userspentaslittle astwo minutesandthenaskedo continue
with the nexttask,whereaothershappily spent20 minutes
or morebrowsingthe program.Usersbrowsingtheprogram
in detailsetthemselves taskor goalfor understandinghe
program.Interestinglysomeusersredictedasksthatwere
to follow.

In SNiFF+, one typical approachwasto usethe Sym-
bol Browserandselecthenmai n() functionfrom thelist of
functions.Oncefound,theusersvould readthesourcecode
of thefunctionandfollow callsto otherfunctions,perusing
themto varyinglevelsof detail.

Most of the Rigi andSHriMP usersspenta few minutes
viewingthevisualdisplayof thesubsystenhierarchybefore
readinganycode.In Rigi, manyusersstartedoy openingan
Overviewwindow to displaythe hierarchy Two usersno-
ticed thatthe Play subsystenwasthe deepesin the hier
archyandguessedhatthis subsystemwould be important.
Othersthoughtthatthe GeneralGlobals subsystenwould
beimportant.

In SHriMP, thevisible subsystemsverefocal pointsfor
furtherexploration.Of particularinterestwerethe Control,
Setup, Play, DataStructures and GeneralGlobals sub-
systems.Someuserswould jump quickly to the code,read
the codefor mai n() , andfollow afew hyperlinksto other
calledfunctionsreferencedatastructurespraccessedari-
ables.Somewouldthenreturnto ahigh-levelview andopen
othersubsystenmodego exploredetailsin otherpartsof the
hierarchy

Task 3: Inthe computer game, how many playerscan play
at any onetime?

In Monopoly, the main() function calls the
get pl ayers() function, which most users exam-
ined. The get pl ayer s() function promptsthe player
to entera numberbetweenone and nine for the desired
numberof players. The enterednumberis thencompared
to MAX_PL (amacrodefinedin thenonop. h headefile).

In SNiFF+,theuserdookedfor MAX_PL usingthe Sym-
bol Browser However theyoftenthoughtthat MAX_PL was
a constanbr variableanddid not think to checkthe list of
macros. As a lastresort,someusersusedthe Retrieverto
find thedefinitionof MAX_PL.

The parserusedby Rigi and SHriMP to generatethe
graphsdid not emit information about macros. Conse-
guently therewasno MAX_PL nodein the graph. In Rigi,
some userstried to useits name-basedelectionfeature
to find a MAX_PL node. Since this node did not exist,
mostusersthenresortedo searchindor “*. h” nodesand
openingthe correspondindneaderfiles one by one. They
skimmedor searchedhrougheachfile to find the MAX_PL
macro. Most usershad difficulties seeingthe highlighted
“*_h” nodesn theOverviewwindow, becaus®f thesmall
sizeof thenodes.Rescalinghenodedargerwasa cumber
someactionin Rigi.

In SHriMP, the usersalsowantedto searchfor the def-
inition of MAX_PL andthusfound the lack of a searchtool
frustrating.Withoutasearchool, theusergesortedo pick-
ing outthe nodeghatrepresentetieadefiles. This process
wasfeasiblesincetherewereonly 17 filesanda few header
files. Someuserssaidthatthereshouldhavebeena hyper
link from the occurrencesf MAX_PL to its definition. How-
ever the parsercould not producethis informationfor the
hypertextgeneratar

10

Task 4: Does the program support a “ computer” mode
where the computer will play against one opponent?

FromTask3, manyusergecalledthattheget pl ayer s()
functionpromptedor oneto nineplayers.Thisled manyto
believe,incorrectly thatthe programsupportech computer
mode. However mostusers(with someprodding)decided
to checktheir hypothesisy studyingthe codefurther.

In SNiFF+andRigi, themainstrategywasto searctor a
stringsuchas“computer” “auto,” or“Al.” OneSNiFF+user
lookedin the SymbolBrowserfor afile thatimplemented
themode.OneRigi userguessedhattheremightbestrings
like “your turn” and“my turn.” Sincetherewasnocomputer
mode,thesesearcheslid notyield anythinguseful. Conse-
guently mostSNiFF+andRigi usersreadthe codesome-
whatsystematicallyy following thecontrolflow andlook-
ing for clues. The lack of anybeacongo supporttheir hy-
pothesided the usergo concludehe modedid not exist.

In SNiFF+, therewere severalwaysto get the defini-
tion of a calledfunction (somemore convenientthan oth-
ers). Typically, usersusedthe SymbolBrowser Retriever
or CrossReferencer However mostuserspreferreda hy-
pertextapproactof clicking or double-clickingonafunction
call andjumping to the called function’s definition. They
wereperplexedthatthis did not “work.” Actually, this ac-
tion canbeinvokedfrom a menubutwasintentionally(and
perhapsinfortunately)eft off ourminimalfeaturesubsefor
training. In mostinstancesye taughtthis conveniencéea-
turelaterin theexperimento avoidany unduefrustration.

