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Abstract—Productivity measures based on a simple ratio of product size to project effort assume that size can be determined as a

single measure. If there are many possible size measures in a data set and no obvious model for aggregating the measures into a

single measure, we propose using the expression AdjustedSize/Effort to measure productivity. AdjustedSize is defined as the most

appropriate regression-based effort estimation model, where all the size measures selected for inclusion in the estimation model have

a regression parameter significantly different from zero (p < 0.05). This productivity measurement method ensures that each project

has an expected productivity value of one. Values between zero and one indicate lower than expected productivity, values greater than

one indicate higher than expected productivity. We discuss the assumptions underlying this productivity measurement method and

present an example of its use for Web application projects. We also explain the relationship between effort prediction models and

productivity models.

Index Terms—Software productivity measurement, software cost estimation.
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1 INTRODUCTION

PRODUCTIVITY is the amount of output (what is produced)
per unit of input used. In general, productivity is

difficult to measure because outputs and inputs are
typically quite diverse and are often themselves difficult
to measure. In the context of software, productivity
measurement is usually based on a simple ratio of product
size to project effort (e.g., [16]). Thus, if we can measure the
size of the software product and the effort required to
develop the product, we have:

Productivity ¼ Size=Effort: ð1Þ

Equation (1) assumes that size is the output of the software

production process and effort is the input to the process.

This can be contrasted with the viewpoint of software cost

models where we use size as an independent variable (i.e.,

an input) to predict effort which is treated as an output.

Equation (1) is simple to operationalize if we have a single

dominant size measure, for example, product size mea-

sured in lines of code. MacCormak et al. used new lines of

code per person day in a recent productivity study, noting

that, “It is an imperfect measure of productivity but one that

could be measured consistently” [16].
However, there are circumstances when there are several

different effort-related size measures and there is no

standard model for aggregating these measures. We

recently collected data from Web companies where effort
was strongly correlated with several different size measures
(e.g., number of new Web pages, number of high effort
functions, number of new images), each of which measured
a different aspect of the overall size of a Web application
and contributed significantly to a regression-based effort
prediction model. When we have a number of significant
size measures related to effort, it is difficult to determine
how to construct a single size measure from the different
individual measures. This means we cannot use (1) for
productivity measurement.

In this paper, we present a method of constructing a
productivity measure when effort is related to several
different size measures. Section 2 summarizes a systematic
literature review [14] used to identify previous work on
software productivity measurement. Section 3 describes the
motivation to our work, presents our proposed productivity
measurement method based on multiple size measures, and
discusses the assumptions underlying the productivity
measure. We present the results of a productivity analysis
using the new productivity measurement method in
Section 4, followed by our conclusions in Section 5.

2 RELATED WORK

We carried out a limited systematic literature review using
the basic approach identified in [9], [15] in order to evaluate
and interpret literature relevant to the following two
questions:

1. What methods have been used to construct software
engineering productivity measures when there is no
single dominant size measure?

2. What explicit assumptions have software engineers
made in productivity studies?

We used IEEExplore electronic database ensuring that
our search was applied to journals, magazines, and
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conference proceedings published over the last 10 years.
Our review was more limited than a full systematic review
because we did not follow up the references in papers, nor
did we extend our search to include gray literature sources
such as PhD theses and technical reports.

We experimented with several different search criteria
and, in the end, used the following:

(commercial OR business OR industrial

OR business-related) AND {G1}

(software project OR software development)

AND {G2}

(method OR process OR system OR technique

OR methodology) AND {G3}

(productivity OR production OR efficiency)
AND {G4}

(measure OR metric OR attribute OR indicator

OR variable OR measurement) AND {G5}

size {G6}

This search retrieved 104 papers, of which eight
complied with our selection criteria ([2], [4], [7], [8], [18],
[20], [21], [22]). Our search criteria missed three relevant
papers ([26], [16], [23]). We believe two factors have
contributed to the absence of these three papers from our
search: the main factor is that IEEEXplore does not provide
full-text search, using solely publication titles, keywords
(index terms), and abstracts, making it difficult to achieve
research completeness. The second factor is that publication
abstracts are often incomplete, lacking relevant information.
For example, [16] and [26] did not contain in its title/
abstract/index terms any of the words from {G1} and {G6};
Reifer [23] did not contain in its title/abstract/index terms
any of the words from {G1}, {G3}, or {G4}. Note that despite
the ACM digital library providing full-text search, it lacks
the flexibility for using a complex Boolean search expres-
sion, such as ours. Therefore, we decided not to use the
ACM database.

