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Abstract—Missing data are often encountered in data sets used to construct effort prediction models. Thus far, the common practice
has been to ignore observations with missing data. This may result in biased prediction models. In this paper, we evaluate four missing
data techniques (MDTs) in the context of software cost modeling: listwise deletion (LD), mean imputation (MI), similar response pattern
imputation (SRPI), and full information maximum likelihood (FIML). We apply the MDTs to an ERP data set, and thereafter construct
regression-based prediction models using the resulting data sets. The evaluation suggests that only FIML is appropriate when the data
are not missing completely at random (MCAR). Unlike FIML, prediction models constructed on LD, Ml and SRPI data sets will be

biased unless the data are MCAR. Furthermore, compared to LD, Ml and SRPI seem appropriate only if the resulting LD data set is too
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small to enable the construction of a meaningful regression-based prediction model.

Index Terms—Software effort prediction, cost estimation, missing data, imputation methods, listwise deletion, mean imputation,
similar response pattern imputation, full information maximum likelihood, log-log regression, ERP.

1 INTRODUCTION

MISSING data are often encountered in software engi-
neering data sets that are used to construct effort
prediction models [37], [13]. The International Software
Benchmarking Standards Group (ISBSG) database is no
exception. It has a large fraction of missing data, in some
variables more than 40 percent [4], [16]. The ERP' data set
presented in this paper also includes several observations
with missing data in one or more variables.

There are several reasons why observations may have
missing values. High data collection cost may cause missing
values. The cost of gathering and reporting data from
software projects is nonnegligible. DeMarco estimates it
would constitute a 5 to 10 percent of total cost [11]. From
our personal experience as an ERP project manager, we
know that some data indeed cost more to collect. For
example, it is more difficult, and, therefore, costly to collect
data on Interfaces and Effort than on Users, Sites and
Modules. Therefore, we expected, and did indeed find, that
there are more missing values in Interfaces and Effort than
in Users, Sites, and Modules (see Table 1).

1. Actually, package-enabled reengineering (PER) projects implement
enterprise resource planning (ERP) systems. Therefore, the term “PER
project” is more appropriate than the term “ERP project.” Still, we have
chosen to use the latter since the term ERP recently has become an
established term in the research community with the April 2000, vol. 43,
no. 4, issue of the Communications of the ACM.
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Another reason for missing values is that some values
are so called wild values. A wild value is a value we know
is untrue. For example, if a reported Effort is negative, we
know it must be untrue. Typically, a wild value is due to a
punching error. Also, it may be due to someone who did
not know how to measure and report that variable correctly.
A common data screening procedure is to replace wild
values by “missing” thereby creating additional missing
values. It should be observed that a wild value is not
synonymous to an outlier, an outlying observation.

Yet another reason why observations may have missing
values is that some respondents just do not report some of
the variables for some reason.

There are basically three ways to handle missing data.
One option is to remove incomplete observations by listwise
deletion (LD). Alternatively, one may fill in the holes by
some imputation method. A third option is to use a model-
based method. In the two first cases, complete-case analysis
methods may be applied to the resulting complete data set
whereas a model-based method like the full information
maximum likelihood method (FIML) is able to analyse
incomplete data sets directly. That is, it is an incomplete-
case analysis method.

Thus far, the common practice when constructing
regression-type effort prediction models has been to apply
a two-stage procedure, consisting of ignoring missing data
(using LD) before applying regression analysis to construct
the effort prediction model. LD is routinely used since most
statistical packages use LD as default. Also, some effort
prediction models based on machine learning use LD as
default. An example is estimation by analogy as imple-
mented in ANGEL [34].

Unfortunately, LD has several drawbacks. The most
obvious drawback is that it discards a considerable amount
of information. This is especially unfortunate in empirical
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TABLE 1
Descriptive Statistics for ERP Data Set

Variable N [N* [Mean |Median [StDev |Min |[Max

Users 176] 0O 1297 338| 2867 6] 18000
Sites 1751 1 45 7 172 0 2000
Plants 174] 2 26 5 78 0 500
Companies 1741 2 13 1.5 53 1 400
Interfaces 139 37 39 15 95 0 943
EDI 112] 64 6 0 30 0 300
Conversions 125 351 27 14 40 0 340
Modifications | 119| 57 18 5 42 0 300
Reports 127] 49 90 40 208 0 2000
Modules 1751 1 5.2 5.0 2.7 0 13
Effort 99 771 10850 6200] 14583 102]| 111420

software engineering because the data sets usually are small
(i.e., N << 100). Removing observations from small data
sets makes them even smaller, in some cases so small that it
becomes meaningless to construct a regression-based effort
prediction model on the remaining data. In such a case, the
effort prediction model will not inspire much confidence.

Last but not least, in addition to the obvious loss of
information, LD may introduce a bias in the data. This
occurs if the complete observations are not a random
subsample of the original (and incomplete) sample. We find
it necessary to stress this point. The seemingly innocent LD
does not deal correctly with incomplete data sets when the
values are not missing completely at random. The implica-
tion of constructing an effort prediction model on a biased
data set due to inappropriate use of LD is that the
prediction model will be biased and, therefore, misleading.
It may be biased in dangerous ways. For example, the
model may be biased so that it seemingly performs
extremely well in terms of accuracy, too well, thus seducing
the user into unrealistic expectations regarding prediction
accuracy.

There are, therefore, several reasons to take good care of
all the data and not just delete incomplete observations.
Hence, the interest in alternative missing data techniques
(MDTs) that waste less information than LD and hopefully
are more robust than LD against bias caused by nonrandom
missing data.

Intuitively, imputation-based or model-based MDTs
seem to be more attractive choices than LD that merely
discards incomplete observations. It should also be ob-
served that MDTs are widely applied in other disciplines
such as the social sciences.

To our knowledge, this is the first time that a critical
evaluation of sampling-based (e.g., imputation-based and
LD) as well as model-based MDTs is reported in the context
of constructing effort prediction models, emphasising
advantages, consequences, and pitfalls of the different
MDTs. To our knowledge, there are no empirical studies
of FIML with real data.

The main contribution of this paper is to examine
whether or not the MDTs deliver what they promise and
their pros and cons. This is a necessary piece of knowledge
in order to perform empirical studies in software engineer-
ing correctly. In general, researchers in empirical software

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO. 11,

NOVEMBER 2001

engineering need to acquire more knowledge of methods
and techniques that may be applicable [1]. Specifically, we
need to understand the limitations of the seemingly
innocent and widely used, and abused, LD.

We assess a selection of widely applied MDTs. The
MDTs we have investigated are listwise deletion (LD),
mean imputation (MI), similar response pattern imputation
(SRPI) and the full information maximum likelihood
(FIML) method. The motivation for selecting MI is that it
is a fast expedient and probably the most widely used
MDT (except LD, of course). SRPI has been selected
because it is recent and because the method of identifying
similar observations has intuitive appeal to software
engineering researchers and practitioners compared to,
e.g., the more advanced multiple imputation techniques.
Besides, it seems simple to apply. FIML has been chosen
because it is model-based. It should be observed that FIML
is an MDT as well as a regression analysis technique at the
same time. As opposed to FIML, which is model-based, all
the other MDTs are sampling-based.

The overall research question we investigate is whether
any of the MDTs add value compared with LD and in case,
under what circumstances they may add value. In other
words, is there any reason at all why software engineering
researchers and practitioners cannot continue using “the
same procedure as usual,” i.e., LD and not worry about
missing data and MDTs?