In Rigi, readingcode systematicallyby following the
controlflow is quitecumbersomeThe usershadto usethe
searchdialog, enterthe nameof the called function, click
a buttonto highlight its node, locatethat nodevisually in
a crowdedOverviewwindow, anddouble-clickthe nodeto
openatexteditoronthe sourcefile containingthefunction.
Going from an artifactin a graphwindow to its codein a
texteditorwashardenoughgoingtheoppositevasnoteven
supported. This lack of integrationwas very annoyingto
someusers.

In SHriMP, thelackof asearcteaturenvasfrustratingfor
the users.They could not quickly look for a beacoror cue
to verify their beliefin acomputermode. Theseuserswere
forcedto browsethe codeandfollow functioncallssystem-
atically. However this browsingwasfairly easy aidedby
clickablehyperlinksin the codefrom functioncallsto their
functionbodies.Theanimatediiew seemedo helptheusers
maintaina sensef orientationwhile browsingthe program.

Task 5: There should be a limited total number of ho-
tels and houses; how is this limit implemented and where is
it used? If this functionality is not currently implemented,
would it be difficult to add? What changes would this en-
hancement require?

In therealMonopoly game thereare32 housesand12 ho-
tels. Thelimited total numberof housesanbeusedby sea-
sonedplayersin their playingstrategy For example py us-
ing up all the housesandnot building hotels,otherplayers
may be preventedrom gettinghousedor their properties.

This taskwas particularlyinterestingsincetheselimits
were not implementedn the program. Also, hotelswere
implicitly represente@sfive housesmakingthe required
changesnoredifficult thanfirst expectedy the users.

The participantsfirst looked for someevidenceof the
total limits. In SNiFF+,this involved searchindgor strings
suchas“max,” “house,”and"hotel” in the sourcetext. A
few userexploitedtheirMonopolyknowledgeandsearched
for “32” and “12.” In SNiFF+, the Retrieverreturned
62 matchesfor “house,” but only one for “hotel” (in a
printf () string). Theusergyuickly realizedthatthehotel
limit waslikely notimplementedWhenthe searchstrategy
failed to quickly producean answey the usersswitchedto
lookingatheadefilesfor possiblehints,suchasrelatedcon-
stantsor macros.Whenno limits wereclearly evident,the
usergesortedo browsingthesourcecodesystematicallyA
similarinitial processoccurredor theRigi users.

In SNiFF+,theuserdrowsedhehouses. c file, which
seemedppropriatdor finding the houseimit sinceit con-
tained the functions buy_houses() andbuy_h() for
buyinghousesHowever oneor two usersdid notimmedi-
ately think of browsinghouses. ¢ andbecamdtrustrated
trying to find anyrelevantcode.

In Rigi and SHriMP, the subsystemcalled Buy-
ing&Selling was an important cue, which most users
noticed. TheRigi usersspentalot of time looking at nodes
in the Overviewwindow and openingChildren windows,
whereaghe SHriMP usersfound the relevantnodesmore
quickly. This was perhapsdue to easiernavigationin
SHriMP and becauseRigi hides node labels by default
in Overview windows. The Buying&Selling subsystem
containeda House subsystemwhichin turn containedhe
buy_houses() andbuy_h() functionnodes.

Oncethe usersfound the housebuying functions,they
wereeasilyableto suggestheappropriateehangesn fairly
generaterms. However mostusersfailed to mentionthat
the codefor sellinghouseqandbreakingup hotels)would
alsoneedto beconsidered.

Task 6: Whereand what needsto be changed inthe codeto
implement a new rule which statesthat a player in jail (and
not just visiting) cannot collect rent from anyone landing on
his/her properties?

As peopleplay Monopoly, they may follow popularvaria-
tionsto theofficial rules[4]. Implementingsuchavariation
in the programwould be arealisticmaintenancéask. This
taskasksthe userto implementa variationwhereplayersin

1

jail losetheir citizenship.

A high-levelsolutionis thatwhena playerlandson a
propertywith house®r hotels,checkif thepropertysowner
is in jail. Thereforeto fulfill thistaskin moredetail, two
piecesof codeneededo belocated:

1. codeto determingf aplayerisin jail (andnotjustvis-
iting), and

2. codeto tracka player s positionontheboard.

We sawtwo basicapproachesisedto solvethis task, with
somdookingfor jail relatedcodefirst andotherdookingfor
playerpositioncodefirst. We suspecthe orderingof words
in thetaskor userexperiencavith boardgameprogramsad
aneffect.

A commormistakewvasthatmanyusergroposeaheck-
ing whetherthe currentlyactive playerwasin jail (andper
hapscheckingf otherplayerdandon his properties) Some
realizedthis approachwaswrongandswitchedto the high-
level solutionabove.

