
Qualitative Methods in Empirical Studies
of Software Engineering

Carolyn B. Seaman, Member, IEEE

AbstractÐWhile empirical studies in software engineering are beginning to gain recognition in the research community, this subarea

is also entering a new level of maturity by beginning to address the human aspects of software development. This added focus has

added a new layer of complexity to an already challenging area of research. Along with new research questions, new research

methods are needed to study nontechnical aspects of software engineering. In many other disciplines, qualitative research methods

have been developed and are commonly used to handle the complexity of issues involving human behavior. This paper presents

several qualitative methods for data collection and analysis and describes them in terms of how they might be incorporated into

empirical studies of software engineering, in particular how they might be combined with quantitative methods. To illustrate this use of

qualitative methods, examples from real software engineering studies are used throughout.

Index TermsÐQualitative methods, data collection, data analysis, experimental design, empirical software engineering, participant

observation, interviewing.

æ

1 INTRODUCTION

THE study of software engineering has always been
complex and difficult. The complexity arises from

technical issues, from the awkward intersection of machine
and human capabilities, and from the central role of human
behavior in software development. The first two aspects
have provided more than enough complex and interesting
problems to keep empirical software engineering research-
ers engaged up until now. But it is the last factor, human
behavior, that software engineering empiricists are only
recently beginning to address in a serious way.

Empirical studies have been conducted in software

engineering for several decades, but have only relatively

recently achieved significant recognition in the broader

software engineering research community (as evidenced by

this special issue). But this subarea has also reached a

discernibly new level of maturity that is evidenced by the

new types of questions and methods seen in more recent

studies. In particular, software engineering empiricists are

beginning to address the human role in software develop-

ment. One indication of this broadening of focus is the

nature of recent work in traditionally empirical software

engineering research groups. For example, recent studies at

the Software Engineering Laboratory1 have concentrated on

human aspects through observation of communication

among developers [17] and the elicitation of the processes
used to build systems based on COTS2 components [15].

Part of the reason for this new interest among research-
ers actually comes from practitioners, many of whom have
seen the advances gained by adapting research results in
technical areas. But many in the industry recognize that
software development also presents a number of unique
management and organizational issues, or ªpeople pro-
blems,º that need to be addressed and solved in order for
the field to progress. Calls to take ªpeople problemsº
seriously were first made decades ago [4], [6], and continue
to appear regularly in the literature [1], [5], [13]. Finally,
they are starting to be heeded by researchers who are
starting to study nontechnical issues and the intersection
between the technical and nontechnical in software en-
gineering.

Qualitative data are data represented as words and
pictures, not numbers [8]. Qualitative research methods
were designed, mostly by educational researchers and other
social scientists [19], to study the complexities of human
behavior (e.g., motivation, communication, understanding).
It could be argued that human behavior is one of the few
phenomena that is complex enough to require qualitative
methods to study it. Anything else can be adequately
described and explained through statistics and other
quantitative methods. In software engineering, the blend
of technical and human behavioral aspects lends itself to
combining qualitative and quantitative methods, in order to
take advantage of the strengths of both.

The focus of this paper is on showing how qualitative
methods can be adapted and incorporated into the designs
of empirical studies in software engineering. The principal
advantage of using qualitative methods is that they force
the researcher to delve into the complexity of the problem
rather than abstract it away. Thus, the results are richer and

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 25, NO. 4, JULY/AUGUST 1999 557

. C.B. Seaman is with the Department of Information Systems, University of
Maryland Baltimore County, Baltimore, MD 21250.
E-mail: cseaman@umbc.edu.

Manuscript received 30 June 1998.
Recommended for acceptance by D. Ross Jeffery.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 109541.

1. The Software Engineering Laboratory (SEL) is sponsored jointly by
NASA/Goddard Space Flight Center, Computer Sciences Corporation, and
the Empirical Software Engineering Group at the University of Maryland.
The SEL has been conducting various types of empirical studies of diverse
software engineering issues for more than two decades.

2. Commercial-Off-The-Shelf.

0098-5589/99/$10.00 ß 1999 IEEE

more informative. There are drawbacks, however. Qualita-
tive analysis is generally more labor-intensive and exhaust-
ing than quantitative analysis. Qualitative results often are
considered ªsofterº or ªfuzzierº than quantitative results,
especially in technical communities like ours. They are
more difficult to summarize or simplify. But then, so are the
problems we study in software engineering.

The methods described here are described in terms of
how they could be used in a study that mixes qualitative
and quantitative methods. Purely qualitative studies, which
are rare to say the least in software engineering, would
probably employ these methods slightly differently, or at
least more intensively. There are also many other, more
sophisticated, qualitative analysis methods that are em-
ployed in purely qualitative studies. See [11], [12], [14], [19]
for descriptions of other qualitative methods.

The presentation of this paper divides qualitative
methods into those for collecting data and those for
analyzing data. Examples of several methods are given for
each, and the methods can be combined with each other, as
well as with quantitative methods. Later, several example
method combinations are discussed. Throughout the article,
examples will be drawn from one particular study,
described in detail in [17], of communication among
developers during code inspection meetings.

2 DATA COLLECTION METHODS

Two data collection methods, participant observation and
interviewing, are presented in this section. These are useful
ways of collecting firsthand information about software
development efforts. Historical qualitative information can
also be gained by examining documentation. Techniques
for analyzing archival documents are discussed in [19]. Also
in this section is a discussion of one type of ªcoding,º
which is a technique for preparing qualitative data to be
analyzed quantitatively.

2.1 Participant Observation

Participant observation, as defined in [19], refers to ªresearch
that involves social interaction between the researcher and
informants in the milieu of the latter, during which data are
systematically and unobtrusively collected.º The idea is to
capture firsthand behaviors and interactions that might not
be noticed otherwise. Although the name is misleading,
participant observation does not necessarily imply that the
observer is engaged in the activity being observed (e.g., [2]),
only that the observer is visibly present and is collecting
data with the knowledge of those being observed.

Although a great deal of information can be gathered
through observation, the parts of the software development
process that can actually be observed are limited. Much of
software development work takes place inside a person's
head. Such activity is difficult to observe, although there are
some techniques for doing so. Think aloud protocols [9]
require the subject to verbalize his or her thought process so
that the observer can understand the process going on. Such
protocols are limited by the comfort level of the subject and
their ability to articulate their thoughts. It might be possible,
also, to capture some of the thought process of individual
developers by logging their keystrokes and mouse move-

ments as they work on a computer [18]. These techniques
are often used in usability studies, where the subjects are
software users, but they have not been widely employed in
studies of software developers (an exception is the work of
von Mayrhauser and Vans [20]).

Software developers reveal their thought processes
most naturally when communicating with other software
developers, so this communication offers the best
opportunity for a researcher to observe the development
process. One method is for the researcher to observe a
software developer continuously, thus recording every
communication that takes place with colleagues, either
planned or unplanned. A good example of a study based
on this type of observation is [16]. A less time-consuming
approach is to observe meetings of various types. These
could include inspection meetings, design meetings,
status meetings, etc. By observing meetings, a researcher
can gather data on the types of topics discussed, the
terminology used, the technical information that was
exchanged, and the dynamics of how different project
members speak to each other.

There are a number of issues that a participant observer
must be aware of. Many of these are presented here, based
in part on the literature (in particular [19]) and partly on the
particular experience of this researcher with studies of
software engineering.

The participant observer must take measures to ensure
that those being observed are not constantly thinking about
being observed. This is to help ensure that the observed
behavior is ªnormal,º i.e., what usually happens in the
environment being observed, and is not affected by the
presence of the observer. For example, a researcher
observing meetings should be as unobtrusive as possible
(like a ªfly on the wallº). Ideally, all those present should
know beforehand that the observer will be at that meeting
and why. This advance notice avoids having to do a lot of
explaining during the meeting, which will only remind the
subjects that they are being observed. The observer,
although visible, should not be disruptive in any way. All
of the observer's materials (pen, watch, paper, recording
devices, etc.) should be ready and at hand before the
meeting starts so that the observer doesn't have to hunt
around for them during the meeting. If the meeting takes
place at a table, the observer should probably not sit at the
table, but back from it a little so that he or she can see
everything that is going on at the table, but is not directly in
everyone's line of sight. Again, these are all techniques to
help ensure that the subjects are concentrating on the job at
hand, not on being observed. The observer should always
look for signs that their presence makes any of the
participants nervous or self-conscious, which again may
affect their behavior. Any such signs should be recorded in
the notes that the observer takes, and will be considered in
the analysis later.

