
Evolution in Open Source Software:
A Case Study

Michael W. Godfrey and Qiang Tu
Software Architecture Group (SWAG)

Department of Computer Science, University of Waterloo
email: fmigod,qtug@swag.uwaterloo.ca

Abstract

Most studies of software evolution have been performed
on systems developed within a single company using tradi-
tional management techniques. With the widespread avail-
ability of several large software systems that have been de-
veloped using an “open source” development approach, we
now have a chance to examine these systems in detail, and
see if their evolutionary narratives are significantly different
from commercially developed systems. This paper summa-
rizes our preliminary investigations into the evolution of the
best known open source system: the Linux operating system
kernel. Because Linux is large (over two million lines of
code in the most recent version) and because its develop-
ment model is not as tightly planned and managed as most
industrial software processes, we had expected to find that
Linux was growing more slowly as it got bigger and more
complex. Instead, we have found that Linux has been grow-
ing at a super-linear rate for several years. In this paper, we
explore the evolution of the Linux kernel both at the system
level and within the major subsystems, and we discuss why
we think Linux continues to exhibit such strong growth.

1 Introduction

Large software systems must evolve, or they risk losing
market share to competitors [15]. However, maintaining
such a system is extraordinarily difficult, complicated, and
time consuming. The tasks of adding new features, adding
support for new hardware devices and platforms, system
tuning, and defect fixing all become more difficult as a sys-
tem ages and grows.

Most published studies of software evolution have been
performed on systems developed “in house” within a single
company using traditional development and management
techniques [3, 4, 12, 15, 23]. In this paper, we present a
case study of the evolution of the Linux operating system

[9, 8, 7]. This system has been developed using an “open
source development” approach that is quite different from
the way most industrial software is created [18].

2 Related Work

Lehman et al.have built the largest and best known body
of research on the evolution of large, long-lived software
systems [13, 15, 14, 23]. Lehman’s laws of software evo-
lution [15], which are based on his case studies of sev-
eral large software systems, suggest that as systems grow
in size, it becomes increasingly difficult to add new code
unless explicit steps are taken to reorganize the overall de-
sign. Turski’s statistical analysis of these case studies sug-
gests that system growth (measured in terms of numbers of
source modules and number of modules changed) is usually
sub-linear, slowing down as the system gets larger and more
complex [14, 23].

Gall et al. examined the evolution of a large telecom
switching system both at the system level and within the
top-level subsystems [4], much as we have done with Linux.
They noted that while the system-level evolution of the sys-
tem seems to conform to the traditionally observed trend of
reduced change rates over time, they noted that the major
subsystems may behave quite differently from the system
as a whole. In their case study they found that some of the
major subsystems exhibited “interesting” evolutionary be-
haviours, but that these behaviours cancelled each other out
when the full system was viewed at the top level. They ar-
gue that it is not enough, therefore, to consider evolution
from the topmost level; one must also be concerned about
the individualparts as well. Our own investigations strongly
support this view.

Kemerer and Slaughter have presented an excellent sur-
vey of research on software evolution [12]. They also note
that there has been relatively little research on empirical
studies of software evolution.

Parnas has used the metaphor of decay to describe how



and why software becomes increasingly brittle over time
[16]. Eick et al. extend the ideas suggested by Parnas
by characterizing software “decay” in ways that can be
detected and measured [3]. They used a large telephone
switching system as a case study. They suggest, for exam-
ple, that if it is common for defect fixes to require changes
to large numbers of source files, then the software system is
probably poorly designed. Their metrics are predicated on
the availability of detailed defect tracking logs that allow,
for example, a user to determine how many defects have re-
sulted in modifications to a particular module. We note that
no such detailed change logs were available for our study of
Linux.

Perry presented evidence that the evolution of a software
system depends not only on its size and age but also on fac-
tors such as the nature of the system itself (i.e., its appli-
cation domain), previous experience with the system, and
the processes, technologies, and organizational frameworks
employed by the company that developed the software [17].

3 Open Source Software Development

Although the term “open source” is relatively recent, the
fundamental ideas behind it are not [10, 18]. The single
most important requirement of an open source software sys-
tem is that its source code must be freely available to anyone
who wishes to examine it or change it for their own pur-
poses. That is, a user must always be able to “look under
the hood” and be allowed to tune, adapt, or evolve a system
for his/her personal needs.