By this stagein thetasks mostusersunderstoodhatthe
programcontaineda playerdatastructure. Many guessed
thattherewould be a field to recordif a playerwasin jail.
Therewereactuallytwo relatedfields: i n_j ai | andl oc.
Manyusergnistakenlysuggestethatthei n_j ai | variable
beused.However thisvariablecountedhenumberof turns
thata playerhadbeenin jail anddid not accuratelyreflect
whetherthe playerwasin jail. Thel oc field shouldhave
beencomparedo amacrocalledJ Al L to testif aplayerwas
truly in jail. Veryfew usersnoticedthis subtlety

Manyusersorrectlyguessethattheyneededo find the
rent functions,to add a condition for not payingrentto a
userin jail. Thechangeneededo beaddedo ther ent ()
functiondefinedin ther ent . c file. Thetop of this func-
tion alreadyhasa conditionfor not paying rent whenthe
owner of the propertyhasthe propertymortgaged. Some
usersrealizedthe similarity of this conditionwith the nec-
essarnchange.

In SNiFF+,ther ent . c file wasevidentin afile listing.
In Rigi andSHriMP, howeverthe Rent subsystemvasper
hapspoorlyplacedn theBuying&Selling subsystenfor the
latter poorly named) Placingthe Rent subsystenmigherin
the hierarchymight havehelped.Interestinglyenoughthis
did notseento undulyimpacttheseusergperhapghalleng-
ing theimportanceof higherlevelsubsystemor relatively
smallprograms)In SHriMP, theusersbrowsedheMoving
subsystemzoomedinto theshow.nmove() functioncode,
thenfollowed a hyperlinkto r ent () . In Rigi, the users
searchedor ther ent () functionby name.

Task 7: Overall, what wasyour impression of the structure
of the program? Do you think it was well written?

Theanswerso thistaskwerevaried,partly dueto themixed
skill levelsof theusers.Many Rigi and SHriMP usersper
ceivedthe subsystenhierarchyasanintrinsic aspecof the
programitself (notpartly fabricated). Theymadecomments
like “everythingwaswherel thoughtit shouldbe” and“the
subsystembadvery logical names.” Someuserswere ap-
palledat the presencef got os andfunction pointersand
theabsencef comments.Without subsystenabstractions,
the SNiFF+ userstendedto focuson thefile structureand
codingstyle.

5.2 Questionnaires

The usability questionnaireconsistedof useropinions,
with eachansweron a five point scalefrom strongly dis-
agree,disagreeneutral,agree to stronglyagree. We dis-
cardedthe answerdrom the first user(who usedRigi), be-
causeave hadmodifiedthe questionnairéor the subsequent
users(i.e., the scale,somewording, and numberof ques-
tions). Consequentlyfor eachof thefive questiorsetsin the
usabilityquestionnaireherewasasampleof 27 answergor
Rigi and30 answerdor SHriMP andSNiFF+.

We comparedthe tools pairwise in eachset using a
two-sample,single-tailedZ test. For easeof use, Rigi
was deemedworsethan SHriMP (P = 0.004)and SNiFF+
(P = 0.02). For pleasantnessf useandconfidencein re-
sults, the differencesvere not statisticallysignificant. For
the ability to generateresults,Rigi wasjudgedworsethan
SHriMP (P=0.06)andSNiFF+(P = 0.05). Fortheability to
find dependencie®igi wasconsideredetterthanSHriMP
(P=0.06)andSNiFF+(P = 0.08). In generalthe question-
naireanalysisshowedosignificantdifferencedbetweerthe
SHriMP andSNiFF+tools.

5.3 Interviews

Theinterviewswereparticularlyusefulfor collectingin-
formationaboutthe finer points of the userinterfacesand
how they could be improved. The interview and question-
nairecommentsareimportantin thatthey werenotableim-
pressionstill freshonthemindsof theusers.Theseémpres-
sionscouldserveasusefulfeedbackor thetools’ developers
andguidethedesigner®f othertools.

For SNiFF+, manyuserscommentedhattheyliked the
Retriever CrossReferencerand SymbolBrowserwindows
andthat the tool was intuitive. However someusershad
concerngvith theconfusingmultitudeof differentwindows,
themanagemerdndreuseof thesewindows,andthedepen-
dencieamongthewindows. Someusersvantedto click or
double-clickonafunctionnamein theeditorasanintuitive
hypertext-likeway to seethe body of the function. Some
kind of globalmoduleoverviewwasdesiredoy afew users,

12

althoughthe ProjectWindow partly providedthis featurein
atextuallisting.

For Rigi, someuserssaidthey liked the ability to se-
lectnodeshy name putwantedto searctthroughthesource
codeaswell. Someliked the variousoverviewandsubsys-
temviewsfor showinga graphicaloverviewof the system
andthe projectionview for seeinglow-level dependencies
in asinglewindow. However the overviewwindow of tiny
nodeswasfoundtoo densepetterautomaticscaling,high-
lighting, andlayoutcapabilitiesvererequestedA few users
desiredbetterfeedbackvhenaview wasalreadyopen,such
asautomaticallybringingcertainwindowsto thefront rather
thanopeninganothercopy A few usershaddifficultiesun-
derstandinghe significanceof the differentcolorsusedto
distinguishnodetypes. Oneusersuggestedisingiconsfor
nodesandanotherwishedfor a color legendfor the node
types.