In the context of constructing software effort prediction
models using historical data, it should be observed that we
are dependent upon data sets that are representative of the
true population. Only to the extent that the data set at hand,
the sample, reflects the population data set (i.e., the data set
comprising all past as well as all future projects) can we
trust the results derived from it. In software engineering in
general, and ERP projects in particular, the true effort
prediction model is almost never known. However, if
several samples all confirm the same model, we believe that
the sample model is a good approximation of the true
population model. This is a way of validating the model.
Also, it is likely that these samples are true subsamples of
the population. Thus, one purpose of applying MDTs is to
obtain data sets that hopefully are more representative samples
of the true population. The prediction models based on the
sample will then be more representative of the true
prediction model which means that the accuracy figures will
provide us with realistic expectations rather than seduce us
into believing in a falsely high (or low) accuracy.

The overall research question, i.e., whether any of the
MDTs add value compared with LD, has been translated
into a number of more specific research questions. The
research questions on MDTs in the context of constructing
regression-based effort prediction models are as follows:

e Are any of the MDTs (including LD) robust against
bias caused by nonrandom missing data?

e May any of the MDTs (including LD) actually
introduce a bias (that was not there before the
application of the MDT)? It is an undesirable
property of an MDT if it introduces bias.

e To which extent do the MDTs prevent information
loss? For example, if the application of LD results in
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a data set that is too small and, therefore, unsuitable
for regression analysis, may any other MDTs
prevent information loss to the extent that the data
set becomes usable and lends itself to regression
analysis?

e  Are the ERP data missing completely at random? If
not, which MDTs are appropriate, if any?

In addition, we address some research questions con-
cerning the effort prediction models more directly.

e Is the model specification (in terms of the choice of
variables and choice of a nonlinear model) correct?
Since there exists no "true" model for effort predic-
tion of ERP projects, we somehow should validate
the model specification. One validation method is to
investigate whether different methods converge. In
our case, we investigate whether the regression
models constructed on the various data sets con-
verge. Generally, this is a good idea in software
engineering since we do not know what the true
model is like. We do not have models based on a
solid theoretical basis. Rather, our models are more
explorative, more likened to hypotheses regarding
the nature of software projects.

e Given a correct model specification and a represen-
tative data set, what degree of accuracy can we
realistically expect? In other words, what is the
accuracy of the least biased effort prediction model,
i.e., of the model closest to the true (or population)
model?

Our overall evaluation suggests that the effort prediction
model based on FIML is the least biased for the ERP data
set. Second comes the regression model constructed on the
LD data set. In our case, the LD data set was sufficiently
large to enable the construction of a good regression-type
prediction model. However, the other MDTs may be good
choices when LD results in a too small data set. The pattern
of missingness and the fraction of missing data are crucial
considerations when deciding between MI and SRPL

2 ERP DATA

The data set consists of 176 active and completed
ERP projects. All the ERP projects in the sample implement
ERP systems from one single ERP vendor: SAP. One
hundred and seventy projects have implemented the
client-server version (R/3) of SAP. Six projects have
implemented the mainframe version (R/2). Therefore, it is
a homogeneous data set. The variables include ten ERP size
measures (predictor variables) and total effort as the
response variable. Descriptive statistics for the data set is
provided in Table 1. (“N*” means “N missing.”) All the
missing values are truly missing. We do not have any
“don’t know” responses. We observe that the projects span
from 102 workdays to 111,420 workdays.

We have not removed active projects since actuals for
many of the predictor variables exist and are reported early
in the project. For example, Users, Sites, Plants, Companies,
and Modules form part of the project scope (and, thus, the
contract) and are therefore known after an initial analysis.
(In a previous conference version [28], we provided
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descriptive statistics where active projects were screened
unless they were so close to completion that reported values
could be treated as actuals for our purpose.)

In Table 1, we also observe that Effort has most missing
values (N* = 77) which is not surprising. More surprising,
EDI (Electronic Data Interchange), too, has many missing
values (N* = 64). Probably, EDI is not missing completely at
random (i.e.,, not-MCAR). We suspect that some of the
missing EDI values are in fact zeros, but not all. Therefore, it
would be wrong to replace all missing EDI values with “0.”
Also, an MDT requiring MCAR data may not be appro-
priate to impute EDI.

We believe that the other variables likely are MCAR. We
have no reason to suspect any nonrandom missing data in
these variables. The main reason for the many missing
values in Interfaces, Conversions, Modifications, and Re-
ports is that we have included active projects in this study.
Active projects naturally do not have actuals for all
variables as some of them are not known until project
completion. Another potential reason for missing values is
that it takes more effort to count these variables than to
collect counts on Users, Sites, Plants, and Modules. We
believe however that this reason accounts for very few
missing values.

The size measures for sizing this type of ERP projects is
the intraorganizational standard. It is beyond the scope of
this paper to explain these size measures. Interested readers
are referred to [36] for a definition of the measures.

The data were gathered from 1990 to 1998 in a multi-
national consultant organization (Accenture, formerly An-
dersen Consulting) with 70,000 employees. The projects
span many industries and countries in all regions of the
world.

The data have been reported by project managers who
themselves use the database to plan and estimate future
projects. The company has a standard ERP methodology.
Therefore, the data presumably have been reported in a
consistent manner. See also [35], [27] for an evaluation of
the data quality.

3 MissING DATA TECHNIQUES (MDTS)

Missing data techniques (MDTs) can be roughly grouped
into:

techniques ignoring incomplete observations,
imputation-based techniques,

weighting techniques, and

. model-based techniques [22].

B —

Weighting techniques are not presented in this paper.

The simplest technique is to ignore incomplete observa-
tions by applying listwise deletion (LD). LD is easy to carry
out and is implemented as default in most statistical
packages. It may be satisfactory with small amounts of
missing data. The drawback is that its application may
result in too small data sets if the fraction of missing values
is high. Another serious drawback with LD is that it can
lead to serious biases if the data are not missing at random.

Imputation-based methods replace missing values by
suitable estimates. This allows standard complete-data
statistical methods like ordinary least squares (OLS)
regression analysis to be applied to the imputed data set.
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There are several imputation methods. A simple and
common expedient is mean imputation (MI) [22], [23].
Another, more recent, imputation technique is similar
response pattern imputation (SRPI) proposed by Jereskog
and Serbom [18]. The drawback with imputation-based
MDTs is that artificial values are substituted for the missing
values potentially causing a bias. This potentially biased
data set is thereafter treated as real in the subsequent data
analysis, thus leading to biased results.

Model-based (or likelihood-based) methods do neither
remove incomplete observations nor replace missing values
by imputation. Rather, these MDTs define a model for the
partially missing data and base inferences on the likelihood
under that model, with parameters estimated by methods
such as maximum likelihood. The full information maximum
likelihood (FIML) method is model-based. An advantage of
this approach is that the model assumptions can be
evaluated as opposed to ad hoc sampling-based imputation
methods like MI and SRPI where there are no model
assumptions that can be evaluated [22].

In this paper, we evaluate and discuss the LD, MI, SRP],
and FIML approaches and compare the three latter against
LD. LD, therefore, serves as a baseline.

3.1 MI, SRPI, and FIML

Mean imputation (MI). A common method of imputing
missing data is the substitution of the arithmetic mean.
Anderson et al. [2] provide the following rationale; “In the
case of normal distribution, the sample mean provides an
optimal estimate of the most probable value” (p. 425).
Although one may impute all missing values of x;, the
variance of x; will shrink, because all values of x; that are
added will contribute nothing to the variance. The use of MI
will affect the correlation between the imputed variable and
any other by decreasing its variability. In addition, if a large
number of values are imputed using the mean, the
frequency distribution of the imputed variable may be
misleading because too many centrally located values create
a more leptokurtic (slim or long-tailed) distribution [30].

Similar response pattern imputation (SRPI). In this
paper, we have used the SRPI imputation method as
implemented in the statistical tool PRELIS 2.3 [19]. The idea
behind the SRPI technique is to identify the most similar
project without missing observations and copy the values of
this project to fill in the holes in the project with missing
values. The least squares criterion in normalized space is used
as the similarity measure. The set of variables used to define
the multidimensional space is called matching variables.
Formally, the method is stated as follows.