Two papers were updates of previously reported
research: [26] was an update of [22] and [7] was an update
of [8]. In both cases, we considered only the most recent
paper in our review, giving a total of nine papers to analyze.
Data was extracted and results were tabulated. In this
section, we only present a summary of the results obtained
from our review due to shortage of space. However, the
protocol we employed, the tabulated results, and the list of
all journals, magazines, and conference proceedings used in
our search are available in [14].

In spite of intending to identify research related to
situations where there was no single dominant size
measure, all papers, except for Stensrud and Myrtveit
[26], used single size measures that either represented
standard size measures for productivity assessment (e.g.,
function points, lines of code) or alternative size measures
aggregated from other individual measures (e.g., System
Meter [21], “Magnitude” [17], and Use Case Points [2]).

Furthermore, all the papers, other than [26], that considered

productivity measurement measured productivity as the

standard size/effort ratio.
With the exception of Reifer [23], no researchers

considered the problem of sizing Web applications. Reifer

[23] proposed deriving an aggregated size measure (called

Web Objects) from counts associated with Web application

elements, including the number of new and reused Web

pages, text files, animations, images, and functions. He

proposed analyzing each element in terms of operator and

operand counts and then combining the counts using

Halstead’s volume equation [6]. Reifer’s approach has some

similarity with ours and is contrasted with our approach in

a later section.
Finally, Stensrud and Myrtveit [26] suggested using Data

Envelopment Analysis (DEA) to investigate productivity

differences (see [27] for a detailed explanation of DEA). The

Data Envelopment method assesses productivity of projects

relative to the most productive project that has similar

output values (i.e., size measures). The idea of a relative

measure for productivity is similar to our approach.

However, the use of the most productive project as a

baseline is based on the assumption used in economics that

the most productive project is the one that used the best

technology. This may not be the case in software where the

most productive project may just be the easiest project. In

addition, Kitchenham [9] has raised some objections to

applying DEA to software projects. She pointed out that

several assumptions underlying DEA were not always valid

for software projects. In particular, DEA assumes that there

is no measurement error, that all relevant input variables

(i.e., measures) are included in the model, and that each

data point represents an independent decision-making

entity, with respect to allocating investment between labour

and capital. None of these conditions are usual for software

project data sets.
Apart from Reifer’s Web Objects, none of the size

measures presented in this section were developed ex-

plicitly to measure the size of Web applications. However,

another possibility would be to use Principal Component

Analysis (PCA) to reduce the dimensionality of the size data

set to its principal orthogonal components [5]. Unfortu-

nately, when the result of applying a PCA provides more

than one orthogonal component, we still have the problem

of having more than one size measure to use in our

productivity measure.
The papers we reviewed made few references to their

assumptions with respect to productivity measurement and

modeling. Moser and Nierstrasz [21] made the point that

reused components should not be included when measur-

ing the size of an object-oriented application based on a

framework. Morasca and Russo [20] make the point that, to

construct a good productivity measure, size must be related

to effort. Stensrud and Myrtveit [26] agree and, in addition,

they note that Components-Off-The-Shelf (COTS) software

projects have multidimensional outputs and, thus, require

multidimensional size measures. We agree with all these

points and believe they apply equally to Web applications.
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3 SOFTWARE PRODUCTIVITY MEASUREMENT

3.1 Motivation

One of the authors (Mendes) collected data on 54 Web
projects from 25 Web application development companies.
This data is part of the Tukutuku database1 [19]. The aim of
the data collection exercise was to investigate cross-
company effort prediction and productivity models. The
measures collected from the participating companies were
based on the results of a survey of the Web sites of 133 Web
application development companies that offered online
quotes for Web projects [19]. This survey identified a
number of different Web application factors that Web
developers used to discuss Web products with their
potential clients. For example, the most commonly used
factors were the number of Web pages and a list of standard
Web functions/features (e.g., shopping cart).