For SHriMP, severalusersmentionedhattheyappreci-
atedthe hypertext-stylenavigationof code fragmentsthe
hierarchicalrepresentationf the subsystemsandthe arcs
for showingdependenciesA few liked the ability to zoom
in to seecodeandzoomout to seea moreglobal picture.
However a few usersfelt thatthe large numberof visible
arcswasoverwhelminganda coupleusersmentionedthat
someof theanimationeffectswereoverdone Most SHriMP
userswishedfor a searchcapabilityof somesortanda few
askedor betterfiltering. Therewereafew complaintsabout
thechoiceor placemenof userinterfacecontrolsto activate
anoperatione.g.,mousebindings,menubuttons).As with
Rigi, afew SHriMP userswantedto seelocal variablesand
macroconstant@asnodesthis problemis dueto the parsing
techniquewe usedandis nottruly afault of thetwo tools.

Mostuserssaidtheywould try the assignedool againif
it wasimprovedto addressheircommentsandmadereadily
available.

Thefollowing sectiorfurtherinterpretthowthetoolsen-
hancedorogramcomprehension.

6 Discussion

Webelievethatprogranunderstandingpolsshouldsup-
portavarietyof comprehensiostrategiestacilitate switch-
ing amongthesestrategiesandreducecognitive overhead
whenbrowsinga large softwaresystem.In this section,we
critiquetheeffectivenessf thetoolsfor supportingorogram
comprehensionln addition,we discusssomeof the biases
that may haveinfluencedthe observedbehaviorsand de-
scribeareaof furtherresearch.

6.1 Support for comprehension strategies

Preferred comprehension strategies not always supported

For all threetools, therewere times whenthe users’pre-
ferred comprehensiorstrategiesvere not adequatelysup-
ported. For example SNiFF+was more suitedto bottom-
up approachesfew facilities were availablefor showing
higherlevel information aboutthe programstructure. In
Rigi, manyusershadproblemdrying to systematicallyead
codeandfollow the control flow. In SHriMP, the biggest
problemwasthe lack of a searchingool, which wasoften
thedesiredapproactior findingcuesor beaconso verify hy-
potheses.

Rigi and SHriMP communicated a mental map of the pro-
gram structure

From the answersto Task 7 and other observationsthe
graphical subsystemhierarchy presentedby Rigi and
SHriMP was effective at conveyinga mental map of the
program. Many usersmentionedthat the presentedstruc-
ture waslogical and helpedthem understandhe program.
However we also suspecthat by imposinga structureon
theMonopolyprogramtheusersperceivedt asbeingmore
modularthanit actuallywas.

Naming of subsystemscritical in Rigi and SHriMP

Thenamingof subsystenmodeswvascritical to theeffective-
nesf Rigi andSHriMP. ForexampletheBuying&Selling

subsystenwasan importantcuewhentrying to locatethe
housesandhotellimits for Task5. However a bettername
for this subsystenmight havebeenTransactions, sinceit

also containedthe Rent and Mortgage subsystems.The
usersfoundrent-relateccodeby othermeansn Task6.

Expressive searching tools lacking in Rigi and SHriMP

In Rigi andSHriMP, thelack of a searchindool to find text
stringsin the sourcecodedefinitely hinderedthe users.In
Rigi, someuseranistakenlythoughttheyweresearchingor
stringsin the coderatherthan searchingor nodelabelsin
thegraph.However theability to searchon nodelabelswas
very useful. In contrastthe SHriMP usersfelt constrained
whenthey couldnot evensearchfor nodes.SomeSHriMP
userscommentedhatthey could probablydo betterwith a
searchingool suchasgr ep.

“ Sghtseeing” behaviors observed in SHriMP

WenoticedthatsomeSHriMP userdendedo sightseewhen
they navigatedto a particular part of the program. They
would examinenearbynodesandstorethat knowledgefor
lateruse. This sortof informationgatherings reflectiveof
the opportunistidbehaviorglescribedy Letovsky

In SHriMP, howevertheseopportunistidoehavioravere
augmentedby a feeling of “flying” becauseof the ani-
matedeffects when moving betweennodes. Also, previ-
ously browsedSHriMP subsystermodesactedas impor
tantnavigationatues.In essencesomesubsystembecame

13

thumbnail images,servingasa history mechanisnto indi-
catepreviouspathsof interest. Althoughthe codewasnot
readablen thesmallemodesthecodelayout,length,inden-
tation,andcoloredhyperlinksall providedimportantrecog-
nition cues.