The observer's notes should not be visible to any of the
meeting participants. In fact, the notes should be kept
confidential throughout the study. This gives the researcher
complete freedom to write down any impressions, opinions,
or thoughts without the fear that they may be read by
someone who will be offended by them.

558 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 25, NO. 4, JULY/AUGUST 1999

The data gathered during an observation is ultimately
recorded in the form of field notes. These notes are begun
during the actual observation, during which the observer
writes what is necessary to fill in the details later. Then, as
soon after the observation as possible, the notes are
augmented with as many details as the observer can
remember. The information contained in the field notes
should include the place, time, and participants in the
meeting, the discussions that took place, any other events
that took place either as part of the meeting or that
impacted the meeting, and the tone and mood of the
meeting. The notes should also contain ªobserver's
comments,º marked ªOCº in the text of the notes, which
record the observer's impressions of some aspect of the
meeting, which may not correspond directly to anything
that was actually said or that occurred during the meeting.
The level of detail in the notes depends on the objectives of
the researcher. The most detailed are verbatim transcripts of
everything said during the meeting, plus detailed descrip-
tions of the setting and participants. Writing such detailed
notes is extremely time-consuming. Often what are needed
are summaries of the discussions and/or some details that
are specific to the aims of the study. The more exploratory
and open-ended the study, the more detailed the field notes
should be, simply because in such a study anything could
turn out to be relevant. In any study, the observer should
begin with very detailed notes at least for the first few
observations, until it is absolutely clear what the objectives
of the study are and exactly what information is relevant.

In many studies, there are very specific pieces of
information that are expected to be collected during an
observation. This is often true in studies that combine
qualitative and quantitative methods, in which qualitative
information from an observation will later be coded into
quantitative variables, e.g., the length of a meeting in
minutes, the number of people present, etc. When this is the
case, forms will be designed ahead of time that the observer
will fill in during the course of the observation. This will
ensure that specific details will be recorded. These forms
are used in addition to, not instead of, field notes.

An example of a study based largely on observation data
is [17], a study of code inspection meetings (hereafter
referred to as the Inspection Study). Most of the data for this
study was collected during direct observation of 23
inspections of C++ classes. The objective of the study was
to investigate the relationship between the amount of effort
developers spend in technical communication (e.g., the
amount of time spent discussing various issues in inspec-
tion meetings) and the organizational relationships between
them (e.g., how much a group of inspection participants
have worked together in the past). Information about
organizational relationships was collected during inter-
views with inspection participants, described in Section 2.2.
Information about communication effort was collected
during the observations of code inspections. This study
serves as a good example of employing a variety of
qualitative methods, along with quantitative methods, to
investigate an issue in software engineering. The findings of
this study were deeper and more illustrative than would
have been gained using a more restricted set of research

methods. Also, this author learned a great many lessons
(through both success and failure) while conducting this
study. For all these reasons, this study will serve as an
example throughout this article to illustrate the methods
presented. An additional example study will be presented
in the next section.

Fig. 1 shows a form that was filled out by the observer for
each observed meeting in the Inspection Study. The
administrative information (classes inspected, date, time,
names of participants) were all provided in the announce-
ment of each inspection. The responsibilities of each
inspector (which products each was responsible for
inspecting) were either stated in the inspection announce-
ment, became obvious during the meeting, or were related
during interviews. At some point during each inspection
meeting, each inspector reported his or her preparation
time to the moderator, and the observer also recorded it.
Whether or not each was present at the meeting was also
recorded on the data form. The amount and complexity of
the code inspected was addressed during interviews later.

Another form filled out during observations was a time
log, an example of which is shown in Fig. 2. At the top of
each page of the log is recorded basic identifying informa-
tion. For each discussion that took place during the meeting,
the observer recorded the time (to the closest minute) it
started, the initials of the participants in that discussion, a
code corresponding to the type of discussion, and some
notes indicating the topic of discussion, the tone of the
discussion, and any other relevant information. The arrows
in some of the lists of participants' initials indicate that a
comment or question was made by one participant,
specifically targeted to another participant. In the margins
of the time log, the observer also recorded other relevant
information about the participants, the setting of the
meeting, and other activities taking place. The number of
minutes spent in each discussion category was calculated
from the time logs after the meeting.

Extensive field notes were also written immediately after
each meeting observed in the Inspection Study. These notes
contained broader descriptions of observations noted on the
inspection data forms. Below is a sanitized excerpt from
these field notes:

[Inspector1] raised a bunch of defects all together, all
concerning checking for certain error conditions (unset
dependencies, negative time, and null pointers).

[Inspector2] raised a defect which was a typo in a comment.
She seemed slightly sheepish about raising it, but she did
nevertheless.

OC: [Inspector2] seemed more harsh on [Author] than I
had ever seen her on any of the [subcontractor] authors.
My impression of her is that she would never raise a typo
as a defect with anyone else. Does she have something
against [government agency] folks?

[Inspector2] raised a defect concerning the wrong name of a
constant.

[Inspector3] raised a defect having to do with the previous
single dependency issue. In particular, dereferencing
would have to be done differently, although there were
several ways to fix it. [Inspector3] recommended using
the dot instead of the arrow.

SEAMAN: QUALITATIVE METHODS IN EMPIRICAL STUDIES OF SOFTWARE ENGINEERING 559

In order to evaluate the validity and consistency of data
collected during participant observations, rater agreement
exercises [11] are often conducted. The basic idea is to ensure
not only that the data being recorded are accurate, but also
that the observer is not recording data in a form that is
understandable only to him or her. During three of the
inspection meetings observed in the Inspection Study
(about 15 percent), a second observer was present to record
data. The same second observer was used all three times.
All three were among the first half of meetings observed,

i.e., they occurred fairly early in the study. This was

intentional, in order to get the greatest advantage from

improvements made to data collection procedures as a
result of the exercise.

Before the observations in which she participated, the
second observer was instructed by the principal observer in
the forms used for data collection, the codes used to
categorize discussions, the procedure used to time discus-
sions, and some background on the development project
and developers.

560 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 25, NO. 4, JULY/AUGUST 1999

Fig. 1. Form used to collect data during observation of inspection meetings.

A total of 42 discussions were recorded during the three
doubly-observed meetings. Out of those, both observers
agreed on the coding for 26, or 62 percent. Although, to our
knowledge, there is no standard acceptable threshold for
this agreement percentage, we had hoped to obtain a higher
value. However, the two observers were later able to come
to an agreement on coding for all discussions on which they
initially disagreed. The observers generally agreed on the
length of each discussion.

Many of the coding discrepancies were due to the second
observer's lack of familiarity with the project and the
developers. Others arose from the second observer's lack of
experience with the instrument (the form and coding

categories), and the subjectivity of the categories. The

coding scheme was actually modified slightly due to the

problems the second observer had. It should be noted that

some of the discrepancies over coding (three out of 26

discrepancies) were eventually resolved in the second

observer's favor. That is, the principal observer had made

an error. Another troubling result of this exercise was the

number of discussions (five) that one observer had

completely missed, but had been recorded by the other.

Both the principal and second observers missed discus-

sions. This would imply that a single observer will usually

miss some interaction.

SEAMAN: QUALITATIVE METHODS IN EMPIRICAL STUDIES OF SOFTWARE ENGINEERING 561

Fig. 2. Time log used to document discussions during inspection meetings.