While the development of open source software (OSS)
is often highly collaborative and geographically distributed,
this is not a strict requirement. Many corporations and in-
dividuals have developed source code in-house as a propri-
etary project only to release later it as “open source” or with
a license that allows great freedom for personal use of the
system. Examples of this include the Netscape web browser
(i.e., the Mozilla project), the Jikes Java compiler from
IBM, and Sun’s Java Development Kit.

The “other” kind of open source system is one that is
developed from very early days as a highly collaborative
project done “out in the open”; that is, these systems follow
an open source development (OSD) model.1 Usually, such
a project begins with a single developer who has a personal
goal or vision. Typically, that person will begin work on
their system either from scratch or by cannibalizing an ex-
tant older system. For example, Linux’s creator, Linus Tor-
valds, started with a version of the Minix operating system,
while VIM’s creator, Bram Moolenar, began with a older
clone of the vi text editor called stevie [11].

1Eric Raymond has written an informative book on open source devel-
opment called The Cathedral and the Bazaar[18].

3.1 Open Source Development vs.
Traditional Processes

Once the originator is ready to invite others into the
project (s)he makes the code base available to others and
development proceeds. Typically, anyone may contribute
towards the development of the system, but the origina-
tor/owner is free to decide which contributions may or may
not become part of the official release.2

The open source development (OSD) model is differ-
ent from traditional in-house commercial development pro-
cesses in several fundamental ways. First, the usual goal of
an open source project is to create a system that is useful
or interesting to those who are working on it, not to fill a
commercial void. Developers are often unpaid volunteers
who contribute towards the project as a hobby; in return,
they receive peer recognition and whatever personal satis-
faction their efforts bring to them. Sometimes this means
that much of the effort on an OSD project concentrates on
what part-time programmers find interesting, rather than on
what might be more essential. It can be difficult to direct de-
velopment toward particular goals, since the project owner
holds little power over the contributing developers. This
freedom also means that it can be difficult to convince de-
velopers to perform essential tasks, such as systematic test-
ing or code restructuring, that are not as exciting as writing
new code.

Other notable features of open source development in-
clude:

� Scheduling:There is usually little commercial pres-
sure to keep to any hard schedule, and most OSD de-
velopers have “day jobs” that take up most of their
time. While this may entail longer development cy-
cles, this is also an advantage since OSD projects are
largely immune from “time-to-market” pressures; a
system need not be released until the project owners
are satisfied that the system is mature and stable.

� Code qualityand standards can vary widely. Since
code is contributed, it is hard to insist on particu-
lar standards, although many projects do have official
guidelines.

� Unstable codeis common, as developers are eager
to submit their “bleeding edge” contributions to the
project. Some OSD projects, including Linux, address
this issue by maintaining two concurrent development
paths: a “development” release path contains new or
experimental features, and a “stable” release contains

2Some open source projects have forked into distinct development
streams when developers were unhappy with the route taken by the “of-
ficial” branch. Under most open source license agreements, this splitting
is explicitly permitted. The FreeBSD/NetBSD/OpenBSD systems are an
example of this phenomenon.



mostly updates and bug fixes relative to the previous
stable release. (In addition, when new “development”
features are considered to be stable, they are some-
times migrated into the current stable release without
waiting for the next major baseline to be established.)

� Planned evolution, testing, and preventive mainte-
nancemay suffer, since OSD encourages active par-
ticipation but not necessarily careful reflection and re-
organization. Code quality is maintained largely by
“massively parallel debugging” (i.e., many developers
each using each other’s code) rather than by systematic
testing or other planned, prescriptive approaches.3

3.2 Evolution of OSD Systems

We have been examining the growth and evolution pat-
terns of OSD projects to see how they compare to previ-
ous studies on the evolution of large proprietary software
systems developed using more traditional in-house pro-
cesses. There are now many large OSD systems that have
been in existence for a number of years and have achieved
widespread use, including two that we have investigated in
some detail: the Linux operating system kernel (2,200,000
lines of code) [9], and the VIM text editor (150,000 lines of
code) [11].4

Naively, we had expected that since evolution of OSD
software is usually much less structured and less care-
fully planned than traditional in-house development that
“Lehman’s laws” would apply [15]; that is, as the system
grew, the rate of growth would slow, with the system growth
approximating an inverse square curve [14]. Indeed, re-
cently the maintainers of the Perl project have undertaken a
massive redesign and restructuring of the core system [20],
since the project owners felt that the current system has be-
come almost unmaintainable.5 However, as we explain be-
low, this is not at all what we found with Linux.