6.2 Support for switching between comprehension
strategies

Of crucial importanceis the ability to switch from one
comprehensiomstrategyto another Thesebehaviorshave
beendocumentedby von MayrhauseandVansin [42]. We
alsoobservedisersfrequentlyswitchingbetweera variety
of comprehensiostrategiesluringour experiments.

Switching between top-down and bottom-up strategies eas-
ier in SHriMP

We noticedthatthe SHriMP tool bettersupportdrequently
switchingbetweertop-downandbottom-upcomprehension
strategies.We saw userszoomingin andout betweenthe
low-level codeandmoreabstracsubsystentevels. Zoom-
ing out to higherlevel views was often donewhen a user
pausedo rethink a strategy to obtainmore context,or to
switch betweersubtasks.

In Rigi, navigatingfrom atext editorview of the source
codeto the graphicalview of the subsystenhierarchywas
not well supported. SNiFF+ was lacking in higherlevel,
subsystenviews.

Switching between systematic and as-needed strategies sup-
ported in SNiFF+

SNiFF+ supported both systematicand as-neededap-
proachego understandingSNiFF+listed all programfiles
in the ProjectWindow, which the usercould view one-by-
oneor as-needede.g.,only the headeffiles). SNiFF+also
listedall thedefinedfunctionsanddatatypesin the Symbol
Browser and allowed easy accessto the corresponding
sourcecode for systematicor as-neededrowsing. The
Retrieverwindow allowed the userto searchthe codefor
cuesto verify currenthypotheses. The use of a search
may havebeenopportunistic but the runningof the search
itself is a systematicscanof the code. By havingall these
windows easily accessiblea user could switch between
systemati@andas-neededtrategieso suitthetaskat hand.

6.3 Reducing cognitive over head

For larger softwaresystemsthe true strengthof a pro-
gramunderstandingool liesin its ability to managehein-
herentlylarge amountsof information. Although our test
programwasrelatively small, therewere severalissuese-
lated to managingcomplexity minimizing disorientation,
andreducingcognitiveoverhead.

Multiple windows disorienting in Rigi and SNiFF+

Both Rigi and SNiFF+ are capableof representindarger
softwaresystems However the multiple window approach
usedby thesetools often disorientecthe users. The users
werefacedwith thedifficult taskof accuratelyconceptualiz-
ing andintegratingheimplicit relationship@monghecon-
tentsof individual windows. In SNiFF+, the reuseof ex-
isting windowswasnot well acceptedy someusers.They
preferredo opennewwindowsandwantedwvindowsfrozen
by default,butoftencomplainedaboutthemultitudeof win-
dowsthat the freezingfeaturewould cause. A few men-
tionedthatthisaspecbf SNiFF+wouldbesomethingdto get
usedto.”

Fisheye views infrequently used in SHriMP

Fisheyeviewswerethoughtto beuseful,sincetheyprovided
the ability to view both detailandcontextat the sametime.
Someuserddid occasionallyusethefisheyeview methodin
SHriMP, especiallywhentheywantedto seehow a nodeof
interestnteractedvith therestof theprogram.Howeverwe
noticedthatusersoftenwould not usethefisheyeview fea-
ture. Insteadtheyzoomedn to seedetailandthenzoomed
outwhenmorecontextwasdesired.

Therecould be severalreasondor this behavior First,
the hypertextcodein thenodesalreadyprovidedsomecon-
text throughthe coloredhyperlinksto calledfunctionsand
referencedlatatypes. Secondthe pan+zoonmethodwas
efficiently implementedand,therefore contextuainforma-
tion wasjust oneclick away Third, the SHriMP version
usedin theexperimentid not supportmultiple focal points
(achiefadvantagef its fisheyealgorithmoverpan+zoom).
Someusersvantedto expandmultiple, non-adjacenhodes,
butwereunableto doso. Finally, we suspecthatthefisheye
view methods morebeneficiaWwhencreatingsubsystentni-
erarchiestatherthanbrowsingexistinghierarchiesForthis
task,morecontextis neededvhenassigningnodedo differ-
entsubsystem a subsystenhierarchy

Filtering effectivein Rigi and SNiFF+

Both Rigi andSNiFF+providetheability to filter irrelevant
informationin their views. Thesefilters wereusedvery ef-

fectively andincreasedhe scalabilityof thesetoolsconsid-
erably In Rigi, thenodelabelswerefilteredin theOverview
windows. This reducedsomevisual clutter, but the labels
of importantsubsystermodeswere also filtered. Conse-
guently the usershadto searchfor nodesby nameto high-

light thematchingnodesn theOverview or theyhadto turn

off the nodelabelfilter for a selectedsetof nodes. Some
usersfoundthis awkward.

Information overload in SHriMP

In SHriMP, many userswere overwhelmedby the large

14

amountof informationdisplayedin a singlewindow. The

biggestconcernwaswith the large numberof visible arcs.
This concernincreasedvhencompositearcswere opened.
Thedisorientatiorcouldhavebeenrelievedby thejudicious
useof filters (if they hadbeenavailable). Indeed,two of

the userssuggestedhat all arcsshouldbe hiddenby de-

fault. Arcs of agiventypeor connectedo a selectedsetof

nodesshouldbe displayedonly uponrequest.This feature
might bettersupportan as-neededomprehensiostrategy
Improving the accesgo arcsand effectively managingthe
openingand closingof compositearcsare areasfor future
research.