The results of a rater agreement exercise, ideally, should
confirm that the data collection techniques being used are
robust. However, as in the Inspection Study, the exercise
often reveals the limitations of the study. This is valuable,
however, as many of the limitations revealed can be
overcome if they are discovered early enough, and even if
they are not surmountable, they can be reported along with
the results and can inform the design of future studies. For
example, in the Inspection Study, the results of the rater
agreement exercise indicated that the data collected during
observations would have been more accurate if more
observers had been used for all observations, or if the
meetings had been recorded. These procedural changes
would have either required prohibitive amounts of effort, or
stretched the goodwill of the study's subjects beyond its
limits. However, these should be taken into consideration in
the design of future studies.

Recording of observations, either with audio or video, is
another issue to be considered when planning a study
involving participant observation. The main advantage of
electronically recording observations is in ensuring accu-
racy of the data. Usually, the field notes are written after the
observation while listening to or watching the recording. In
this way, the notes are much less likely to introduce
inaccuracies due to the observer's faulty memory or even
bias. In the Inspection Study, it was decided not to audio- or
videotape observed meetings for the reasons mentioned in
the previous paragraph. However, it is done in many
studies [19].

2.2 Interviewing

Another commonly used technique for collecting qualita-
tive data is the interview. Interviews are conducted with a
variety of objectives. Often they are used to collect historical
data from the memories of interviewees. In other studies
they are used to collect opinions or impressions about
something. In others, interviews are conducted to help
identify the terminology used in a particular setting. They
are sometimes used in combination with observations. In
this case, they serve to clarify things that happened or were
said during an observation, to elicit impressions of the
meeting or other event that was observed, or to collect
information on relevant events that were not observed.

Interviews come in several types. In [12], a structured
interview is described as one in which ªthe questions are in
the hands of the interviewer and the response rests with the
interviewee,º as opposed to an unstructured interview in
which the interviewee is the source of both questions and
answers. In an unstructured interview, the object is to elicit
as much information as possible on a broadly defined topic.
The interviewer does not know the form of this information
ahead of time, so the questions asked must be as open-
ended as possible. In the extreme, the interviewer doesn't
even ask questions, but just mentions the topic to be
discussed and allows the interviewee to expound. In a
structured interview, on the other hand, the interviewer has
very specific objectives for the type of information sought in
the interview, so the questions can be fairly specific. The
extreme of a structured interview is one in which no
qualitative information is gained at all, i.e., all responses can
be quantified (e.g., yes/no, high/medium/low, etc.). If the

study is qualitative, however, the interview must be flexible
enough to allow unforeseen types of information to be
recorded. A purely unstructured interview is often too
costly to be used extensively. Therefore, many studies
employ semistructured interviews. These interviews include a
mixture of open-ended and specific questions, designed to
elicit not only the information foreseen, but also unexpected
types of information.

Again, as in the previous section on participant observa-
tion, the advice given here about interviewing is based in
part on the literature (in particular [19]) and partly on the
experience and reflection of this author.

The interviewer should begin each interview with a short
explanation of the research being conducted. Just how
much information the interviewer should give about the
study should be carefully considered. Interviewees may be
less likely to fully participate if they do not understand the
goals of the study or agree that they are worthy. However, if
interviewees are told too much about it, they may filter their
responses, leaving out information that they think the
interviewer is not interested in. Another judgment that the
interviewer must often make is when to cut off the
interviewee when the conversation has wandered too far.
On one hand, interview time is usually valuable and
shouldn't be wasted. However, in a qualitative study, all
data is potentially useful and the usefulness of a particular
piece of data often is not known until long after it is
collected. Of course, interviewees should never be cut off
abruptly or rudely. Steering them back to the subject at
hand must be done gently. In general, it is better to err on
the side of letting the interviewee ramble. Often the
ramblings make more sense in hindsight. The opposite
problem, of course, is that of an interviewee who says the
barest minimum. One strategy is to ask questions that
cannot possibly be answered with a ªyesº or a ªno.º
Another is to feign ignorance, i.e., to ask for details that are
already well known to the interviewer. This may get the
interviewee talking, as well as help dispel any perception
they might have of the interviewer as an ªexpert.º It is also
important to make it clear that there are no ªrightº
answers. Software developers sometimes mistakenly be-
lieve that anyone coming to interview them (or observe
them) is really there to evaluate them.

Like observational data, interview data are ultimately
recorded in field notes, which are governed by the same
guidelines as described in the previous section. Also as
described earlier, forms can be used and filled out by the
interviewer in order to facilitate the gathering of specific
pieces of information. Another tool which can be useful
during an interview is an interview guide [19]. An interview
guide is not as formal as a data form, but it helps the
interviewer to organize the interview. It usually consists of
a list of open-ended questions, possibly with some notes
about the direction in which to steer the interview under
different circumstances. In a structured interview, the
questions are fairly straightforward, and they might be
arranged in an ªif-thenº structure that leads the interviewer
along one of several paths depending on the answers to
previous questions. In an unstructured interview, there
might not be an interview guide, or it may simply be a short

562 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 25, NO. 4, JULY/AUGUST 1999

list of topics to be touched on. Interview guides are purely
for the use of the interviewer; they are never shown to the
interviewee.

The interviewer may make some notes on the guide to
help him or her remember how to steer the interview, but
the guide should not be used for taking notes of the
interview. In general, it is difficult for an interviewer to take
notes and conduct the interview at the same time, unless the
interviewer is very skilled. It is useful, if the interviewee
consents, to audiotape the interview. The tape can then be
used to aid the writing of the field notes later. Recording
has the added advantage that the interviewer can hear him/
herself on the tape and assess his or her interviewing skills.
This is particularly useful in discovering one's own
annoying conversational habits (e.g., interrupting, overuse
of ªumº etc.). Another way to facilitate the taking of notes
is to use a scribe. A scribe is present at the interview only to
take notes and does not normally participate in any other
way. Using a scribe takes the note-writing responsibilities
from the interviewer completely, which can be an advan-
tage for the researcher. However, verbatim notes are not
possible this way, and the scribe does not always share the
interviewer's ideas about what is important to record. The
use of a scribe is also often prohibitively expensive or
intimidating to the interviewee.

Another example study that will be used in this article is
[15], a study of COTS integration (hereafter referred to as
the COTS Study). The objective of the study was to
document the process that NASA software project teams
were following to produce software systems largely
constructed from COTS components. This type of system
development, or ªintegration,º was fairly new in the NASA
group studied. Consequently, there was no documented
process for it and it was suspected that a number of
different processes were being followed. The COTS Study
team was tasked with building a process model general
enough to apply to all of the different ways that COTS
integration was being done. The model would then be used
as a baseline to design process measures, to plan improve-
ments to the process, and to make recommendations for
process support. Interviews with developers on projects
that involved a large amount of COTS integration provided
the bulk of the data used to build the process model.
Scribes, as described above, were used to record these
interviews. Many interviewees were interviewed multiple
times, at increasing levels of detail. These interviews were
semi-structured because each interview started with a
specific set of questions, the answers to which were the
objective of the interview. However, many of these
questions were open-ended and were intended for (and
successful in) soliciting other information not foreseen by
the interviewer. For example, one question on the COTS
Study interview guide was:

What are the disadvantages of Package-Based Development
(i.e., COTS integration) in comparison with traditional develop-
ment?

The study team had expected that answers to this
question would describe technical difficulties such as
incompatible file formats, interface problems, or low COTS
product quality. However, much of the data gathered

through this question had to do with the administrative
difficulties of COTS integration, e.g., procurement, finding
information on current licenses, negotiating maintenance
agreements, etc. As a result, a major portion of the study's
recommendations to NASA had to do with more adminis-
trative support of various kinds for COTS integration
projects.

Semistructured interviews were also used in the Inspec-
tion Study. After each inspection meeting, an interview
guide was constructed to include the information missing
from the data form for that inspection, as well as several
questions that were asked of all interviewees. The questions
asked also varied somewhat depending on the role that the
interviewee played in the inspection. An example of such a
form is shown in Fig. 3. Most interviews in this study were
audiotaped in their entirety. Extensive field notes were
written immediately after each interview. The tapes were
used during the writing of field notes, but they were not
transcribed verbatim.