Based on the survey results, Mendes et al. [19] proposed
a number of measures for cost estimation that appeared
both to be available early in the life cycle and to be
meaningful to clients of Web companies as well as the Web
application developers. They validated the measures in
discussion with the manager of a long-established (10 year-
old) Web company. The measures included measures
related to product size and a variety of process and staff
characteristics (e.g., whether the project followed a docu-
mented process and the average years of experience of the
development team). Size related measures were based on
simple counts of the number of distinct elements in a Web
application, i.e., counts of the number of new and reused
Web pages, text files, animations, images, and functions.
Thus, our selection of size measures is empirically based
and we make no claim that we have identified all possible
size measures for Web applications.

Reifer used similar concepts as the basis of his Web
Object measure [23]. However, Reifer proposed analyzing
each element in terms of operator and operand counts and
then combining the counts using Halstead’s volume
equation [6]. Thus, in contrast to Web Objects, our size
measures are much coarser measures, but can be obtained
from clients early in the development process (i.e., during
initial pricing).

When we used the Tukutuku database to investigate
cross-company effort models [13], we experienced a
number of issues that needed to be dealt with in order to
obtain productivity measures:

. We had many different measures of Web application
size, some of which were related to effort and some
were not. Examples of size measures related to effort
are the total number of Web pages and the total
number of new images; examples of size measures
not related to effort are the total number of video
files and the total number of images reused from a
library.

. Restricting our analysis to size measures, we found
three measures jointly related to effort (i.e., all three
of the measures were significant in a logarithmically
transformed effort prediction model). The measures
were the total number of Web pages, the total
number of high effort functions, and total number of
new images.

. There were other combinations of size measures that
were almost as strongly correlated with effort as our
“best-fitting” model. In particular, a model based on
total number of new Web pages, total number of
new high effort functions, and total number of new
images appeared plausible as a model for Web
applications exploiting some degree of reuse.

. The parameters in our size-based effort estimation
model, reported in (6), showed strong evidence of
nonlinearity, i.e., the multiplicative parameters for
some size measures in the logarithmic regression
model were significantly different from 1 (e.g., 0.442,
0.75).

. We obtained the total effort for each project in the
data set. However, the data set included both
projects that reused some elements (such as pages
or functions) and projects that constructed all
application elements from scratch. For reuse pro-
jects, we had no information about the proportion of
total effort spent constructing new elements and the
proportion of total effort spent on reused elements.

3.2 Productivity Measurement Method

Our suggestion for measuring productivity with multiple

size measures is based on the idea that any size-based effort

estimation model constructed by stepwise regression is by

definition a function of effort-related size measures.

Therefore, we can treat the size-based effort estimation model

as an AdjustedSize measure and use the following equation to

represent our proposed productivity equation:

Productivity ¼ AdjustedSize=Effort: ð2Þ

The AdjustedSize measure includes only those size mea-

sures that together have a significant relationship with effort

and it allows for the nonlinearity of the relationship, if

necessary. This view of productivity has a number of

obvious benefits:

. The expected value of productivity is one (since
productivity is based on the ratio of estimated to
actual effort).

. A value larger than one is an indication of better
than average productivity, a value less than one is an
indication of worse than average productivity.

. The regression analysis used to determine the effort
estimation model can be used to construct upper and
lower bounds on the productivity measure. This
means we can assess whether the productivity
achieved by a specific project is particularly good
or bad. In addition, the width of the confidence
interval gives us some idea of the precision of the
productivity measure. Examples using upper and
lower bounds are given in Section 4.2.
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Kitchenham et al. [12] suggested that the ratio of
estimated effort to effort is a measure of estimate
accuracy, which seems to contradict our interpretation of
the ratio as a productivity measure. To a certain extent,
the two interpretations simply reflect different viewpoints.
A value less than one corresponds to underestimate which
in turn can be interpreted as achieving a lower than
expected productivity.

Furthermore, the goal of an estimation model is usually
rather different from the goal of productivity measurement.
Estimation models are intended to predict the effort of
future projects. In our case, our productivity measure is
intended to investigate the impact of various factors on the
productivity achieved by projects in our current database,
so our productivity measure is based on known size
measures, not estimated size measures for new projects.
In this context, “estimated effort” means the “expected
effort,” given the assumed regression model. It is not an
effort prediction in the sense of a prediction for a future
project.

The productivity measurement method presented in (2)
can be applied to data sets in any application domain as
long as there is a relationship between, at least some, size
measures and effort, irrespective of whether the relation-
ship is linear. However, the productivity measure obtained
when using (8) would apply only to the projects in the
current data base; it would not automatically apply to other
projects from the same application domain unless the
projects were a random sample from a well-defined
population.