Let y;,...y, be the variables to be studied, and let
Xi,...X, be the matching variables. Let z,...z, be the
standardized values of x,...x,. Furthermore, let y; be the
variable whose missing values are to be imputed. Let
project a be a project where y, is missing and which is
complete in the matching variables x,...x, Find all
projects that are complete in the matching variables
Xi,...X, as well as in y;, and that minimize

n

D (a3 — 20 (1)

J=1
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Two cases will occur. 1) There is a single project b which
minimizes (1). In this case, y,, is replaced with y;,. 2) There
are n projects that all minimize (1). Let their y-values be
Yii»--- Y- In this case, y;, is replaced with the mean of
Vil - Yinr Yivean. Unlike most other MDTs like e.g., MI,
SRPI functions with continuous as well as with ordinal
variables [20]. It should also be observed that a feature of
SRPI is that it does not impute a value if the distance
between the matching and the target case is too large. In
other words, SRPI protects us to some extent from getting
strange observations during imputation.

Full information maximum likelihood (FIML). FIML
is a model-based method as opposed to MI and SRPI that
are sampling-based. FIML is based on the principle of
maximizing the log-likelihood. The Maximum Likelihood
or ML-estimator is well-known in the literature for its
efficiency and is implemented in most statistical software
for treating multivariate analysis with complete data sets.
Until recently, ML estimation of incomplete data sets has
not been an option in software packages because of the
computational effort. Software like LISREL [17], Amos [6],
and Mx [29] offers the FIML-estimator when missing data
are present.

FIML assumes that the data comes from a multivariate
normal distribution and maximizes the likelihood of the
theoretical model given the observed data. Maximum
Likelihood estimation of incomplete data has been ad-
dressed by several authors including Anderson [1], Browne
[8], Little and Rubin, [22], [23], Muthen et al. [26], Arbucle
[5], and Neal [29].

Compared with sampling-based methods like MI and
SRPI, the advantage of likelihood-based methods like FIML
is that the results will not be biased even if the data are not
missing completely at random. (See more on this in section
“MAR and MCAR.”) FIML is also robust to data that do not
comply completely with the multivariate normal distribu-
tion requirement [7]. The drawback with maximum like-
lihood methods is that they require relatively large data
sets. Simulation studies for complete data sets have demon-
strated that the chi-square estimator (N — 1)Fyy, is inaccu-
rate for samples under 100 [7], [3]. Therefore, it is
reasonable to assume that a similar sample size is required
for FIML (i.e., samples with close to 100 complete
observations and more than 100 when incomplete observa-
tions are included). Hence, it may be a problem to apply
FIML in software engineering where the data sets often are
too small (ie., (N << 100). The FIML procedure is pre-
sented in the Appendix “FIML procedure.”

3.2 Other Imputation Techniques
Regression Imputation (RI) (also called conditional mean
imputation). One alternative method would be to estimate
the missing values by using regression analysis. This method
replaces missing values by predicted values from a
regression of the missing item on items observed be the
unit. However, we did not consider this approach in this
paper as we are applying regression analysis to the imputed
data set.

Hot deck imputation (HDI). Hot deck imputation
replaces missing values by drawing from an estimated
distribution for each missing value. It is common to use the
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sample distribution of the responding units as the distribu-
tion (or deck) to draw from. Using a simple hot deck
method as an example, in Table 17 the missing value for
observation 6 in variable xg could be imputed with one of
the observed values in xg (i.e., 10, 20, 30, 40, or 50). Which
value that is actually picked from xg in observations 1-5
depends on the specifics of the hot deck method. A simple
HDI method would be to assign the same probability to all
observed values in xg (i.e., that each observed value in xq
has one chance in five to be picked) and then use a random
number generator to select one of the five observed values.
Observation 6, variable x9, would then be imputed with the
selected value. It should be observed that SRPI belongs to
the hot deck class. Unlike the simple example above, SRPI
picks the nearest neighbor rather than drawing from the
sample at random.

Multiple imputation. Multiple imputation means that
one imputes several times creating several complete,
imputed data sets. For example, we could use the simple
hot deck procedure described above to impute the missing
value for observation 6 in xg i.e., picking one of the numbers
10, 20, 30, 40, or 50. Let us say we pick the value 50. In a
similar manner, we would likewise impute the rest of
missing values in Table 17 to obtain a complete data set.
Call it data set 1. So far it is simple imputation. Now,
multiple imputation is to repeat this procedure creating
several complete data sets. Let us assume that next time we
draw at random to fill in observation 6 in xg we pick the
value 10 (different from 50 in data set 1). It is usual to create
M =3 or M =5 complete data sets when using multiple
imputation. Standard complete-data methods are used to
analyse each data set. When the M sets of imputations are
repeated random draws under one model for nonresponse,
the M complete-data inferences can be combined to form
one inference that properly reflects uncertainty due to
nonresponse under that model. For details and equations on
how to form one inference from the M data sets see Rubin
[31]. It should be observed that multiple imputation
requires that the basic imputation method draws values to
be imputed at random from a distribution. Therefore, SRPI
cannot be combined with multiple imputation since it
would pick the same value each time for a given missing
value.

There are some additional methods that seemed less
applicable to our case. Interested readers are referred to [22].

3.3 MAR and MCAR

If the missing data are not missing at random, the data
analysis may lead to biased results unless the analysis
method is able to correct the bias caused by nonrandom
missing data. Little and Rubin [22] distinguish between two
types of random missing data, Missing Completely At
Random (MCAR) and Missing At Random (MAR).
MCAR. Let X be the random variable under study. If
P(XIx missing) = P(X|x observed), then the distribution of
X is not affected by missing values. In other words, the
probability that, say, Interfaces is missing (or observed) is
the same for all projects regardless of the number of
Interfaces or the number of Users, Sites, Modules, and
Effort. In this case the observed values of Interfaces form a
random subsample of the sampled values of Interfaces. This
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means that the probability that Interfaces = 3 is missing
equals the probability that Interfaces = 4 is missing and, so,
on for any value of Interfaces.

MAR. Let X be the random variable under study, and
let Z be a set of predictor variables. If P(X|x missing, Z)
= P(XIx observed, Z), then the distribution characteristics
of X is conditional on a set of predictor variables. That is,
the distribution of X is not affected by missing values for
X € Z. In other words, the probability that Interfaces is
missing (or observed) depends on the number of Users,
(or Sites, Modules, or Effort) but is independent of the
number of Interfaces. For example, if there are more
missing values for Interfaces in projects with few Users
than in projects with many Users, then the data are still
MAR but no longer MCAR. Thus, the MAR condition is
weaker than the MCAR condition.

Sampling-based methods such as MI and SRPI assume
that the data are MCAR whereas model-based methods like
FIML only assume the data are MAR [22]. Studies of
Muthen et al. [26] and Little and Rubin [23] also suggest that
the use of FIML will reduce bias even if the MAR condition
is not strictly met. That is, FIML estimates are consistent
and efficient even if the MAR condition is not strictly met.
Unfortunately, there are no easy ways to find out empirically
whether a sample distribution is MCAR, MAR, or not
missing at random. A priori knowledge is therefore
necessary in order to decide on this issue. For example, if
many of the projects that do not implement any EDIs do not
bother to report EDI = 0, we cannot envisage any tests that
would help us discover this anomaly. Rather, we have to
know that EDIs are not missing at random.