2.3 Coding

Most empirical software engineering studies employ a
combination of qualitative and quantitative methods and
data. There are a number of ways to combine such methods.
One commonly used strategy is to extract values for
quantitative variables from qualitative data (often collected
from observations or interviews) in order to perform some
type of quantitative or statistical analysis. This process is
called coding.

To understand the data transformation that takes place
during coding, we need to address a common misconcep-
tion about the difference between quantitative and qualita-
tive data. As defined earlier, qualitative data is information
expressed as words or pictures, while quantitative data is
represented as numbers or other discrete categories. In
other words, the distinction between qualitative and
quantitative data has to do with how the information is
represented, not whether it is subjective or objective.
Qualitative data is often assumed to be subjective, but that
is not necessarily the case. On the other hand, quantitative
data is often assumed to be objective, but neither is that
necessarily the case. In fact, the objectivity or subjectivity of
data is completely orthogonal to whether it is qualitative or
quantitative. The process of coding transforms qualitative
data into quantitative data, but it does not affect its
subjectivity or objectivity. For example, consider the
following text, which constitutes a fragment of qualitative
data:

Tom, Shirley, and Fred were the only participants
in the meeting.

Now consider the following quantitative data, which was
generated by coding the above qualitative data:

num_participants = 3

The fact that the information is objective was not
changed by the coding process. Note also that the process
of coding has resulted in some lost information (the names
of the participants). This is frequently the case, as
qualitative information often carries more content than is
easily quantified. Consider another example:

SEAMAN: QUALITATIVE METHODS IN EMPIRICAL STUDIES OF SOFTWARE ENGINEERING 563

Susan said that this particular C++ class was really
very easy to understand, and not very complex at
all, especially compared to other classes in the system.

And the resulting coded quantitative data:

complexity = low

Again, the process of coding this information did not make

it more objective, although the quantitative form may

appear less subjective.
Coding results in more reliably accurate quantitative

data when it is restricted to straightforward, objective

information, as in the first example above. However, it is

often desirable to quantify subjective information as well in

order to perform statistical analysis. This must be done with

564 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 25, NO. 4, JULY/AUGUST 1999

Fig. 3. An interview guide used in the Inspection Study.

care in order to minimize the amount of information lost in
the transformation and to ensure the accuracy of the
resulting quantitative data as much as possible. Often
subjects use different words to describe the same phenom-
enon, and the same words to describe different phenomena.
In describing a subjective concept (e.g., the complexity of a
C++ class), a subject may use straightforward words (e.g.,
low, medium, high), that mask underlying ambiguities. For
example, if a subject says that a particular class has ªlow
complexity,º does that mean that it was easy to read and
understand, or easy to write, or unlikely to contain defects,
or just small? In coding such concepts, the researcher must
pay close attention to the words and meanings of the
subjects (as contained in the field notes) to make sure that
they are being interpreted accurately.

In the Inspection Study, much of the qualitative data was
coded into quantitative variables to be used in statistical
analyses. Much of the coding was straightforward extrac-
tion of objective data (e.g., number of participants, meeting
length, etc.). But some thorny coding issues came up with
subjective data. In particular, the coding of complexity
(alluded to above) turned out to be rather complicated.

Complexity information was gathered by asking at least
two of the participants in each inspection to comment on
the complexity of the material being inspected.
ªComplexityº was intentionally left undefined in an effort
to collect qualitative information about developers' views of
complexity. If the developer requested a clarification, the
interviewer used the term ªhow difficult it was to inspect.º
The complexity variable was coded into five levels (very
low, low, average, high, very high), which in some cases
was not difficult to do from the developers' comments
(comments like ªClass from Hellº and ªpiece of cakeº
were helpful). However, in many cases, developers went
beyond these categories to explain the complexity of the
inspected material in more detail.

In most cases, complexity was concentrated in the source
code of the class or classes being inspected. Some inter-
viewees compared the class in question with other classes in
the system. In most of these cases, the class was compared
to the developer's idea of ªaverage.º The field notes contain
phrases like ªmuch less complex than average,º ªmore
complex than average,º ªa little easier than average,º
ªsimpler than average,º and ªharder than average.º In
some cases, the comparisons were absolute: ªthe most
complex he's looked at,º or ªthe most complex in the
system,º or ªIt's a harder class than the other ones we've
inspected,º or ªthe simplest class we've got.º Such char-
acterizations were also fairly easy to code on a five-point
scale, where anything described as ªaverageº fell in the
middle category, classes described as differing from
average (e.g., ªmore complex than averageº) were rated in
the category just above or below ªaverage,º and the classes
described as extreme in some way (e.g., ªthe simplest class
we've gotº) were put in the extreme categories.

Many classes were difficult for developers to rate
because they contained one small piece that was difficult
to inspect, but the class as a whole was not particularly
complex. Some developers specifically referred to the
mathematics or computational nature of a class in defining

its complexity. Some functions or classes had ªtons of
complex mathematical formulas,º or ªugly mathematical
equations.º In some cases, the code for the class itself was
not so difficult, but inspecting the test plan and results was.
And in other cases, it was the complexity of the functional
specifications that was a problem. In some cases, there was
some specific characteristic of the class that developers cited
that was strongly related to its complexity. There was a
large number of such characteristics, including things
inherent to the class (multiple parameters, time tags),
programming style (a proliferation of temporary variables),
the overhead associated with C++, and general tedium.
While information like this is what makes qualitative data
so rich and informative, it does make coding difficult. In
such situations, it is important to keep in mind the goals
and objectives of the study. In this example, ªcomplexityº
was interesting only in how it affected the inspection. Thus,
the coding process concentrated on those cited character-
istics that would logically affect how well or how efficiently
the material could be inspected (e.g., complex mathe-
matics). When a particular class exhibited one or more of
these characteristics, it was put into the ªhighº complexity
category. If many of these characteristics were used to
describe a particular class, or if the subject described it as
very complex in other ways, then it was rated ªvery high.º

Another situation that complicates coding is when
something is rated differently by different subjects. There
were eight inspections in the Inspection Study in which the
complexity of the inspected material was rated differently
by different participants in the inspection. In all but one of
these cases, the ratings differed by only one level (e.g.,
ªaverageº and ªhigh,º or ªhighº and ªvery high,º etc.). In
half of the eight cases, the author of the inspected class
rated the material more complex than did the inspectors.
One way to resolve such discrepancies is to decide that one
subject (or data source) is more reliable than another. Miles
and Huberman [14] discuss a number of factors that affect
the reliability of one data source as compared with another,
and the process of weighting data with respect to its source.
In the Inspection Study, it was decided that an inspector
was a more reliable judge of the complexity of the code than
the author, since we were interested in how complexity
might affect the inspection of that code.

In summary, coding qualitative information into quanti-
tative data is often useful and even necessary, but must be
done carefully. It should be remembered that coding adds
neither objectivity nor accuracy to data, although it may
appear that way. Coding is especially difficult when the
concept to be coded is subjective in nature, when the
terminology used to describe it varies and is difficult to
interpret, and when different data sources disagree.

3 DATA ANALYSIS METHODS

Collection of qualitative data is often a very satisfying
experience for the researcher. Although it is often more
labor-intensive, it is also more enjoyable to collect than
quantitative data. It is interesting and engaging and it often
gives the researcher the sense that they are closer to reality
than when dealing with quantitative abstractions. Many
researchers wish that their work could end there. The

SEAMAN: QUALITATIVE METHODS IN EMPIRICAL STUDIES OF SOFTWARE ENGINEERING 565

analysis of qualitative data is, in this researcher's experi-
ence, not nearly as inspiring as its collection. It is sometimes
boring, often tedious, and always more time-consuming
than expected. However, the alternative to data analysis
(which, unfortunately, is sometimes practiced even in
published work) is to simply write down all the researcher's
beliefs and impressions based on the time they have spent
in the field collecting data. This alternative pseudoanalysis
method is attractive because it is certainly easier than
rigorous analysis, and most researchers feel that they
ªknowº a great deal about the setting they have studied.
But it is neither scientific nor reliable, and this practice is
largely responsible for the skepticism about qualitative
methods that is so prevalent in our field.