3.3 Productivity Measurement Assumptions

Our productivity measurement method assumes that an
appropriate measure of size is strongly associated with
effort. This is consistent with standard software productiv-
ity measures. If you have a size measure that is not directly
related to effort, it cannot be used to construct a
productivity measure. For example, suppose you have a
product being maintained. It is not the total size of the
product that is the main driver for maintenance effort, it is
the amount of the product that is changed. Thus, a
productivity measure based on total size divided by
maintenance effort will not be valid because the output
(i.e., total product size) will not be obtained as a result of the
input effort (i.e., maintenance effort). The larger the
software product and the smaller the amount changed,
the worse the productivity measure will become. It will not
be an accurate measure of maintenance productivity and
will not be comparable for systems of different size and
different maintenance loads.

The second assumption embedded in our method is
much more controversial and is not consistent with current
approaches to software productivity measurement. Our
method assumes that possible economies and diseconomies
of scale should be accounted for before undertaking
productivity analysis. It arises because our productivity
measure includes an adjustment for any economies or
diseconomies of scale. If we have diseconomies of scale, as
many software models suggest (e.g., COCOMO [3]), the
relationship between effort and size is:

Effort ¼ a� Sizeb; ð3Þ

where b > 1:0.
The mathematical form of this model means that large

products take disproportionately more effort than small
products. Therefore, if we construct a productivity measure
based in (1) (i.e., Size=Effort), we will detect a productivity
difference between large and small projects. This can be
understood if we replace Effort in (1) with a� Sizeb to
give:

Productivity ¼ Size=a� Sizeb ¼ Sizeð1�bÞ=a: ð4Þ

If b > 1, we have diseconomies of scale and Productivity
decreases as Size increases. If b < 1, we have economies of
scale and Productivity increases as Size increases. If b ¼ 1,
we have a linear relationship and Productivity is constant,
taking on the value 1=a. If we use our approach, (2) would
give:

Productivity ¼ a� Sizeb=Effort: ð5Þ

Replacing Effort by a� Sizeb in (5) causes Productivity to
take on a constant value equal to 1. Thus, a productivity
measure based on (5) removes the effect of diseconomies of
scale by adjusting the size measure according to the
exponential term b. Furthermore, in a conventional model,
the term a is a productivity constant, whereas, in our
approach, the term a is simply a constant of proportionality
that converts our size function into the scale of the effort
measure.

Our measurement approach can, therefore, only be used
to investigate factors that affect the productivity of projects
after allowing for diseconomies (or economies) of scale. We
note that, by ignoring the impact of diseconomies (or
economies) or scale, conventional software productivity
analysis runs the risk of detecting factors that differ
between large and small projects rather than factors that
affect the productivity of all projects. For example, suppose
we have data from many different countries and were
interested in whether projects from country A were more
productive than projects from country B but projects from
country A were all small and projects from country B were
all large. If there were diseconomies of scale, productivity
analysis based on the conventional approach would find
that country A was more productive than country B because
country A submitted small projects. Our approach would
find country A more productive than country B, if country
A’s small projects were on average more productive than
the expected productivity of small projects in the database
as a whole and country B’s projects were on average less
productive than the expected productivity of large projects
in the database as a whole.

The third assumption underlying this approach is that it
is easier to use a size-based regression model to construct a
productivity measure than to attempt to construct a
composite size model to measure size as a single aggregate
measure. For example, the Albrecht function point measure
[1] is the weighted sum of several different aspects of
product size in terms of the flow of information across a
system boundary and stored data (i.e., inputs, outputs,
logical master files, inquires, and interfaces). The function
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point model provides a mechanism for aggregating the
individual counts into a single size measure that can be
used in (1). In the case of Web applications, the Web Object
measure [23] has been constructed to play the same role as
function points.

The choice of a single aggregate measure, compared with

a size measure derived from a size-based effort estimation

model, depends to a large extent on the validity of the

aggregate measure. Without either an a priori model to

support the aggregation or extensive empirical validation

studies, it is difficult to be sure that the model is valid. For

example, it is not clear that all the elements that contribute

to a Web Object count are independently associated with

effort. Furthermore, if size measures are correlated among

themselves, aggregate size measures are vulnerable to

double counting.