6.4 Experimental biases

Thereweremanypracticaldifficultiesin runningastudy
of thiscomplexity Althoughwe did notentirelypreventex-
perimentabiasesrom arising,we tried to realize,control,
andminimizethem.

In carryingoutthestudy weusedive experimentersiWe
trainedtheexperimenters) advancef theexperimentaind
encouragethemto follow thehandbooksDespitetheseef-
forts,inconsistencieamonghesessionsunby differentex-
perimenteraffectedthe observationsTherewereafew in-
stancesvherean experimenteforgot to showan essential
featureof a tool, therebysignificantlyalteringthe compre-
hensionstrategiesused. The differentpersonalitiesf the
experimentersvould havealsointroduceda bias. The use
of the Rigi andSHriMP tool desigherasexperimentern-
troducedyet anotherbias. For example,one SHriMP user
knewthe SHriMP designelandworkedmoreintenselywith
thetoolthanusual. Toreducehesebiaseswerotatedheex-
perimenteramongwo or threetools,videotapedheformal
tasksfor mostusersandtried notto revealthetool designer

Videotapingandthink-aloudlikely affecteduserperfor
mance[23]. A few userswereintimidatedby the testsit-
uation,andthreechosenotto be videotaped.Participation
in the studywasalsopartof a classassignmentHowever
thestudentsverenotrequiredo participatein thestudyand
couldreadsomepapersnstead.

The wording of ataskaffectedthe strategiesised. For
examplejf Task4 hadbeerrewordedo asktheuserto ver-
ify thatthereis no computermode,the strategyusedmay
havebeeninitially more systematic.By hinting thatthere
wasa computermode,coupledwith the apparenpossibil-
ity of asingleplayergame the usersookamoreadhocap-
proachto try to verify thatthe modeexisted.

6.5 Limitationsand Future Work
We believethata statisticalanalysisof thetaskanswers

would not serveour particulargoalsin this study Thereis
no singleright way for performingthe tasks,andattaching

a scaleto the variety of possibleanswerswvould introduce
otherbiases.Timingsfor thetasksalsocannotbe analyzed,
sincetheinformationrequiredto answemnetaskmayhave
actuallybeengathereastheusemerformedadifferenttask.
Manyusersspentonsiderablémegatheringnformationas
partof Task1 (seeSection5). This informationwassubse-
guentlyusedto answerthertasks.

A detailedanalysisof the videotapedexperimentsmay
be useful. Unfortunately the poorquality of thevideotapes
makesthis difficult. By trying to discreetlyplacethe cam-
eraat a distancefrom the user the cameradid not always
pick up the verbalcommentsmadeby the user In retro-
spect,we shouldhaveusedtwo camerager sessionwith
onecameraimedat the screerandthe othercapturingthe
facial expressionandverbalcommentf the user In us-
ability experimentshoweverthemostusefulinformationis
oftengatheredrom watchingusersandaskingfor feedback,
ratherthananalyzingvideotapedsession$l17]. Videotapes
aresuitablefor verifying detailsof particularbehaviors.

The experimentdescribedn this paperfollowed a pi-
lot studydescribedn [38]. In future experimentsyve will
studyfewerbut moreexperiencegarticipantsastheysolve
broadersoftwaremaintenanceéasksoveralongerperiodof
time. Sofar we havefocusedon observingusersexplor
ing previouslypreparedlocumentatiomndsoftwarehierar
chies.A reverseengineeloneof theauthorsjusedthe Rigi
toolto preparehesoftwareabstractionpresenteh theRigi
andSHriMP viewsprior to theexperimentsWe noticedthat
the namingof subsystenmodesandthe depthof the hierar
chywerecritical. It wouldthereforebeinterestingo observe
how tools, suchasRigi and SHriMP, are usedfor creating
softwaredocumentatiomatherthanmerelybrowsing previ-
ouslypreparediocumentation.

Meanwhile,the users’commentgogetherwith our ob-
servationgromthis experimenhaveresultedn usefulfeed-
backfor thedeveloper®f theseandothersimilartools.

7 Conclusion

This paperreportsobservationgrom an experimento
comparedhreetools(Rigi, SHriMP, andSNiFF+)for brows-
ing programsourcecodeand exploringsoftwarestructure.
In thisexperimentye consideredhefactorswhichaffected
the participants choiceof comprehensiostrategy Impor-
tantfactorsincludedthe programto be understood¢harac-
teristicsof the tasksto be solved,aswell asprogramming
expertiseanddomainknowledgeto be exploited.