In the following sections, I have divided analysis
methods roughly into two categories, although the line
between them is not well delineated. The first set of
methods is used to generate hypotheses that fit the data
(or are ªgroundedº in the data). The second set of methods
is used to build up the ªweight of evidenceº necessary to
confirm hypotheses. In most studies, methods from both
groups are used and combined in order to produce results
that are both grounded and supported by a body of
evidence.

3.1 Generation of Theory

Theory generation methods are generally used to extract
from a set of field notes a statement or proposition that is
supported in multiple ways by the data. The statement or
proposition is first constructed from some passage in the
notes, and then refined, modified, and elaborated upon as
other related passages are found and incorporated. The end
result is a statement or proposition that insightfully and
richly describes a phenomenon. Often these propositions
are used as hypotheses to be tested in a future study or in
some later stage of the same study. These methods are often
referred to as ªgrounded theoryº methods because the
theories, or propositions, are ªgroundedº in the data [9].

3.1.1 Constant Comparison Method

The classic theory generation method in the qualitative
literature is the constant comparison method. This method was
originally presented by Glaser and Strauss [9], but has been
more clearly and practically explained by others since (e.g.,
[14]). The process begins with coding the field notes, but
this is a different type of coding than that described earlier.
Coding in this context means attaching codes, or labels, to
pieces of text which are relevant to a particular theme or
idea that is of interest in the study. Then passages of text are
grouped into patterns according to the codes and subcodes
they've been assigned. These groupings are examined for
underlying themes and explanations of phenomena. The
next step is the writing of a field memo that articulates a
proposition (a preliminary hypothesis to be considered) or
an observation synthesized from the coded data. The field
memo is meant to be an informal way to record the
researcher's discoveries quickly before they are lost.
Because qualitative data collection and analysis occur
concurrently, the feasibility of the new proposition is then
checked in the next round of data collection.

There are several ways to go about coding qualitative
data. Codes can be either preformed or postformed. When
the objectives of the study are clear ahead of time, a set of
preformed codes (a ªstart listº [14]) can be constructed
before data collection begins and then used to code the data.
This initial set of codes comes from the goals of the study,
the research questions, and predefined variables of interest.
Of course, codes can be added, deleted, merged, sub-
divided, or modified during the course of the study. Having
a preformed set of codes, however, helps the process get
started. There are a number of high-level coding taxo-
nomies suggested in the literature (see [14] for some
examples), but they are more appropriate for use by
sociologists and anthropologists and are not very useful to
software engineering researchers. Postformed codes (codes
created during the coding process) are used when the study
objectives are very open and unfocused.

The set of codes often has a structure to it. That is, there
are categories of codes as well as subcodes. For example, in
the study of inspections, one of the categories of codes used
was ªvariables,º which indicated passages in the field notes
that helped to determine values for the quantitative study
variables. One code in the ªvariablesº category was
ªcomplexityº (described in detail in Section 2.3), which
attempted to capture the complexity of the inspection.
Subcodes included ªspecification complexity,º ªmathema-
tical complexity,º ªrelative complexity,º etc. Notice that
none of the codes relates a value, just a concept. For
example, there are no codes like ªhigh complexityº or ªlow
complexity.º

Field notes should be coded periodically, i.e., it's not
wise to wait until all data have been collected and then try
to code all the field notes at once. Coding a section of notes
involves reading through it once, then going back and
assigning codes to ªchunksº of text (which vary widely in
size) and then reading through it again to make sure that
the codes are being used consistently. Not everything in the
notes needs to be assigned a code, and differently coded
chunks often overlap. In the section of coded notes from the
Inspection Study, below, the codes T, CG, and S correspond
to passages about testing, the core group, and functional
specifications, respectively. The numbers simply number
the passages chronologically within each code.

(T4) These classes had already been extensively tested, and
this was cited as the reason that very few defects were
found. [Moderator] said: ª...must have done some really
exhaustive testing on this classº (EV2.2)

(CG18) [Inspector2] said very little in the inspection, despite
the fact that twice [Moderator] asked him specifically if
he had any questions or issues. Once he said that he had
had a whole bunch of questions, but he had already
talked to [Author] and resolved them all.

OC: Find out how much time was spent when [Author]
and [Inspector2] met.

(S4) Several discussions had to do with the fact that the
specs had not been updated. [Author] had worked from
a set of updated specs that she had gotten from her
officemate (who is not on the [project] team, as far as I
know). I think these were updated [previous project]

566 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 25, NO. 4, JULY/AUGUST 1999

specs. The [project] specs did not reflect the updates.
[Team lead] was given an action item to work with [Spec
guru] to make sure that the specs were updated.

It is good practice to read through the field notes written
thus far from time to time, even after they have been coded.
Each reading often brings new insight and keeps the
relevant issues fresh in the researcher's mind. It also helps
to review the codes being used to determine if they still
capture the relevant ideas present in the data. Reviewing
coded notes often brings out opportunities for refining,
aggregating, or augmenting the set of codes. When the set
of codes change, the codes in the text should also be
updated.

There are software packages on the market that facilitate
coding and other types of qualitative analysis (see [14],
appendix, for an overview of qualitative analysis software).
However, this author found a word processor to be
adequate for this purpose. Codes can be placed in the text
in ways that separate them from the text (e.g., delimited by
special characters or in capital letters) so that the search
facility of the word processor can be used to find them
easily. This can facilitate grouping of coded chunks, as well
as modifying codes according to changes in the coding
scheme.

The next step in the process is to look at groups of coded
passages to find patterns and trends. One way to do this is
to use the search facility of the word processor to search for
a particular code, moving to each passage assigned that
code and reading it in context. It is not recommended to cut
and paste similarly coded passages into one long passage so
that they can be read together. The context of each passage
is important and must be included in consideration of each
group of passages.

There is little guidance in the literature for the
intellectual process of finding patterns and trends in
qualitative data. Coding helps a great deal in organizing
and breaking up what is usually a very large amount of
data. However, beyond the mechanics of coding and
grouping, the process is largely creative. That is not to say
that it is purely subjective, however. Any proposition that
the researcher synthesizes must be clearly and strongly
supported by the data. Data analysis is not a process of
writing down ªimpressionsº or ªhunches.º There is a great
temptation to simply write, however, because the research-
er has by this time spent a great deal of time in the study
setting and may believe that he or she has a deep intuitive
understanding of what is going on in that setting. Such
intuition may help guide the process of analyzing the data,
but it does not constitute conclusions unless it is clearly
supported by the data.

Field memos are the vehicle by which the researcher first
articulates the findings. Field memos can take a number of
forms, from a bulleted list of related themes, to a reminder
to go back to check a particular idea later, to several pages
outlining a more complex proposition. They can be very
informal but they must be clear enough to express the idea
being presented, either to other researchers or to the
principal researcher later, when the idea is not so fresh.
The point is that, during qualitative data analysis, ideas
sometimes form very quickly and it is easy to jump from

topic to topic without forming complete propositions. Field
memos provide a way to capture some of those possibly
incomplete thoughts before they get lost in the next
interesting idea. More detailed memos can also show how
strong or weak the support for a particular proposition is
thus far. According to Miles and Huberman, they are ªone
of the most useful and powerful sense-making tools at
hand.º [14, p. 72]. Fig. 4 shows an example of a short field
memo from the Inspection Study on the subject of the role
of functional specifications in inspection meetings. Inter-
spersed throughout the memo are references to coded
segments in the field notes.

The actual development of propositions can be done
through memos, as described above, or they can be
documented more directly. That is, they can be listed as
they are discovered in the coded data. This straightforward
approach is more efficient when the propositions are
simpler and more obviously supported by the data. In
addition to listing them, their supporting and refuting texts
must be documented as well.