It is also important to recognize that our productivity

measurement method is intended to allow productivity

comparisons among projects belonging to the data set from

which the effort estimation equation was obtained. We do

not expect the particular productivity measure obtained for

a specific data set to apply to other data sets (unless the data

set was a random sample from a defined population). For

each independent data set (whether obtained from a single

organization or a group of organizations), the most

appropriate estimation equation must be calculated before

an appropriate productivity measure for that data set can be

calculated.
There are several other assumptions related to our

productivity measure, but all the assumptions apply
equally to the standard productivity model shown in (1):

1. The numerator and denominator of the productivity

measure are not close to zero. If both numerator and

denominator are close to zero, ratio measures may

approximate a Cauchy distribution.2 A Cauchy
distribution is an extremely unusual distribution

for which the mean and variance are undefined,

making standard productivity analysis problematic.
2. Staff effort is a good surrogate for project cost. This is

not always true because effort does not allow for

major differences in staff costs between different

companies. For example, productivity comparisons

used to assess the value of outsourcing to other

countries are based on monetary costs, not staff

effort.
3. Size measures based on the internal properties of

different applications are comparable. This is
equivalent to asking whether a line of code or a
function point in one product is equivalent to a line
of code or a function point in another product. There
is no definitive answer to this question.

4. A productivity analysis is more useful than an

extended analysis of effort (extending an effort

regression analysis to include productivity factors

as well as size factors). If we extend an effort

regression analysis, we get the same results as we

would get if we constructed a productivity measure
using the size-based effort regression model and

then performed a productivity analysis (this is

explained in more detail in Section 4.2). The choice

of a productivity analysis rather than an extended

effort analysis is usually based on the view that it is

easier to interpret a productivity analysis than a

complex effort-based analysis. As previously men-

tioned, there is a slight difference between our
productivity measure and the standard measure. If

there are economies or diseconomies of scale, the

standard measure would detect them during a

productivity analysis, while our method would

detect them in the effort equation.

4 APPLICATION OF THE PRODUCTIVITY

MEASUREMENT METHOD

4.1 Productivity Measure Construction

We constructed the best fitting size-based effort prediction

model, using manual forward stepwise regression [11],

employing data on Web projects from the Tukutuku

database. This is similar to the step-wise technique

suggested by Kitchenham [11], but we used the additional

variable plot facility in the STATA tool to assess the impact

of each candidate variable on the residuals from the current

model in each step. Since our size measures were highly

skewed, they were transformed to a natural logarithmic

scale to approximate a normal distribution. In addition,

whenever a measure needed to be transformed but had zero

values, the natural logarithmic transformation was applied

after adding 1 to the measure (see (6)).
The best fitting model was (adjusted R2 ¼ 0:6054):

lnðAdjustedSizeÞ ¼ 2:262þ 0:442� lnðtotWebPagesÞ
þ 0:753� lnðhighefffnsþ 1Þ
þ 0:130� lnðnewimagesþ 1Þ:

ð6Þ

This can be transformed into the following equation:

AdjustedSize ¼ 9:6� ðtotWebPagesÞ0:442

� ðhighefffnsþ 1Þ0:753

� ðnewimagesþ 1Þ0:13:
ð7Þ

The variable definitions are shown in Table 1. In (6), the

multiplicative value 9.6 can be regarded as the effort

required to develop one Web page. Since 13 projects reused

Web pages, (6) has an obvious limitation in that it does not

distinguish new Web pages or new high-effort functions

from reused Web pages or reused high-effort functions.

However, using the Tukutuku database, reused Web pages

were not included as a significant variable in the regression

analysis.

Analysis of the best fitting model found five high-

influence projects (using Cooks D criterion). These projects

are listed in Table 2. Only one of the high-influence projects

benefited from reuse (i.e., project 16). However, as a result

of using (6), its effort estimate is considerably greater than
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its actual effort. The effect of reuse is addressed from the

viewpoint of productivity analysis in the following section.

Repeating the regression analysis excluding the high-

influence projects does not result in any major changes to the

model coefficients. Furthermore, the adjusted R2 value for

the regression model increases to 0.71 and the significance of

the newimages variable is confirmed (p < 0.042). Thus, we

conclude that the regression equation is reasonably stable

for this data set and it is not necessary to omit the high-

influence projects from any subsequent analysis.