4 MEeTHOD OF APPROACH

The method of approach generally is a two-stage procedure.
First, an MDT is applied to the original data set with
missing data resulting in a complete-case data set. Next, an
effort prediction model is constructed on the various data
sets by applying ordinary least squares (OLS) regression
analysis. The data sets are termed LD, MI, and SRPI,
respectively, and the prediction models are termed LD OLS,
MI OLS, and SRPI OLS, respectively. Unlike LD, MI, and
SRPI, FIML is a one-stage procedure where the model is
constructed directly on the existing, original data set
without modifying it in any manner first. Therefore, the
term FIML applies to the data set as well as to the model.

4.1 Model Specification

We determined the model, i.e., the subset of predictor
variables, before applying the LD, MI, SRPI, and
FIML methods. The subset of predictor variables considered
most important was determined primarily by expert
knowledge. (One of the authors is an experienced ERP
project manager.) Since nobody knows the “true” model,
we also applied best subset regression to confirm the model
suggested by the expert. Best subset regression was applied
to all the available, original data.

Alternatively, we could have applied best subset
regression to each data set after having applied the
MDT (LD, MI, SRPI) rather than to the original data set
to select the model.
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Each alternative has its pros and cons. In the first case,
the same model is used on all the imputed data sets. In the
other case, we could potentially get different models for
each data set. This might be interesting to a practitioner
since the practitioner is not that sure he has found the best
model. Therefore, this would aid the practitioner in his
exploratory data analysis aiming to find the model with the
most explanatory power. Unfortunately, this would make
the comparison of the imputation techniques, which is the
focus of this paper, less meaningful since there would be
many confounding factors.

4.2 MDT Method

We applied LD the usual way. That is, we removed all the
incomplete cases.

For MI, we applied “naive” imputing as well as imputing
where we restricted the fraction of imputed values per
variable to 10 percent of the observed variables. By “naive”
imputing, we mean that we did not impose any upper limit
on how large a fraction to impute for each variable. The
reason for choosing this double approach is to better
demonstrate some of the issues related to MI. We find it
useful to do this because MI is so widely applied and, so
tempting to use, and abuse, due to its simplicity. (We
discuss MI more in Section 7).

For SRPI, we imposed the restriction that no cases have
more than one missing value in order to be conservative in
the use of SRPL In applying SRPI, we used four out of the
five total variables (Users, Sites, Interfaces, Modules, Effort)
as matching variables to impute the fifth and missing,
variable. For example, when imputing Interfaces, we used
Users, Sites, Modules, and Effort as matching variables. We
did not fill in any imputed values until all variables were
imputed so as not to use a case with an imputed value as a
matching case.

As for FIML, the issue of filling in artificial values in the
data holes is irrelevant.

4.3 MDT Evaluation Criteria

The robustness to bias (degree of nonrandom missing data)
of the MDT was determined based on findings in previous
studies in statistical literature.

To investigate if the MDT introduces a bias, we compared
the median, mean, and standard deviation of each variable
in the original data set with the data sets resulting from the
application of an MDT. For example, we compared the
distribution of the variable Users in the LD data with the
same variable in the original data set, the MI data with the
original, and the SRPI data with the original. For FIML, this
comparison is not relevant.

We used two-tailed, two-sample, t-tests to compare the
mean of two and two distributions at a time. This t-test tests
whether two distributions have an equal mean or not.

We used a chi-square test to compare the standard
deviation of two distributions [21]. This test, tests the
difference between a sample variance and an assumed
population variance. The original data set was assumed to
be the population. The test assumes a normal distribution.

Even though these tests may seem simplistic, it is a
common procedure in many statistical studies on MDTs.
See, e.g., [9]. The idea is as follows: If the distribution of
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Users in the LD data set is similar (in terms of mean and
standard deviation) to the distribution in the original data
set, we infer that the MDT (in this case LD) has not
introduced a bias in the LD data set.

The degree of information loss prevention was evaluated
by comparing the number of complete cases for each data
set with the total number of (incomplete) cases in the
original data set.

To assess if the ERP data are missing completely at
random or not, we relied on expert knowledge. See
Section 2. A priori knowledge is necessary in order to
decide on this issue. See also Section 3.3.

4.4 Selection of Cases for Regression Analysis

We used all available complete cases in each imputed data
set for the regression analysis. That is, we applied
regression analysis to all complete cases in the LD, MI,
and SRPI data sets. For FIML, it is not an issue whether the
cases are complete or incomplete because no rows are
removed and no artificial values are imputed.

This implies that the LD OLS, MI OLS, and SRPI OLS
regression models were constructed on data sets of unequal
size. This reduces the precision of metrics like R2 that
require samples of equal size to be fully reliable. However,
R2 is still informative as long as one is aware of a somewhat
reduced precision.

4.5 Regression Model

We used ordinary least squares (OLS) regression analysis to
construct models on the LD, MI, and SRPI data sets. We term
these models LD OLS, MI OLS, and SRPI OLS, respectively.
We applied a log-log model rather than a linear regression
because the log-log model best fulfilled the regression
assumptions, notably the homoscedasticity assumption. In
transforming to the log-log model, we first added “1” to all
variables having minimum value equal to “0.”

We performed residual analysis and outlier detection to
better identify wild values. In theory, wild values should be
replaced with “missing” before doing anything else with
the data such as imputing. In practice, however, it may be
hard to decide if a value is wild or not. Residual analysis
and outlier detection may help you decide whether you
think it is a wild value or not. Consequently, this part of the
data screening task was done both before as well as after
applying the MDTs.

4.6 Prediction Model Evaluation Metrics

As evaluation metrics for the effort prediction model we
applied the following metrics.

The t-values (or alternatively p-values) of predictor
variable coefficients were used to measure the efficiency
of the model (i.e., how close the sample model is to the true
model) and the effect of each predictor variable on the
response variable.

R? was used to assess the overall goodness of fit. It
should be observed that R? is not ideal to compare models
constructed on samples of different size since it requires
samples of equal size. However, it is still useful to use it to
confirm that the models converge. If the R* values are
similar, it is a valuable piece of information even if we
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cannot infer that a model with R?> = 0.7 is better than a
model with R? = 0.6.

The accuracy of the models was evaluated using the mean
magnitude of relative error, MMRE, the de facto standard in
software engineering for assessing prediction systems. MRE
is defined as follows [10]: (z = actual, y = estimate)

MRE =

z
z—y|

Since we applied a log-log regression model, we used the
following formula to calculate MRE.

MRE = ‘1 _ g residual

The derivation of this formula is provided in Appendix B

5 RELATED WORK

To our knowledge, there are only two papers that
empirically have evaluated the SRPI approach, none of
them applied to software engineering. To our knowledge,
no paper in any discipline including statistical science has
applied nor empirically evaluated the FIML approach on
real data.

In software engineering, two papers have been pub-
lished on MDTs [13], [37]. Both of these studies have
applied sampling-based, hot deck type, imputation techniques.
One of these studies combined hot deck with multiple
imputation. No papers have applied model-based missing
data techniques like FIML in software engineering. Our
study, therefore, complements the two other studies on
MDTs in software engineering by investigating MDTs other
than hot deck and multiple imputation methods. The two
software engineering studies are presented at the end of this
section.

Brown [9] assessed the efficacy of five imputing methods
in the context of structural equation modeling. The methods
assessed were LD, pairwise deletion, MI, hot-deck imputa-
tion, and SRPI. He found that SRPI provided the least bias.

Gold and Bentler [14] compared four imputing methods,
the RBHDI (resemblance-based hot-deck imputation, which
is similar to SRPI), the ISRI (iterative stochastic regression
imputation). The third and fourth methods are case-based
maximum likelihood methods based on different assump-
tions of the data-generating model. The maximum like-
lihood methods seem to be superior when the assumptions
of the distribution of the population are met and the sample
size is sufficiently large. Gold and Bentler conclude that for
small samples and moderate to large proportion of missing
data the SRPI outperforms maximum likelihood-based
methods.