Ideally, after every round of coding and analysis, there is
more data collection to be done which provides an
opportunity to check any propositions that have been
formed. This can happen in several ways. In particular,
intermediate propositions can be checked by focusing the
next round of data collection in an effort to collect data that
might support or refute the proposition. For example, if the
proposition had to do with the amount of time spent in
preparation for code inspections where the author is
inexperienced, then an effort might be made in the next
round of data collection to observe as many inspections as
possible with inexperienced authors but which vary in
other ways. In this way, opportunities may arise for refining
the proposition (e.g., we may find that it holds only when
the material to be inspected is particularly large). Also, if
the proposition holds in different situations, then further
evidence is gathered to support its representativeness. This
approach may offend the sensibilities of researchers who
are accustomed to performing quantitative analyses that
rely on random sampling to help ensure representativeness.
The qualitative researcher, on the other hand, typically uses
methods to ensure representativeness later in the study by
choosing cases accordingly during the course of the study.
This is sometimes called theoretical sampling, which we
will not discuss in detail here, but the reader is referred to
[14] for a good explanation of its use and justification.

3.1.2 Cross-Case Analysis

Glaser and Strauss's constant comparison method can be
used on any set of field notes, whether they all come from
the same ªcaseº or setting, or whether they constitute the
data collected from a number of settings. This is one reason
that keeping chunks in their context is so important. In
many software engineering studies, the data can be divided
into ªcases,º which in quantitative studies might be referred
to as ªdata pointsº or ªtrials.º When this is possible, cross-
case analysis is appropriate. For example, in the Inspection
study, all data were collected from the same development
project, so they could be viewed as a single case study.
Some of the analysis was done with this perspective (e.g.,
the analysis described in the previous section). However,

SEAMAN: QUALITATIVE METHODS IN EMPIRICAL STUDIES OF SOFTWARE ENGINEERING 567

some crosscase analysis was also performed by treating
each inspection as a ªcase.º

Eisenhardt [7] suggests several useful strategies for
cross-case analysis, all based on the goal of looking at the
data in many different ways. For example, the cases can be
partitioned into two groups based on some attribute (e.g.,
number of people involved, type of product, etc.), and then
examined to see what similarities hold within each group,
and what differences exist between the two groups.
Another strategy is to compare pairs of cases to determine
variations and similarities. A third strategy presented by
Eisenhardt is to divide the data based on data source (e.g.,
interviews, observations, etc.).

In the Inspection Study, a comparison method was used
that combined Glaser and Strauss's method and the
Eisenhardt approach and was further modified for the
purposes of the study. The main purpose of this part of the
data analysis was to generate hypotheses that could be
tested in the quantitative stage of data analysis. Therefore,
the emphasis was on identifying both the relevant variables
and the possible relationships between them.

Our comparison method progressed as follows. The field
notes corresponding to the first two inspections observed
were reviewed. For each of these two inspections, a list was

compiled of short phrases that described each inspection
(e.g., aggressive author; a lot of discussion of the code
generator; discussion dominated by one inspector; really
long meeting, etc.). Then these two lists were compared to
determine the similarities and differences. The next step
was to list, in the form of propositions, conclusions one
would draw if these two inspections were the only two in
the data set (e.g., really long meetings are generally
dominated by one inspector). Each proposition had
associated with it a list of inspections that supported it
(this list began with the first two inspections compared).
After analyzing the first two inspections in this way, the
third inspection was examined and a list of its character-
istics was compiled. Then it was determined whether this
third inspection supported or refuted any of the proposi-
tions formulated from the first two. If a proposition was
supported, then this third inspection was added to its list of
supporting evidence. If it contradicted a proposition then
either the proposition was modified (e.g., really long
meetings are generally dominated by one inspector when
the other inspectors are inexperienced) or the inspection
was noted as refuting that proposition. And then any
additional propositions suggested by the third inspection
were added to the list. This process was repeated with each

568 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 25, NO. 4, JULY/AUGUST 1999

Fig. 4. An example field memo.

subsequent inspection. The end result was a list of
propositions (most very rich in detail), each with a set of
supporting and refuting evidence (inspections).

A different approach to cross-case analysis was used in
the COTS Study. Each development project that was
studied was treated as a separate case. The objective of
the analysis was to document the COTS integration process
by building an abstraction, or model, of the process that was
flexible enough to accomodate all of the different variations
that existed in the different projects. This model-building
exercise was carried out iteratively by a team of researchers.
The first step was to group all of the field notes according to
the development project that the interviewee was working
on. Then, for each project, the notes were read carefully and
a preliminary process model was built for that project's
COTS integration process. These preliminary models were
built by different researchers. Then the study team came
together to study the models, identify similarities and
differences, and resolve discrepancies in terminology. From
this, one single model was built that encompassed the
models for the different projects. This aggregate model
went through numerous cycles of review and modification
by different members of the study team. Finally, an
extensive member checking process (see Section 3.2) was
conducted through individual interviews with project
members, a large group interview with a number of project
personnel, and some e-mail reviews of the model. The
resulting model can be found in [15].

3.2 Confirmation of Theory

Most qualitative data analysis methods are aimed at
generating theory, as described in the previous section,
but there are a number of methods and approaches to
strengthening, or ªconfirmingº a proposition after it has
been generated from the data. The goal is to build up the
ªweight of evidenceº in support of a particular proposition,
not to prove it. Although quantitative hypothesis testing
methods seem more conclusive than the methods we will
present in this section, they really do not provide any
stronger evidence of a proposition's truth. A hypothesis
cannot be proven, it can only be supported or refuted, and
this is true using either quantitative or qualitative evidence,
or both. However, software engineers are apt to attribute
more significance to a single statistically significant finding
in support of a hypothesis than is appropriate, simply
because empirical findings are so scarce in our field. In
short, the best we can hope for is to build a convincing body
of evidence to support any proposition we are trying to
confirm. This can be done either qualitatively or quantita-
tively, but is best done with a combination of methods.
Qualitative methods have the added advantage of provid-
ing more explanatory information, and help in refining a
proposition to better fit the data.

One of the most important ways to help confirm a
qualitatively generated proposition is to ensure the validity
of the methods used to generate it. In previous sections, we
have briefly addressed some of the validity concerns in
qualitative studies. One is representativeness, which has to
do with the people and events chosen to be interviewed or
observed. In Section 3.1.1, there is a discussion of how, after
initial propositions are generated, cases for further study

can be specifically chosen to increase or ensure representa-
tiveness. Another validity concern is the possibility of
researcher effects on the study. Miles and Huberman warn
of two types of researcher effects and present some
techniques for countering them. The first is that the
presence of the researcher may affect the behavior of the
subjects. This type of effect is discussed earlier in Section
2.1. The second is that the researchers may lose their
objectivity by becoming too close to the setting being
observed. A quote from one researcher [21] illustrates the
second type of bias: ªI began as a nonparticipating observer
and ended up as a nonobserving participant.º In studies of
software engineering, it is unlikely that the researcher will
be permitted to become involved technically in the work
being studied, unless that was part of the study plan from
the beginning, but it is possible for the researcher to become
part of the political and organizational context of the project
without realizing it.

Triangulation is another important tool for confirming the
validity of conclusions. The concept is not limited to
qualitative studies. The basic idea is to gather different
types of evidence to support a proposition. The evidence
might come from different sources, be collected using
different methods, be analyzed using different methods,
have different forms (interviews, observations, documents,
etc.), or come from a different study altogether. This last
point means that triangulation also includes what we
normally call replication. It also includes the combining of
quantitative and qualitative methods. A classic combination
is the statistical testing of a hypothesis that has been
generated qualitatively. In the Inspection Study, triangula-
tion occurred at the data source level. Certain types of data
(e.g., size and complexity of the code inspected, the roles of
different participants, etc.) were gathered multiple times,
from observations, from interviews, and from the inspec-
tion data forms that each inspection moderator filled out.
For example, the size of the code inspected was listed on the
data form for each inspection, but it was also asked of each
author when they were interviewed. For each inspection,
the complexity of the code was determined by asking the
author and at least one inspector to rate the code.