Treating (7) as a weighted size function, we can construct
a productivity measure:

Productivity ¼ ½ 9:6� ðtotWebPagesÞ0:442

� ðhighefffnsþ 1Þ0:753

� ðnewimagesþ 1Þ0:130�=ActualEffort;

ð8Þ

where ActualEffort is the total effort to produce the Web
application, measured in person hours.
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4.2 Productivity Measurement

Using the Tukutuku data as an example, the productivity
values constructed using (8) varied from a minimum of 0.11
to a maximum of 12.02. The mean value was 1.58, the
standard deviation was 1.945, and the median was 0.98. The
distribution of the productivity values is shown in Fig. 1.
Constructing upper and lower bounds for the productivity
values using the upper and lower bounds of the effort
estimation model, we found three projects that had
productivity values significantly different from 1:

1. Project 17 had a productivity value of 12.01 with
95 percent confidence limits (1.568, 92.141).

2. Project 20 had a productivity value of 0.111 with
95 percent confidence limits (0.014, 0.859).

3. Project 32 had a productivity value of 0.113 with
95 percent confidence limits (0.014,0.917).

All of these projects were identified as high-influence
projects with respect to the best fitting effort estimation
model (see Table 2).

4.2.1 Validation

After calculating our productivity values, the Company
Director for one of the organizations that had contributed
project data to Tukutuku (13 projects) was contacted in
order to check whether the calculated productivity values
provided accurate productivity measures for these 13 Web
projects. He assessed productivity as a more complex
attribute than we did, i.e., he understood productivity as
a measure of how successful a project was, and success
included factors such as requirements stability, customer
satisfaction, and customer/staff personality type. When
assessing the productivity for the 13 projects solely based on
size and effort, his conclusion was that our productivity
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measure provided reasonable productivity values for 12 out
of the 13 projects (92 percent). The exception was a Web
project (project A) considered by the Company Director as
very productive and that showed low productivity using
our measure. Further investigation of the data set revealed
that this project was medium-sized (128 new Web pages,
2 high effort functions, and effort of 429 person hours) and
developed by two people with an average experience of two
years with the development languages employed. Project A
had very similar characteristics to another project from the
same Company (130 new Web pages, 3 high effort
functions, and effort of 410 person hours) and was
developed by three people with an average experience of
five years. Our productivity measure suggested that both
projects had low productivity; however, we can also
understand the rationale used by the Company Director
to grade Project A as a very productive project: Both
projects used similar effort, one employed three very
experienced staff and the other employed two less
experienced staff, and most of the development languages
used were the same.

4.2.2 Productivity Analysis

Once the appropriate productivity value has been calcu-
lated for each project, standard productivity analyses can be
performed. An initial concern is the impact of reuse on
productivity. We used a dummy variable to identify
projects with reuse and investigated the productivity
differences between the two groups of projects. The median
productivity for the 13 projects that reused Web pages was
1.24, while the median productivity for projects that did not
reuse Web pages was 0.87. Inspection of box plots of the
productivity distribution for each group suggested some
departure from the Normal distribution (see Fig. 2). The

projects that did not reuse Web pages demonstrated a

symmetric distribution but exhibited rather more outliers

than would be expected of a Normal distribution. The

distribution of the projects that did reuse pages was not

symmetric about the median. We therefore used the

nonparametric Kruskall-Wallis method to assess whether

the difference between groups was significant. The chi-

squared test statistic was 6.09 with 1 degree of freedom,

which is significant at the 0.05 level (actual p value = 0.0.14).

This confirms that reuse is having a significant effect on

productivity and any further analysis of productivity

should take account of this effect.
This might be thought to contradict our original effort

estimation analysis where we found that the amount of

reuse did not have a significant impact on effort. In fact, if

we include reuse as a dummy variable in our effort

estimation model, we find that the effect of the dummy

variable is significant. Thus, in our data set, it is reuse per se

not the amount of reuse that is important.
If we want to take account of the effect of reuse in

subsequent analysis, we need to construct a productivity

model. Given the nonnormal distribution of the productiv-

ity values, we should use a logarithmic transformation of

the productivity values. However, if we transform (7), we

obtain:

lnðProductivityÞ ¼ lnðAdjustedSize=ActualEffortÞ
¼ lnðAdjustedSizeÞ � lnðActualEffortÞ:

ð9Þ

Since lnðAdjustedSizeÞ is by definition lnðEstimatedEffortÞ,
(9) implies that lnðProductivityÞ is equal to the negative of the

residual of the effort estimation model. This confirms the
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equivalence between productivity analysis and effort esti-
mation modeling.