Browne [8] studied LD, PD, MI, and FIML by Monte-
Carlo simulations in the factor analytical context. He found
that FIML was superior to LD, PD, and ML

Emam and Birk [13] applied hot deck multiple imputation
to analyse software process performance data. They have
argued well for applying multiple rather than simple
imputation. We do not know, however, if the particular
hot deck MDT is an appropriate MDT in their case since
vital information has not been reported. They did not report
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any summary statistics of the data. This is vital to assess the
degree of confidence one may have in the final results. We
do not know whether a small, or a large, fraction of the data
were missing in the original data set and in which variables
the data were truly missing. When an MDT is used, it is
vital to report at a minimum the number of observed and
missing values for each variable plus the pattern of
missingness in order to assess if the MDT is appropriate.

Emam and Birk have imputed the dependent variable (the
performance measure) that was collected through a ques-
tionnaire. This dependent variable is ordinal. (The values are
“Excellent,” “Good,” “Fair,” “Poor,” “Don’t Know.”) The
“Don’t know” responses were treated as missing values and
consequently imputed. It seems questionable whether it is
correct to treat a “don’t know” response as a randomly
missing nonresponse in their case. Also, it seems they have
not made a distinction between truly missing values and
“don’t know” responses. Unfortunately, it is unclear from
reading the paper whether there were any truly missing
values. Intuitively, we would assume there might be some
bias in the “don’t know” responses. In our experience, it is
more likely that low performers (“Poor”) refuse to respond
than the successful high flyers (“Excellent”). If you do not
know whether you performed well or badly and report “don’t
know,” it is unlikely you are an “Excellent” high performer
because the better you are, the more you know, including
your own performance. We therefore miss a discussion on
why it may be justified to treat “don’t know” as equal to a
truly randomly missing value.

Strike et al. [37] evaluated several MDTs in the context of
software effort prediction. The MDTs evaluated were LD,
MI, and eight different types of hot-deck imputation. They
simulated various patterns of missingness in an existing
data set by replacing some values with missing values. This
is an excellent idea since you then know the true answer.
The MDTs were evaluated by measuring the accuracy of the
various effort prediction models relative to the accuracy of
the true model. Their results indicate that all MDTs perform
well and that the simplest MDT, LD, is a reasonable choice.

6 REsSuLTS

6.1 MDT Results

From Table 2, we observe that LD wastes most informa-
tion. This is as expected. The number of cases is reduced
from 176 to 87. Still, the number of complete cases is
sufficient for regression analysis. As a rule of thumb,
when using OLS regression, one should have n > 10"k
where n is the number of projects and k is the number of
predictor variables. Thus, for the ERP data set with four
predictor variables the LD data set with n = 87(87 > 10%4)
is sufficient.

The naive MI wastes no information, naturally. We
observe that SRPI wastes less information than “MI
10 percent.” That is, by restricting SRPI to impute cases
with maximum one missing value per case, and similarly,
restricting MI to impute maximum 10 percent missing
values per variable. FIML does not waste any information
either. However, using the number of complete cases as a
criterion is not applicable in the case of FIML.
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TABLE 2
Number of Complete Cases per MDT
Method N
LD 87
MI naive 176
MI 10% 109
SRPI 137
FIML N/A

Regarding LD, the large reduction is mostly due to
missing values in the response variable, Effort. Descriptive
statistics for the LD data set is given in Table 3.

Comparing means and standard deviations, the results
indicate that the LD data set is a random subsample of
the total sample. See Table 4 and Table 5. The p-values in
Table 4 supports this initial finding (all p > 0.10). Similar
for the x2-values in Table 5 (all x? < 107, the critical value
when N = 87).

The “10 percent MI” method does not introduce a
significant bias in the data. Comparing Table 1 and Table 6,
we observe that the mean, the median and the standard
deviation are similar for Effort. We also performed formal
tests for the mean and standard deviation for all variables
that confirmed the observation. (Not reported).

The “naive MI” method introduces a serious bias.
Comparing Table 1 and Table 7, we observe that the mean
for Effort is the same, naturally. The median and the
standard deviation for Effort, however, have changed
significantly. (Testing the significance of the standard
deviation, we found |[t| =4.68 where t=1.96 at the
5 percent significance level). Especially, we observe that
the mean and median Effort have become identical in the
naive MI data set. This happens when a large fraction of
values is imputed. Probably, the most important observa-
tion is that the standard deviation decreases. Especially, we
observe this for Effort where a large fraction of values has
been imputed (41 percent imputed). This is as expected
since MI distorts the distribution by putting all the imputed
values at the mean. The naive MI data set shows a
pronounced peak at the mean in a histogram of the variable
Effort. (The histogram is not reported). Therefore, it seems
reasonable to restrict the fraction of imputed values per
variable as we have done to e.g., 10 percent.

The SRPI method does not introduce any observable bias
in the data compared with the original data. By comparing
Table 1 and Table 8, we observe that the mean, the median
and the standard deviation are all similar for the original
and SRPI data sets. We also performed formal tests for the

TABLE 3
Descriptive Statistics of LD Data Set
Variable [N [|Mean |Median |StDev |Min |Max
Users 87 966 300| 2348 6| 17000
Sites 87 29 5 73 0 500
Interfaces | 87 28 13 48 0 270
Modules 87 5.2 5.0 2.6 1 13
Effort 87| 10791 6000 14881 102| 111420
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TABLE 4
P-Values of 2-Sample t-Tests for LD Data Set

Variable p-value

Users 0.32
Sites 0.27
Interfaces 0.26
Modules 0.82
Effort 0.98

mean and standard deviation that confirmed the observa-
tion. (Not reported). For Interfaces, 11 cases were imputed,
ie.,, << 10%. For Effort, 38 cases were imputed, i.e., close to
20 percent. Still, the mean, median and standard deviation
for Effort for the SRPI data set is very similar to the original
data set.

Unlike the sampling-based imputation methods MI and
SRPI, the model-based FIML does not introduce any bias
since no artificial values are introduced into, nor removed
from, the data set.

6.2 Regression Results

LD OLS. After residual analysis resulting in removal of six
cases, the LD OLS is as given in Table 9. Residual analysis
after removal of the outliers confirmed that the residuals are
normally distributed (p-value =0.5 of the Anderson-Dar-
ling normality test) and that all standardized residuals are
less than 2. Furthermore, there is no significant multi-
collinearity (VIF < 2). (For the Anderson-Darling test and
the Variance-Inflating Factor (VIF) test, see [25], [33] and
[25], [15], respectively). All predictor variables have a
significant effect on effort (p < 0.01). The residuals are
reasonably homoscedastic. (Plot of residuals versus fits. Not
reported.)

10 percent MI OLS. After residual analysis resulting in
removal of five cases, the “10 percent MI OLS” regression
equation is as given in Table 10. Residual analysis after
removal of the outliers confirmed that the residuals are
normally distributed p-value = 0.36 of the Anderson-Dar-
ling normality test) and that all standardized residuals are
less than 2. Furthermore, there is no significant multi-
collinearity (VIF < 2). The residuals are reasonably homo-
scedastic. (Plot of residuals versus fits. Not reported.) The
predictor variables LN(Users), LN(Interfaces), and LN(Mo-
dules) have a significant effect on effort (p < 0.04).