Anomalies in the data (including outliers, extreme cases,
and surprises) are treated very differently in qualitative
research than in quantitative research. In quantitative
analysis, there are statistical methods for identifying and
eliminating outliers from the analysis. Extreme cases can be
effectively ignored in statistical tests if they are outweighed
by more average cases. But in qualitative analysis, these
anomalies play an important role in explaining, shaping,
and even supporting a proposition. As Miles and Huber-
man explain, ªthe outlier is your friend.º The Inspection
Study has a good outlier example. There were few cases in
the study that illustrated what happens when the group of
inspection participants is organizationally distant (i.e.,
include members from disparate parts of the organization).
However, one case could easily be identified in terms of
both its length and the number of defects reported in the
meeting. This case also involved a set of organizationally
distant inspection participants. The unusual values for
length and number of defects could not be explained by any

SEAMAN: QUALITATIVE METHODS IN EMPIRICAL STUDIES OF SOFTWARE ENGINEERING 569

of the other variables that had been determined to affect
these factors. Thus, we could hypothesize that organiza-
tional distance had an effect on length and number of
defects. In addition, the case provided a lot of explanatory
data on why that effect existed.

Negative case analysis [11] is another qualitative tool for
helping to confirm hypotheses. Judd et al. even go so far as
to say that ªnegative case analysis is what the field-worker
uses in place of statistical analysis.º The idea is incorpo-
rated into each of the analysis methods described in Section
3.1. When performed rigorously, the process involves an
exhaustive search for evidence that might contradict a
generated proposition, revision of the proposition to cover
the negative evidence, rechecking the new proposition
against existing and newly collected data, and then
continuing the search for contradictory evidence. The
search for contradictory evidence can include purposely
selecting new cases for study that increase representative-
ness, as explained above, as well as seeking new sources
and types of data to help triangulate the findings.

Replication, as with quantitative studies, is a powerful but
expensive tool for confirming findings. Replication in the
qualitative arena, however, has a slightly looser meaning
than in quantitative research. While a quantitative study, to
be called a replication of another study, generally is
expected to employ the same instruments, measures, and
procedures as the original study (although debate continues
as to what extent this must be true), a qualitative replication
must only preserve the conditions set forth in the theory
being tested. That is, if the proposition to be tested is
something like

Gilb-type inspections of C++ code involving two inspectors
and a moderator will take longer but reveal more defects if the
inspection participants have not worked together before.

then the replicating study must be of Gilb-type inspections
of C++ code involving two inspectors and a moderator,
some of which have participants who have worked together
before and some who have participants who have not
worked together before. Data do not necessarily have to be
collected or analyzed in the same way that they were in the
original study.

One last method for helping to confirm findings, which
is particularly well suited to most studies of software
engineering, is getting feedback on the findings from the
subjects who provided the data in the first place. This
strategy is sometimes called member checking [12]. Present-
ing findings to subjects, either formally or informally, has
the added benefits of making subjects feel part of the
process, helping them to understand how the results were
derived, and gaining their support for final conclusions.
This is especially important when the results of the study
may change the way the subjects will be expected to do
their jobs. This is usually what we, as empirical software
engineering researchers, hope will happen. Researchers in
our area often have a marketing role as well, trying to
promote the importance and usefulness of empirical study
in software engineering. Member checking helps to accom-
plish this at the grass roots. Miles and Huberman give
several guidelines on how and when to best present
intermediate findings to subjects, including taking care that

the results presented are couched in local terminology,
explaining the findings from the raw data up, and taking
into account a subject's possible personal reaction to a
finding (e.g., if it is threatening or critical).

Member checking was used extensively in the Inspection
Study. An entire round of scheduled interviews was
devoted to this exercise, and it yielded a great deal of
insight. For example, a finding emerged that indicated that,
as the project progressed, inspection participants were
spending less and less time discussing issues in inspection
meetings that eventually had to be referred to someone not
at the meeting, i.e., issues that were not resolved in the
meeting. One subject, when presented with this finding,
explained that this was because developers were getting
better at recognizing issues and problems that were best
referred to others, and were less likely now than at the
beginning of the project to waste time trying to resolve any
issues they were not equipped to resolve. This was an
important insight, and in particular one that had not
occurred to the researcher.

In summary, many qualitative methods for confirming
theory are also employed during the theory generation
stage of a study. That is, as propositions are being
generated, they are immediately subjected to some testing
before they are even reported as findings. The idea is to
build up a ªweight of evidenceº that supports the
hypothesis, where the evidence is as diverse as possible.
This is not so different from the aim of quantitative
research, in which a hypothesis is never ªproven,º but
evidence, in the form of statistically significant results
from different settings and different researchers, is built
up to support it. It could be said that some qualitative
methods used to test propositions are actually stronger
than statistical tests because they do not allow any
contradictory evidence. Any data that contradict the
proposition are used to modify it so that the resulting
proposition fits all the data. However, ideally, any
proposition, no matter how generated, is best supported
by both qualitative and quantitative evidence.

4 EXPERIMENTAL DESIGN

The focus of this article has been to provide guidance on
using qualitative research methods, particularly in studies
in which they are combined with quantitative methods, in
empirical studies of software engineering. The combination
of quantitative and qualitative methods is usually more
fruitful than either in isolation. This section explores in a bit
more detail how such combinations can be designed.

Empirical studies come in a wide variety of types,
employing a variety of designs. A large number of them,
however, fall into one of the following set of categories,
described by [3]:

. Blocked subject-project study. In this design, several
different development projects, or applications, are
studied, with several different subjects or teams of
subjects working on each application. Using multi-
ple applications and subjects helps to reduce bias,
but increases the cost of the experiment.

570 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 25, NO. 4, JULY/AUGUST 1999

. Replicated project study. Studies of this type employ
multiple subjects (or teams of subjects), all working
on the same project or application. Keeping the
application constant isolates the effect of differences
between subjects, especially, it is hoped, the treat-
ment effect.

. Multiproject variation. One use of this study design is
to observe the performance of a single subject or
team of subjects on a project before some treatment
is applied (e.g., training in a new technique) and
then after that treatment is applied, on a different
project.

. Single project study. Similar to the common notion of
a case study, this approach usually involves an in-
depth study of a single instance of a project, in which
certain attributes are examined and possibly com-
pared to some organizational baseline.

Quantitative and qualitative methods of data collection
and analysis can be combined in any of these types of study
designs. In a blocked subject-project study, for example, one
way to incorporate qualitative data is to use it to illuminate
the statistical results. These types of studies are often aimed
at testing hypotheses and finding causal relationships
between variables. Qualitative data can be used to go
beyond the statistics and help explain the reasons behind
the hypotheses and relationships. For example, in a study
evaluating a new software engineering technique (e.g., a
testing technique), a blocked subject-project design may be
chosen so that the technique can be tried on a variety of
different applications that vary in different ways. The
quantitative results from such a study might show that the
new technique was effective on some applications but not
on others. If, however, qualitative data was also collected,
say from follow-up interviews with the subjects (Section
2.2), then the researchers may find the reasons for the
differences in effectiveness.

As a more specific example, consider a replicated project
study designed, as above, to test the effectiveness of a new
testing technique. This design was chosen in order to
concentrate on differences between subjects, not differences
between applications. Quantitative measures are defined
and initial data are collected using quantitative methods
from groups of developers using and not using the new
technique. The quantitative data are analyzed and the
predefined hypotheses are tested. At the same time, the
subjects are interviewed, as described in Section 2.2. The
field notes from the interviews are analyzed using the
constant comparison method to elicit trends and patterns in
how the subjects describe their use of the technique and
what they liked and disliked about it. The result is a set of
propositions that illuminate the quantitative findings. For
example, the quantitative analysis may show that testing
effort increases for very experienced developers using the
new technique. The interview data may explain this
quantitative result by revealing that experienced developers
were frustrated with the overhead of the new technique,
which slowed down their testing progress.