To continue the productivity analysis, we can construct a
regression model including the dummy variable reuse and
attempt to add other variables to the regression model. For
example, companies submitting projects were interested in
whether productivity was different among different coun-
tries. For categorical measures, such as the country of origin
of the project, we can construct a dummy variable for each
country and identify whether any country has an unusually
high or low productivity. For example, if we construct a
dummy variable to identify projects from Brazil and
attempt to add that to the productivity model, including
reuse, we obtain the model shown in Table 3. Since the
coefficient for the dummy variable Brazil is not significantly
different from zero, we conclude that projects from Brazil
do not have an unusually high or usually low productivity
values.

Alternatively, we can adjust our productivity values to

account for reuse by performing a regression analysis using

reuse as the independent variable and using the residuals

from this analysis as our new productivity values [11].

Transforming back to the raw data scale, we can analyze the

effect of different countries using the Kruskal-Wallis

nonparametric analysis of variance. The box plots of

productivity values for each country adjusted for reuse

are shown in Fig. 3. Excluding Egypt and South Africa,

which have only one project each, the Kruskal-Wallis

analysis suggests that productivity is significantly different

between countries (chi-squared = 11.69 with 5 degrees of

freedom, p = 0.039). This effect is due to the three Canadian

projects. If these projects are excluded, the analysis no

longer detects any significant difference between countries

(chi-squared = 6.96 with 4 degrees of freedom, p = 0.138).

Furthermore, using a dummy variable to indicate Canadian
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TABLE 3
Model for Productivity Prediction (after Logarithmic Transformation)

Fig. 3. Box plots of productivity (adjusted for reuse) for different countries.



projects, both reuse and Canadian origin are significant in a

productivity regression model. However, our data set

comprises data on projects volunteered by individual

companies. It was not a random sample of projects from a

defined population, thus, we cannot conclude that Cana-

dian projects are in general more productive than projects

from other countries. We can only confirm that the three

Canadian projects in our data set were more productive

than projects from other countries with respect to the

variables included in our EstimatesEffort model—i.e., they

tended to have less Webpages but more images than other

projects. This issue is also a problem for conventional

productivity analysis. If the data set used for productivity

analysis is not a random sample, it is not clear whether any

observed productivity differences apply to other projects. In

particular, analysis is vulnerable to selection bias; for

example, people may submit projects that achieved good

productivity in order to look good or projects that achieved

poor productivity in order to be able to easily exceed any

benchmarks constructed from the submitted data.

4.2.3 Size Measures and Productivity Analysis

From (9), it is clear that if you use our approach to

productivity measurement, you do not need to include size

measures in your productivity analysis. The variables that

jointly provide the best effort estimation model are already

included in the AdjustedSize measure and should not,

therefore, be reused in the productivity analysis carried out

after the productivity values have been obtained. Size

measures not included in the best fitting estimation model

will, by definition, not be factors that affect productivity.

This is quite different from productivity analysis based on

more conventional measures [17]. For example, suppose we

had simply used the total number of Web pages to construct

a productivity model:

SimpleProductivity ¼ TotWebPages=ActualEffort: ð10Þ

For our data set, a regression analysis of effort against total

number of Web pages (after transformation to the logarith-

mic scale) shown in Table 4 demonstrates an economy of

scale (i.e., the coefficient of the variable lnðtotWebPagesÞ
is significantly less than 1). This implies that we will

find a relationship between lnðSimpleProductivityÞ and

lnðtotWebPagesÞ. This is because, if

lnðActualEffortÞ ¼ aþ b� lnðtotWebPagesÞ; ð11Þ

lnðSimpleProductivityÞ ¼ lnðtotWebPagesÞ
� lnðActualEffortÞ;

ð12Þ

then

lnðSimpleProductivityÞ ¼ lnðtotWebPagesÞ
� ½aþ b� lnðtotWebPagesÞ
¼ �aþ ð1� bÞ � lnðtotWebPagesÞ:

ð13Þ

If b is significantly less than 1, then the term ð1� bÞ �
lnðtotWebPagesÞ will be significantly different from 0, and

the variable lnðtotWebPagesÞ will appear as significant in the

productivity model. To confirm this analysis, we show

the regression analysis of SimpleProductivity against

totWebPages (after the logarithmic transformation) in

Table 5. A comparison of Tables 4 and 5 (where the coefficient

terms have been deliberately kept to seven significant digits)

confirms the relationship shown in (13), i.e.,
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TABLE 4
Relationship between ActualEffort and totWebPages (after Logarithmic Transformation)

TABLE 5
Relationship between SimpleProductivity and totWebPages (after Logarithmic Transformation)



lnðSimpleProductivityÞ ¼ � ð2:366827Þ þ ð1� 0:6674508Þ
� lnðtotWebPagesÞ;

ð14Þ

lnðSimpleProductivityÞ ¼ � 2:366827þ 0:3325492

� lnðtotWebPagesÞ:
ð15Þ

4.2.4 Effort and Productivity Analysis

It is important to realize that, unlike the size measures, you
are quite likely to find a spurious relationship between
productivity and effort as a result of the functional relation-
ships between the productivity measure and the effort. This
occurs because of the relationship shown in (9). If we
attempt to find a relationship between productivity and
effort on the logarithmic scale, we are looking for a
relationship between lnðActualEffortÞ and

lnðProductivityÞ¼ lnðEstimatedEffortÞ�lnðActualEffortÞ;

and we know that a relationship exists between
lnðEstimatedEffortÞ and lnðActualEffortÞ because this
is the relationship we found in the original effort-based
regression analysis. In fact,

lnðProductivityÞ ¼ lnðEstimatedEffort� lnðActualEffortÞ
¼ cþ d� lnðActualEffortÞ;

ð16Þ

then

lnðEstimatedEffortÞ ¼ cþ ðdþ 1Þ � lnðActualEffortÞ:
ð17Þ

Equation (17) is obtained directly from (16). Equation
(16) makes it clear that the better the relationship between
EstimatedEffort and ActualEffort (i.e., the closer the
value of EstimatedEffort to ActualEffort), the more
likely it is that lnðProductivityÞ will not be significantly
different from 0, which means that the additive constant c

and multiplicative parameter d must also be 0. Thus, the
worse the relationship between EstimatedEffort and
ActualEffort, the more likely it is you will find a
significant relationship between effort and productivity.
In our case, if we fit the model shown in (16), we obtain
the regression coefficients shown in Table 6. If we fit the
model shown in (17), we obtain the regression coefficients
shown in Table 7. As expected, the constant coefficient
term is the same for both models. The multiplicative term
in Table 7 is obtained by adding one to the multiplicative
coefficient in Table 6.

5 CONCLUSIONS

We present a software productivity measure that can be
used when there are several size measures related to
different aspects of a software product that are jointly
significantly related to effort. The measure is easy to
construct from a regression-based effort prediction model,
and it is simple to interpret. However, unless the project
data is a random sample from a defined population, the
measure is applicable only to projects belonging to the
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TABLE 6
Regression Model Using lnðProductivityÞ as the Dependent Variable

TABLE 7
Regression Model Using lnðEstimatedEffortÞ as the Dependent Variable



data set on which it was constructed. This is, of course, true

of any data-based effort estimation model.
The productivity measure has a built-in baseline. A value

greater than one is indicative of good productivity, and a

value less than one is indicative of poor productivity. Thus,

this approach to productivity leads to a measure that is

easier to interpret than more conventional productivity

measures that do not have a built-in baseline.
Productivity analysis using our suggested measure

follows the same steps as productivity analyses using

simpler productivity measures. The main difference is that

our approach to productivity measurement will not detect

productivity differences between large and small projects

because any economies or diseconomies of scale are

accounted for in the measure itself. An important implica-

tion of our approach to productivity measurement is that it

makes explicit the mathematical relationship between effort

estimation and productivity modelling. Furthermore, our

results indicate that conventional productivity analysis

should recognise the impact of economies and diseco-

nomies of scale on productivity analysis and avoid possible

confounding between productivity differences and size

differences.
This paper has discussed how to construct and

manipulate productivity measures but has made the point

that productivity analysis is restricted to analysis of a

specific data set unless the data set is a random sample

from a well-defined population. This is an outstanding

problem for software data sets. We need to identify

methods for drawing robust conclusions from nonrandom

and quasirandom data sets (see, for example, [25]).
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