Naive MI OLS. After residual analysis resulting in
removal of nine cases, the naive MI OLS regression
equation is as given in Table 11. Residual analysis after

TABLE 5
x2-values for LD Data Set

Variable |
Users 58
Sites 15
Interfaces | 22
Modules 80
Effort 90
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TABLE 6
Descriptive Statistics of 10 Percent Ml Data Set
Variable [N |N* |Mean [Median |StDev
Users 176 0] 1297 338| 2867
Sites 176] 0O 45 7 171
Interfaces | 154 22 39 19 90
Modules 176 0 5.2 5.0 2.7
Effort 109 67| 10850 7560 13892

removal of the outliers confirmed that the residuals are
normally distributed (p-value =0.51 of the Anderson-
Darling normality test) and that all standardized residuals
are less than 2. Furthermore, there is no significant
multicollinearity (VIF < 2). The residuals are reasonably
homoscedastic. (Plot of residuals versus fits. Not reported.)
The predictor variables LN(Users), LN(Interfaces), and
LN(Modules) have a significant effect on effort (p < 0.02).
Furthermore, we observed that the values of the coefficients
are quite different for the LD OLS and naive MI OLS
models.

SRPI OLS. The SRPI regression equation is as given in
Table 12. 137 cases were used and five outliers removed
resulting in 132 cases. Removal of outliers did not improve
the normality of the distribution of residuals significantly
(p-value = 0.08 of the Anderson-Darling normality test).
There is no significant multicollinearity (VIF < 2.1.) The
residuals are however reasonably homoscedastic. (Plot of
residuals versus fits. Not reported.) All predictor variables
have a significant effect on effort (p < 0.032) but less
significant than for LD.

FIML model. The FIML regression equation is given in
Table 13. Six cases were removed. The regression is based
on the remaining 170 cases. We observe that FIML confirms
the other models. That is, Users, Interfaces and Modules are
highly significant whereas there is some doubt about Sites.
Sites is the least significant variable in all models. We
observe that the FIML model is overall more efficient than
the other models (t-values around five except for Sites). We
also observe that LD OLS is more efficient than 10 percent
MI OLS, Naive MI OLS, and SRPI OLS.

Regarding the prediction accuracy, the LD OLS has the
highest accuracy in terms of MMRE (48 percent) and FIML
the lowest (74 percent). See Table 14.

6.3 Summary of Results

We have applied two kinds of research methods to
compare MDTs: empirical methods as well as survey
methods. Our empirical evaluation is a simple one based on
comparing the sample means and the variances to

TABLE 7
Descriptive Statistics of Naive Ml Data Set
Variable N |Mean |Median [StDev
Users 176] 1297 338 2867
Sites 176 45 7 171
Interfaces 176 39 20 85
Modules 176 5.2 5.0 2.7
Effort 176| 108501 10850 10913
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TABLE 8
Descriptive Statistics of SRPI Data Set
Variable |N |N* Mean [Median |[StDev
Users 176 0 1297 338| 2867
Sites 175 1 45 7 172
Interfaces | 150 26 39 15 93
Modules 176 0 5.2 5.0 2.7
Effort 137 391 10972 6000| 13899

compare distributions before and after applying the
MDT. The survey (in Section 3) of statistical literature
reports some important findings obtained in statistical
science. In particular, it is vital for the correct application
of MDTs to know the assumptions they make with respect
to MCAR, MAR and nonrandom missing data.

Regarding the empirical evaluation, the results may be
summarized as follows:

The results confirm that we have found a reasonably correct
model. The results in terms of t-values and R2(adj) are
similar across the models (LD OLS, MI OLS, SRPI OLS, and
FIML). “If the model is correctly specified, different
estimators should have similar values asymptotically. If
these values are not sufficiently similar, the model is not
correctly specified,” [38]. We observe, however, that Sites is
questioned more than the other variables. In particular,
FIML does not consider this variable as equally significant.
Sites varies from t=1.77 to t =2.77 whereas the other
variables vary between t=2.65 and t =6.46. (We have
disregarded the t-values of Naive MI). Thus, the lowest
t-value of any of the other variables is comparable to the
highest t-value for Sites. This is not in total disagreement
with expert knowledge. Beforehand, we were rather
confident about Users, Interfaces, and Modules but some-
what less confident about Sites. The reason is that it is
harder to define good counting rules for “a Site” than for
User, Module, and Interface in the context of effort
prediction. It is, however, beyond the scope of this paper
to go into more detail on this issue.

There possibly is a small bias in the missing data. The
regression results indicate that there might be some bias in
the data although the 2-sample t-tests of the variable
distributions did not reveal anything. This is observed by
comparing the LD OLS and the FIML models in terms of
t-values and MMRE where we observe a discrepancy
between them.

TABLE 9

Regression Coefficients of LD Data Set
Predictor Coef |SE Coef| t p VIF

Constant 4.85 0.30] 16.3] 0.000
LN(Users) 0.275 0.063] 4.35 0.000[f 2.0
LN(Sites) 0.153] 0.055] 2.771 0.007| 1.3
LN(Interfaces) | 0.289 0.058] 4.94 0.000[ 1.3
LN(Modules) 0.732 0.164] 4.46] 0.000] 1.4

R2(ad))| 72%
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TABLE 10 TABLE 12

Regression Coefficients of “10 Percent MI” Data Set Regression Coefficients of SRPI Data Set

Predictor Coef | SE Coef t p VIF Predictor Coef | SE Coef t p VIF
Constant 5.260 0.305 17.3 | 0.000 Constant 5.068 0.318 15.9 ] 0.000
LN(Users) 0.220 0.064 3.47 | 0.001 2.0 LN(Uscrs) 0.185 0.070 | 2.65 ] 0.009 2.1
LN(Sites) 0.119 0.057 2.08 | 0.040 1.4 LN(Sites) 0.128 0.059 | 2.16 | 0.032 1.5
LN(Interfaces) 0.181 0.057 3.16 | 0.002 1.3 LN(Interfaces) 0.393 0.061 6.46 0.000 1.3
LN(Modules) 0.822 0.162 5.09 | 0.000 1.4 LN(Modules) 0.674 0.169 | 4.00 | 0.000 1.4

R2(adj) | 59% R2(adj) | 60%

Regarding the survey (in Section 3), the findings may be
summarised as follows:

FIML is most resistant to bias in the missing data. As
stated in Section 3.3, “MAR and MCAR,” other studies
have concluded that FIML will reduce bias even if the
MAR condition is not strictly met whereas the other
MDTs (LD, MI, SRPI) assume the data are MCAR. FIML,
therefore, likely is the least biased model. Therefore, if
there is a slight bias, FIML is likely closest to the “true”
model. It should be observed that this is not a result of
our own but rather an assertion based on the properties
of this method.

Given that we have a higher confidence in the
FIML model than in the other models, the results suggest
that a realistic, or true, prediction accuracy is around
MMRE = 70%. It is important to observe that the accuracy
of the regression model may be seriously overestimated by
the LD procedure (MMRE = 48%). We argue that the true
prediction accuracy likely is closer to the FIML accuracy
than to any of the others. However, it may be objected that
we have too few complete observations to be more
confident in the FIML model than in the other models.
That is, is N = 87 close enough to N = 100 or not.

7 DiscussioN oF MDTs

In this section, we discuss the following issues:

e Model-based versus sampling-based methods,

e MI versus SRPI, with a focus on patterns of
missingness lending itself to either method.

e FIMLs multivariate normal distribution assumption.

e The MCAR assumption of LD, MI, and SRPL

7.1 Model-Based vs. Sampling-Based MDTs

There is a significant difference in perspective between
model-based and sampling-based methods. The model-
based perspective is motivated by a desire to accurately

TABLE 11
Regression Coefficients of Naive Ml Data Set

Predictor Coef | SE Coef t P VIF
Constant 6.99 0.229 30.5 | 0.000
LN(Users) 0.110 0.047 2.35 0.020 2.0
LN(Sites) 0.067 0.043 1.54 | 0.126 1.5
LN(Interfaces) 0.153 0.046 3.33 0.001 1.2
LN(Modules) 0.457 0.119 3.84 | 0.000 1.4

R2(ad)) | 34%

estimate population parameters. From this perspective, the
appropriate performance criterion is the extent to which the
population parameter estimates from each incomplete,
original data matrix reproduce the population parameters.