In general,we noticedthat the tools did enhancethe
users’preferredccomprehensiostrategiesvhile solvingthe
tasks.Forexampletheability to view dependencyelation-
shipsin all threetoolswasexploitedby mostof theusers.In
SHriMP, theability to switchseamlesslpetweerhigh-level

15

viewsandsourcecodewasconsideredh desirabldeature.

In someinstanceshoweverthetoolshinderedheusers’
progressThelackof aneffectivesourcecodesearchingool
in Rigi andSHriMP causedomeusergo changaheircom-
prehensiorapproacHor someof thetasks.In SNiFF+,in-
sufficienthigh-levelinformationforcedsomeusergo adopt
amorebottom-upapproactor understanding.

In apreviouspaperwe devisedalist of cognitivedesign
elementsvhich shouldbe addresseduringthe designof a
programunderstandingpol [35]. We hopethatthesedesign
elementstogetherwith our observationdrom this experi-
mentandfutureexperimentswill form thebasisof aframe-
work for characterizingnoreeffective programunderstand-
ing tools.

Acknowledgments

Theauthorswould like to thankall the subjectdor par
ticipating in this experiment. JochenStier, Greg Kacy,
Johanne#/artin, andCurtis Muller helpedto organizeand
run the experiment. Thanksalso go to Jim McDaniel for
writing theHTML generatar We are gratefulto Ben Bed-
ersonfor suggestion®n how to usePad++within SHriMP
more efficiently. Finally, commentdrom Harald Gall and
theanonymouseviewersveremuchappreciatedndhelped
to improvethe paper

References

[1] R.BaeckemandA. Marcus.Human Factors and Typography
for More Readable Programs. ACM PressAddison-Wesley
PublishingCompany1990.

R. M. Baecker Sortingoutsorting(16mmfilm), 1981.ACM
SIGGRAPH'81.

B. BedersorandJ. Hollan. Pad++:A zoominggraphicalin-
terfacefor exploringalternaténterfacephysics.In Proceed-
ings of ACM UIST' 94, (Marina del Rey, California), pages
17—-26,November1994.

M. Brady. The Monopoly Book: Strategy and Tactics of the
World's Most Popular Game. David McKay CompanyInc.,
New York, 1974.

R. Brooks. Towardsa theoryof the comprehensionf com-
puterprogramsInternational Journal of Man-Machine Stud-
ies, 18:543-5541983.

M. H. Brown. ExploringalgorithmsusingBalsa-Il. Com-
puter, May 1988.

M. H. Brown. ZEUS:A systemfor algorithmanimationand
multi-view editing. In Proceedings of the |EEE 1991 Work-
shop on Misual Languages, Kobe Japan, pagesi—9,October
1991.

(2]

(3]

[4]

[5]

(6]

[7]

[8] M. H. BrownandM. A. Najork. Algorithm animationus-
ing 3d interactivegraphics. In UIST, Proceedings of the
ACM Symposiumon User I nterface Softwareand Technol ogy,
page93-100,November1993.

[9] J.CrossandS.M. adT.D. Hendrix. Thecontrolstructuredia-
gram:An initial evaluationEmpirical SoftwareEngineering,
3(2):131-1561998.

S.M. Dray. Practicalobservatiorskills for understanding
usersandtheir work in context. In Presented at CHI (Com-
puter Human Interaction) 1999. May 1999.

[10]

[11] G. Furnas. Generalizedisheyeviews. In Proceedings of
ACM CHI’ 86, (Boston,MA), pagesl6—23,April, 1986.

[12] D. Harel. On visual formalisms. Communications of the
ACM, 31(5),May 1988.

[13] T.Hendrix,J.H.Crossll, L. Barowski,andK. Mathias.Tool
supportfor reverseengineeringmulti-lingual software. In
Proceedings of the 4th Working Conference on Reverse En-
gineering (WCRE' 97), Amsterdam,The Netherlandspages
136-1430ctober1997.

Imagix 4D. Imagix
http://wwwimagix.com/index.html.

[14] Corporation.

[15] S.lIsoda,T. ShimomuraandY. Ono. VIPS: A visualdebug-

ger |EEE Software, May 1987.

M. S.K. Brade M. GuzdialandE. Soloway Whorf: A visu-

alizationtool for softwaremaintenanceln Proceedings 1992

IEEE Workshop on Visual Languages, (Seattle Washington:
Septl5-18,1992)pagesl48-1541992.

[16]

[17] T. K. Landauer The Trouble with Computers: Usefulness,
Usability, and Productivity. A BradfordBook, MIT Press,

1995.

[18] S.Letovsky Cognitiveprocessem programcomprehension.
In Empirical Sudies of Programmers, pages58—79.Ablex

PublishingCorporation,1986.

P. Linos, P. Aubet,L. Dumas,Y. Helleboid,P. Lejeune,and
P. Tulula. Visualizingprogramdependenies: An experimen-
tal study Software—Practiceand Experience, 24(4):387-403,
April 1994.