Suppose that a multiproject variation study was planned,
aimed at understanding and documenting a new collabora-
tive design process. One team of subjects is identified and

trained in the process, and their experience using it on
different projects is studied. Qualitative data are first
gathered through participant observation of the design
meetings (as in Section 2.1). The extensive field notes are
analyzed using both constant comparison and cross-case
analysis (see Section 3). The propositions generated by this
process then are used to design a study of the resulting
designs and code. For example, suppose a proposition is
generated from the qualitative data that says that, under
certain conditions, the design seemed to be generated by
one designer with little input from the others, the result
being a simpler design but less confidence in the quality of
that design. This proposition would suggest a quantitative
investigation of designs created under those conditions,
comparing their complexity and the number of defects
found later. The qualitative and quantitative aspects of the
study would then proceed in parallel. The qualitative
analysis would concentrate on revealing new issues and
tracking changes relative to other issues, while the
quantitative analysis would focus on looking more closely
at the issues suggested by the qualitative analysis. At the
end of the series of projects, the result would be a very
multifaceted view of the effectiveness of the new design
process.

In single project studies, the process is often begun with
qualitative methods. Suppose an organization wanted to
investigate the types of errors made by developers with
different types of experience and training. It is decided to
concentrate on one particular project that is representative
of the organization and that includes a wide variety of
developers. First, data are collected qualitatively through
interviews with testers (to get information on the types of
defects found in the code) and developers (to get informa-
tion on experience and training, and on the errors that led to
the code defects). Part of the interview data are coded (see
Section 2.3) to yield quantitative variables describing
numbers of defects and years of training and/or experience
in different areas. A taxonomy of error types and the types
of defects they cause is generated qualitatively from the raw
interview data, using cross-case analysis and some of the
display techniques described in [14]. Any statistical
relationships found between the quantitative variables are
also checked against the qualitative data. The result is a set
of well-triangulated, grounded, hypotheses, and a set of
well-defined quantitative measures that can then be used to
collect and analyze quantitative data for further investiga-
tion.

The previous examples present only a few ideas about
how qualitative and quantitative methods can be used to
complement each other. In each example, important
information is gained that could not be gathered with only
one type of method.

5 CONCLUSIONS

This article has reviewed a number of different methods for
the collection and analysis of qualitative data. These
methods are described in terms of how they might be
applied to the empirical study of software engineering. It is
also argued that nearly any software engineering issue is
best investigated using a combination of qualitative and

SEAMAN: QUALITATIVE METHODS IN EMPIRICAL STUDIES OF SOFTWARE ENGINEERING 571

quantitative methods. Several scenarios are described that

illustrate different ways of combining these research

methods.
Empiricists in software engineering often complain

about the lack of opportunities to study software develop-

ment and maintenance in real settings. This really implies

that we must exploit to the fullest every opportunity we do

have, by collecting and analyzing as much data of as many

different types as possible. Qualitative data is richer than

quantitative data, so using qualitative methods increases

the amount of information contained in the data collected. It

also increases the diversity of the data and thus increases

confidence in the results through triangulation, multiple

analyses, and greater interpretive ability.

ACKNOWLEDGMENTS

This work was supported in part by NASA grant 01-5-26393

and by IBM Canada Ltd.'s Centre for Advanced Studies.

REFERENCES

[1] T. Athey, ªLeadership Challenges for the Future,º IEEE Software,
vol. 15, no. 3, pp. 72±77, May 1998.

[2] S.R. Barley, ªThe Alignment of Technology and Structure through
Roles and Networks,º Administrative Science Quarterly, vol. 35, pp.
61±103, 1990.

[3] V.R. Basili, R.W. Selby, and D.H. Hutchens, ªExperimentation in
Software Engineering,º IEEE Trans. Software Eng., vol. 12, no. 7,
pp. 733±743, July 1986.

[4] F. Brooks Jr., The Mythical Man-Month. Reading, Mass.: Addison-
Wesley, 1975.

[5] N. Brown, ªIndustrial-Strength Management Strategies,º IEEE
Software, vol. 13, no. 4, pp. 94±103, July 1996.

[6] W. Curtis, ªBy the Way, Did Anyone Study Any Real Program-
mers?º Empirical Studies of Programmers, R. Soloway and S.
Iyengar, eds., pp. 256±262, Norwood, N.J.: Ablex Publishing, 1986.

[7] K.M. Eisenhardt, ªBuilding Theories from Case Study Research,º
Academy of Management Review, vol. 14, pp. 532±550, 1989.

[8] J.F. Gilgun, ªDefinitions, Methodologies, and Methods in Quali-
tative Family Research,º Qualitative Methods in Family Research.
Thousand Oaks: Sage, 1992.

[9] B.G. Glaser and A.L. Strauss, The Discovery of Grounded Theory:
Strategies for Qualitative Research. Aldine Publishing, 1967.

[10] J.T. Hackos and J.D. Redish, User and Task Analysis for Interface
Design. pp. 258±259, New York: John Wiley & Sons, ch. 9, 1998.

[11] C.M. Judd, E.R. Smith, and L.H. Kidder, Research Methods in Social
Relations, sixth ed., ch. 13, pp. 298±320, Ft. Worth: Harcourt Brace
Jovanovich, 1991.

[12] Y.S. Lincoln and E.G. Guba, Naturalistic Inquiry. Thousand Oaks
Calif.: Sage, 1985.

[13] S. McConnell, Rapid Development: Taming Wild Software Schedules.
ch. 11, pp. 249±272, Redmond, Washington: Microsoft Press, 1996.

[14] M.B. Miles and A.M. Huberman, Qualitative Data Analysis: An
Expanded Sourcebook, second ed. Thousand Oaks, Calif.: Sage, 1994.

[15] A. Parra, C. Seaman, V.R. Basili, S. Kraft, S. Condon, S. Burke, and
D. Yakimovich, ªThe Package-Based Development Process in the
Flight Dynamics Division,º Proc. 22nd Software Eng. Workshop, pp.
21±56, NASA/Goddard Space Flight Center Software Eng.
Laboratory (SEL), Dec. 1997.

[16] D.E. Perry, N.A. Staudenmayer, and L.G. Votta, ªPeople,
Organizations, and Process Improvement,º IEEE Software, vol.
11, no. 4 pp. 36±45, July 1994.

[17] C.B. Seaman and V.R. Basili, ªCommunication and Organization:
An Empirical Study of Discussion in Inspection Meetings,º IEEE
Trans. Software Eng., vol. 24, no. 7, pp. 559±572, July 1998.

[18] B. Shneiderman, Designing the User Interface: Strategies for Effective
Human-Computer Interaction, third ed., ch. 4, pp. 146±47, Reading,
Mass.: Addison-Wesley, 1998.

[19] S.J. Taylor and R. Bogdan, Introduction to Qualitative Research
Methods. New York: John Wiley & Sons, 1984.

[20] A. von Mayrhauser and A.M. Vans, ªIdentification of Dynamic
Comprehension Processes during Large Scale Maintenance,º
IEEE Trans. Software Eng., vol. 22, no. 6, pp. 424±437, June 1996.

[21] W.F. Whyte, Learning from the Field: A Guide from Experience.
Beverly Hills, Calif.: Sage, 1984.

Carolyn B. Seaman holds a BA degree in
computer science and mathematics from the
College of Wooster, Ohio, an MS degree in
information and computer science from the
Georgia Institute of Technology, and a PhD
degree in computer science from the University
of Maryland Baltimore County, College Park. Dr.
Seaman is currently an assistant professor of
information systems at the University of Mary-
land Baltimore County. Her research generally

falls under the umbrella of empirical studies of software engineering,
with particular emphases on maintenance, organizational structure,
communication, organizational experience, measurement, COTS-based
development, and qualitative research methods. She has worked in the
software industry as a software engineer and consultant, and has
conducted most of her research in industrial and governmental settings,
e.g., IBM Canada Ltd., NASA. She is a member of the IEEE and the
IEEE Computer Society.

572 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 25, NO. 4, JULY/AUGUST 1999