The sample-based perspective is motivated by a desire
to fill in values in a data matrix, thus enabling the
resulting data matrix to be used in any subsequent data
analysis. For example, if the aim is not to construct a
regression-type effort prediction model, but rather a
CART-type or any other type requiring complete-case
analysis methods, e.g., cluster analysis, a model-based
MDT like FIML is not an option. In such cases, one must
fill in missing values, or alternatively remove incomplete
observations and, therefore, recur to MDTs like LD, MI,
and SRPI (or possibly other MDTs).

In our case, the aim is to build an effort prediction model
as close to the true model as possible. Our primary aim is a
good prediction model rather than a complete data set. We
are not interested in filling in the missing values for the sake
of filling in missing values just to get a larger data set since
the LD data set is large enough to apply OLS regression.
The LD data set has 87 complete observations (see Table 2)
which is larger than the required, rule-of-thumb 4*10 = 40
complete observations. Also, the original, incomplete data
set has close to 100 complete observations (and 176
including the incomplete). Thus, it likely is sufficient to
apply FIML. In our case, FIML seems, therefore, the more
appropriate method with LD coming second.

7.2 Ml vs. SRPI

The advantage of Ml is that it is fast and simple which likely
is the reason for its popularity. However, when the fraction
of missing cases is significant for a given variable, such as
Effort in our case, MI biases the distribution since all the
missing values are imputed at the centre of the distribution.

TABLE 13
Regression Coefficients of FIML Data Set
Predictor Coef | SE Coef | t P
Constant 4.82 0.271] 17.8] 0.000
LN(Users) 0.286 0.058] 4.94] 0.000
LN(Sites) 0.093 0.053] 1.77] 0.078
LN(Interfaces) | 0.314 0.056] 5.64] 0.000
LN(Modules) | 0.746 0.145] 5.14] 0.000
R2(adj)| 0.76
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TABLE 14
MMRE for Regression Models

Model MMRE(%)

LD 48
10% MI 65
Naive MI 61
SRPI 68
FIML 74

We feel that the percentage of missing cases should
therefore not exceed 5 to 10 percent for this method to be
used with some degree of confidence. This ought to be
verified by simulation since there is no theory to assist on
this issue. Even though MI is a simple method, and
generally not recommended, we may envisage patterns of
missing data where it might add value. Consider for
example the case depicted in Table 15. The asterisks denote
missing values. In this case, we observe that LD would
reduce the data set to zero observations. We further observe
that for each column, the percentage of missing cases is
10 percent, which is within an acceptable ratio of missing to
nonmissing values. For this pattern of missing data, the
simple MI method may greatly reduce the loss of informa-
tion without introducing a significant bias in the data. On
the other hand, it would be dangerous to use Ml in the case
depicted by the pattern in Table 16 since the distribution of
xg would be highly distorted after imputation.

Contrary to MI, SRPI seems equally well suited to both
patterns of missing data. Consider first the pattern in
Table 15. Let us assume that we want to impute x; first.
In this case, we have the choice of selecting any subset of
the variables x; to xjp as matching variables. The same
goes for imputing x¢ in Table 16. That is, imputing xg
does not cause any more trouble than imputing the other
variables. The main objection against SRPI is that it
requires a thorough knowledge of the data with regard to
selecting the matching variables for each variable to be
imputed. Also, the more variables we select as matching
variables, the fewer the subset of potentially similar cases.
Consider for example imputing x; using x» to xj0 as
matching variables. In this case, there would be no
matching cases. That is, there are no rows in Table 16

TABLE 15
A Pattern of Missing Data Where the
MI Method Might Be Appropriate

X1 X2 X3 X4 Xs X6 X7 X8 X9 X10

1009

TABLE 16
A Pattern of Missing Data Where the
SRPI Method Might Be Appropriate

X1 X2 X3 X4 Xs X6 X7 X8 X9 X10

| ¥ ¥ ¥ ¥

that are complete in xo to x;0 as well as in x;. At the
other extreme, we could select only x; to xj9 as matching
variables to impute x; in row 1. In this case, all rows 2
through 9 may be considered for similar case calculations.

In our analysis, we reduced the data set by restricting the
SRPI imputation to cases with one missing variable. Of
course, the SRPI method may be used to impute more than
one missing variable using the same set of matching
variables. However, it is a difficult trade-off between size
and reliability, where judgement must be exercised. All in
all, SRPI is therefore not a fast and easy expedient.

We observe that in the special cases depicted in Table 15
and Table 16, the LD method would incur a 100 percent loss
of information provided we want to use all the 10 variables.

The pattern of missing data in the ERP data set mostly
resembles that in Table 16. SRPI seems, therefore, a more
appropriate method than MI in this case. We also believe
that SRPI generally is to be preferred over MI because it
likely introduces less bias than ML

Note that the SRPI method obtains imputed values from
similar projects by using the least squares criterion as the
similarity measure, which produces exactly the same results
as using the Euclidean distance. Therefore, SRPI is a kind of
imputation by analogy approach as implemented in tools like
ANGEL [34]. However, unlike ANGEL, SRPI is more robust
and less vulnerable to outliers as it uses the predicted
values for statistical purposes, only, whereas ANGEL uses
the similar cases to predict single projects.

TABLE 17

A Pattern of Missing Data Similar to the ERP Data Set
ID | x| x [ x5 | x4 | X5 | X | X7 | X5 | Xo | Xp0
1 10 | 100
2 20 | *
3 30 | *
4 40 | *
5 50 | *
6 * *
7 * *
8 * *
9 * * *
]0 * * * *
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TABLE 18
p-Values of Anderson-Darling Normality Test on All Variables
Variable p-value
LN(Users) 0.210
LN(Sites) 0.000
LN(Interfaces) 0.037
LN(Modules) 0.000
LN(Effort) 0.197

7.3 The Multivariate Normal Distribution
Assumption of FIML

Two of the variables (LN(Sites), LN(Modules)) in the log-
log model do not exhibit a univariate normal distribution.
On the other hand, LN(Users) and LN(Effort) are normal.
LN(Interfaces) is somewhere in between. See Table 18. We
therefore know that the data do not exhibit a multivariate
normal distribution, as this requires that all variables
exhibit a univariate normal distribution. (Mardia [24]
presents a multivariate normality test.) Fortunately, FIML
is robust to data that do not comply completely with the
multivariate normal distribution requirement [7]. Therefore,
it may still be appropriate.

7.4 The MCAR and MAR Assumptions

The sampling-based MDTs (LD, MI and SRPI) assume the
data are MCAR. This assumption seems reasonable. (See
evaluation of the ERP data in Section 2.) Regarding Effort
(which has most missing values), it is unlikely that small
projects have a higher (or lower) probability than large
projects of reporting Effort. This reasoning applies to
Interfaces as well.

One may suspect that less successful projects report to a
lesser extent than more successful projects. Following this
line of thought, one would assume that large, complex
projects report to a lesser extent than small, not so complex,
projects because they have a higher probability of not being
successful. Were this the case, there would be a bias caused
by the missing data, and the data would not be MCAR.
Fortunately, large projects are managed by the most
experienced project managers whereas the smaller projects
more often are headed by junior managers. It is therefore
not obvious whether small or large projects have the higher
success rate and, thus, whether there are more missing data
in small or in large projects. We believe therefore (based on
expert knowledge of the data) that missing data are equally
found among small and large projects and that the data
therefore are MCAR. However, our empirical results (in
Section 6.1) seem to suggest a slight bias (nonrandom
missing data).