D. Littman, J. Pinto, S. Letovsky, andE. Soloway Mental
modelsand softwaremaintenance.In Empirical Sudies of
Programmers, pages30—98.Ablex PublishingCorporation,
1986.

[19]

[20]

[21] A. MendelzonandJ. Sametinger Reverseengineeringoy
visualizingand querying. Software — Concepts and Tools,

16:170-1821995.

H. Miller and K. Klashinsky Rigi — A systemfor
programming-in-the-lgre. In Proceedings of the 10th In-
ternational Conference on Software Engineering (ICSE ' 10),
SingaporeApril, 1988,pages30—-86,April 1988.

[22]

[23] N. Pennington. Stimulusstructuresand mentalrepresenta-
tionsin expertcomprehensioof computemprograms. Cog-

nitive Psychology, 19:295-3411987.

16

[24] M. Petre, A. Blackwell, and T. Green. Cognitive ques-
tions in softwarevisualization. In Software Visualization:
Programming as a Multi-Media Experience, pagest53—-480.
MIT Press1997.

[25] B. A. Price,R. M. Baeckerandl. S. Small. A principled
taxonomyof softwarevisualization. Journal of Visual Lan-
guages and Computing, June1993.

[26] V. Rajlich,N. DamaskinosandP. Linos. VIFOR: A tool for
softwaremaintenance. Software—Practice and Experience,
20(1):67—77,Januaryl990.

S.Reiss.Pecan:Programdevelopmensystemshatsupport
multipleviews. | EEE Transactionson Software Engineering,
SE-11(3):276—-285March1985.

G.-C.RomanK. C. Cox, C. D. Wilcox, andJ. Y. Plun. Pa-
vane: A systemfor declarativevisualizationof concurrent
computations.TechnicalReportWUCS-91-26 Washington
University St. Louis, April, 1991.

P. Schorn, A. Brungger and M. de Lorenzi. The XYZ
Geobench:Animation of geometricalgorithms. In M. H.
Brown andJ. Hershbeger, editors,Animations for Geomet-
ric Algorithms: A Video Review, PaloAlto, California,1992.
Digital System$ResearciCenter

[27]

(28]

[29]

[30] B. Shneiderman.Software Psychology: Human Factors in
Computer and Information Systems. Winthrop Publishers,

Inc., 1980.

[31] SNiFF+2.3. Users Guideand ReferenceTakeFiveSoft-
ware. http://wwwtakefive.comPecemberl996.

[32] E. SolowayandK. Ehrlich. Empirical studiesof program-
ming knowledge.|EEE Transactions on Software Engineer-
ing, SE-10(5):595-60%eptemberl 984.

[33] E. Soloway J. Pinto, S. Letovsky, D. Littman, andR. Lam-
pert. Designingdocumentatiorio compensatéor delocal-
izedplans.Communications of the ACM, 31(11):1259-1267,
1988.

[34] J.T. Stasko.Tango: A frameworkandsystemfor algorithm
animation.|EEE Computer, September1990.

[35] M.-A. StoreyF. FracchiaandH. Miller. Cognitivedesigrel-
ementgo supportthe constructiorof a mentalmodelduring
softwarevisualization. In The Proceedings of the 5th Inter-
national Workshop on Program Comprehension (IWPC' 97),

DearbornMichigan,pagesl7-28,May, 1997.

M.-A. Storey F. D. Fracchia,and S. Carpendale. A top
down approachto algorithm animation. Technical Re-
port CMPT 94-05, Simon FraserUniversity, BurnabyB.C.,
CanadaSeptemberl994.

M.-A. Storey H. Muller, andK. Wong. Manipulatingand
documentingsoftwarestructures.ln P. EadesandK. Zhang,
editors,Software Visualization, page244—-263World Scien-
tific PublishingCo.,Fall 1996.

M.-A. Storey K. Wong,P. Fong,D. Hooper K. Hopkins,and
H. Muller. Ondesigninganexperimento evaluateareverse
engineeringool. In Proceedings of the 3rd Working Confer-
ence on Reverse Engineering (WCRE96), Monterey Califor-
nia, pages31-40,November1996.

[36]

[37]

(38]

[39] S.Tilley, S. Paul,andD. Smith. Towardsa frameworkfor
programunderstandingin WPC'96: 4th Workshop on Pro-
gramComprehension, Berlin, Germanypagesl 9-28 March,
1996.

[40] 1. VesseyExpertisdn debuggingcomputeiprogramsA pro-
cessanalysislnternational Journal of Man-Machine Studies,
23:459-4941985.

[41] A. von MayrhauserndA. Vans. Programcomprehension
duringsoftwaremaintenancandevolution.|EEE Computer,
pagest4-55 ,August1995.

[42] A. von MayrhauseandA. Vans. From codeunderstanding
needgo reverseengineeringool capabilitiesln Proceedings
of CASE' 93, Singaporepages230—-239,July, 1993.

17