The only variable that might not be MCAR is EDI. Many
projects did not implement EDI eBusiness solutions. There-
fore, there is a large fraction of projects with EDI = 0. It is
possible that projects with EDI =0 are more sloppy in
reporting this variable than projects with EDI > 0. We have
not been able to check this, though, and it does not matter in
this study since EDI is not a predictor variable in the model.

Regarding the MAR assumption of FIML, we find it
unlikely that any ERP data are MAR. We believe that
they are either missing completely at random (MCAR) or

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO. 11,

NOVEMBER 2001

are nonrandom. Thus, the MAR condition seems a bit
artificial, and we question the practical use of it for ERP
software data.

8 CONCLUSION

In this paper, we have investigated missing data techniques
(MDTs) with the aim of constructing more reliable software
effort prediction models. (By “reliable,” we mean “closest to
the truth.” The “true model” would be constructed on the
true, population data set, i.e., on all past and future
projects). We have investigated whether it may be worth
the extra effort to apply MDTs other than the default
listwise deletion (LD), and whether LD is always appro-
priate or not. LD is routinely used in the usual two-stage
procedure that consists of removing incomplete observa-
tions before applying, e.g., OLS regression analysis to the
remaining complete observations to construct a prediction
model. We have investigated the MDTs empirically using
an ERP data set as well as by surveying statistical literature.
The latter complements the empirical study and enables us
to provide some more general advice. Our recommenda-
tions are as follows:

Use FIML if you have enough data to afford it. Our
evaluation suggests that FIML is the best choice for
constructing an effort prediction model when there are
missing data because FIML is somewhat more resistant to
bias (nonrandom missing data) in the data caused by
missing values than the other MDTs.

Use imputing-type MDTs (MI, SRPI) only if you
desperately need more data. Do not impute just to look
good. If FIML cannot be used because the data set is too
small, we recommend LD combined with a regression
model unless it results in a too small data set. Thus, we
recommend MI and SRP], again combined with a regression
model, only if they contribute to making an otherwise too
small data set big enough to carry out regression analysis.

For an ERP data set with four predictor variables, we
would therefore use FIML provided the number of
observations, N, exceeds 100. Otherwise, we would use
LD provided it leaves us with N > 40. We would use SRPI
or Ml only if LD leaves us with N < 40 and at the same time
SRPI or MI helps us achieve N > 40. The choice of MI versus
SRPI would depend on the pattern of missingness.

Don’t use LD if you suspect the data are not missing
completely at random, and be prepared to argue that the
data are MCAR when applying LD. If one suspects that the
observations with missing values differ systematically from
the complete observations, LD is dangerous. (Actually, no
MDTs will correct such a bias satisfactorily.) More danger-
ous, no MDTs or tests are able to detect such a bias. One
must, therefore, rely on expert knowledge to judge on the
issue of randomness. Also, if the fraction of missing data is
large, and one suspects nonrandom missing data, we
discourage using any MDTs at all, including LD. That
means, we discourage using such a data set at all because
the results of a data analysis would be highly biased and,
therefore, misleading. In this circumstance, the only solu-
tion is to somehow mend the holes with the true values
(e.g., by calling up nonrespondents once more). However, if
the fraction of missing data is small, say, less than 5 percent,
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LD (and other MDTs) can be used without introducing
large errors [32].

Use FIML if your aim is to construct a regression-type
effort prediction model. It should be observed that FIML is
applicable and an option when the aim is to produce a
regression-type prediction model based on historical data
containing missing values. If one needs to apply complete-
case statistical techniques other than regression analysis,
FIML might not be an option. For example, when building
CART models for software effort prediction, one applies
some kind of cluster analysis within CART. Cluster analysis
techniques generally are complete-case techniques. Thus,
they require that missing values actually be filled in or
alternatively, that the observations with missing values be
removed. Since LD, SRPI, and MI are MDTs resulting in
complete data sets, they may be more suitable when
constructing, e.g., CART models.

To summarize, analysis of incomplete data sets is an
increasingly important issue in software engineering as
software engineering extends its branches to subdisciplines
like empirical software engineering and software metrics.
Unfortunately, as we view it, there still are several obstacles
both with model-based (like FIML) as well as with
sampling-based MDTs (like LD, MI, SRPI). Regarding
sampling-based MDTs, Dempster and Rubin [12] warn us:

“The idea of imputation is both seductive and dangerous. It
is seductive because it can lull the user into the pleasurable
state of believing that the data are complete after all, and it is
dangerous because it lumps together situations where the
problem is sufficiently minor that it can be legitimately
handled in this way and situations where standard
estimators applied to the real and imputed data have
substantial biases.”

APPENDIX A
FIML Procedure

Let p be the number of variables and N the number of cases
(observations). We assume that the vector

Yp

has a multivariate normal distribution with mean p and
covariance matrix 3. If y1, 2, ..., yx is a random sample of
the vector y, the data matrix is a N x p matrix. This matrix
can have missing values, i.e., specific elements of the
vectors y,4=1,2,3,...,N may be unobserved. Consider
the following example. Let N =7 and p =3. The data
matrix can look as in Table 19.

The population mean vector and the population covar-
iance matrix are

M1 011 012 013
M= K2 and Q= | oo 09 093
3 031 032 033
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TABLE 19
Data Matrix

Case Y] ¥y ¥3
! 1 Y12 Y13
2 Y21 Y22 Y23
3 Y31 * ¥33
4 Y41 Y42 *
5 Y51 Y52 Y53
6 * Y62 Y63
7 * Y72 ¥73

Let m; and ; be the population mean vector and
covariance matrix for the variables that are observed for
Case i. These elements (m; and ;) can be obtained by
deleting elements from p and ¥. For example, in Case 4
where y3 is missing:

my = {M] and y = {011 012}.
2 021 022

These “reduced” vectors and matrices are used in the
estimation process. In the general situation, the log like-
lihood of case i is defined by [5]:

i

1 1 _

The log-likelihood for the entire sample (all the non-
missing data) is

N
logL = Z log ;. (3)
=1

Given a model that specifies the vector ;1 and covariance
matrix ¥ as functions of its parameters imply that p = 1(6),
and ¥ =X(#), where 6 is the parameter vector to be
estimated. The crucial point is that the model is used to
predict the mean vector p and the covariance matrix .
Therefore, we formulate the equations p = p(f) and
¥ = X(0). The parameter vector # is an unknown stochastic
quantity that has to be estimated.

Maximum likelihood estimates of ¢ are obtained by
maximizing log L(¢). The mean vectors and covariance
matrices in (2) are now functions of the unknown para-
meters § in the theoretical model. We can think of this as a
derivation process where we solve the equation

dlog(6) g =0.

The estimated parameter vector 6 is the parameter vector
with the maximum likelihood of being responsible for the
observed data.

A chi-square statistic is defined as x? = F; — F}, where
Fy = —2InLy and Ly denotes the log-likelihood value (at
convergence) when p and X are restricted according to the
theoretical model and InL; denotes the log-likelihood (at
convergence) when no restriction are imposed on x and X
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[17]. The degrees of freedom are L p(p + 1) — t, where ¢ is the
number of free parameters in the model.

APPENDIX B

Calculation of MRE in Log-Log Regression
Models

This appendix shows how the formula for calculating MRE
is derived when one applies a log-log regression model to
predict effort. Suppose the log-log model, with y = actual
effort, is

mhy=Ina+FInX+1Inu
Then, predicted effort (or rather the predicted In-effort) is
Iny=a+bln X. (4)
Let the residual be given by

residual =lny —Iny

restdual = ln(‘g).
Yy

This may be transformed to ¢* =% or alternatively
—residual _ J
e resiaua — g_z. Thus’

which is equal to

1— e—rcsidual _ y—y

" ()

By definition, MRE is

MRE:‘u
Yy

From (5) and (6) we may restate MRE

MRE = ’1 _ efr'csiduul
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