3The development model of the FreeBSD operating system [6], a ri-
val to Linux, is a cross between traditional closely managed development
and the relatively unstructured approach used by many OSD projects. The
FreeBSD system accepts contributions from outsiders, but such contribu-
tions are more carefully scrutinized before being accepted into the main
source tree. The FreeBSD development team also performs much more
stringent testing of code than Linux. As a result, FreeBSD tends to support
fewer devices and development proceeds more slowly than Linux.

4Our preliminary analysis of VIM shows that it has also been growing
at a super-linear rate for a number of years.

5One of the core developers, Chip Salzenberg, has said of the current
version of Perl: “You really need indoctrination in all the mysteries and
magic structures and so on before you can really hope to make significant
changes to the Perl core without breaking more things than you’re adding.”
[20]

4 The Linux Operating System Kernel

Linux is a Unix-like operating system originally writ-
ten by Linus Torvalds, but subsequently worked on by hun-
dreds of other developers [1].6 It was originally written to
run on an Intel 386 architecture, but has since been ported
to numerous other platforms, including the PowerPC, the
DEC Alpha, the Sun SPARC and SPARC64, and even main-
frames and PDAs.

The first official release of the kernel, version 1.0, oc-
curred in March 1994. This release contained 487 source
code files comprising over 165,000 lines of code (including
comment and blanks lines). Since then, the Linux kernel has
been maintained along two parallel paths: a developmentre-
lease containing experimental and relatively untested code,
and a stablerelease containing mostly updates and bug fixes
relative to the previous stable release. By convention, the
middle number in a kernel version identifies to which path
it belongs: an odd number (e.g., 1.3.49) denotes a devel-
opment kernel, and an even number (e.g.,2.0.7) denotes a
stable kernel.

At the time of writing (January 2000), the most recent
stable kernel is version 2.2.14, and the most recent devel-
opment kernel version is 2.3.39. There have been 369 de-
velopment kernel releases along four main threads (1.1.X,
1.3.X, 2.1.X, and 2.3.X) and 67 stable kernel releases along
four main threads (1.0, 1.2.X, 2.0.X, and 2.2.X).

5 Methodology

We have measured various aspects of the growth of
Linux using a variety of tools and assumptions, which we
now describe.

We examined 96 kernel versions in total, including 34
stable kernel releases and 62 development kernel releases.
We decided to measure relatively more of the stable kernels
as they were released less frequently.

The size of the full distribution was measured as a tar
file compressed using gzip; this file included all source
artifacts of the kernel, including documentation, scripts, and
other utilities (but no binary files). That is, the tar files
were the versions available from the Linux Kernel Archives
website [8].

We use the term “source file” to mean any file whose
name ends with “.c” or “.h” that appeared in the original
tar file.7 We ignored other source artifacts such as con-
figuration files and Makefiles. We also explicitly ignored

6Kernel version 2.3.39 released in January 2000 lists over 300 names in
the credits file as having made significant contributions to the development
of the Linux kernel.

7Performing a system build creates additional source files, depending
on the options chosen. We ignored these additional files in the interest of
uniformity and simplicity.



source files that appeared under the Documentation di-
rectory, as we felt these were not part of the kernel code
per se.

We counted lines of code (LOC) using two approaches:
first, we used the Unix command “wc -l” which gave a
raw count that included blanks lines and comments in the
totals; second, we used an awk script that causes blank lines
and comments to be ignored.8 Finally, we used the program
“exuberant ctags” to count the number of global functions,
variables, and macros [5].

In considering the major subsystems of Linux, we have
used the directory structure of each source release as our
definition of the subsystem hierarchy. Others have created
customized subsystem hierarchies (i.e., source-based soft-
ware architectures) based on detailed analyses of particu-
lar versions of Linux [2, 22, 21]. We chose not to follow
this route for two reasons: first, creating customized sub-
system hierarchies for 96 versions of the Linux kernel, each
of which contains between 500 and 5000 source files was a
daunting task without clear benefit; second, our analyses of
the subsystems’ evolution would have been peculiar to our
own ideas of what the software architecture ought to look
like, and would not conform to the mental model of most
Linux developers.

Lehman suggests using the number of “modules” as the
best way to measure the size of a large software system [15].
However, we decided to use the number of uncommented
lines of code (“uncommented LOC”) for most of our mea-
surements for several reasons. First, as discussed below, we
found that total system uncommented LOC seemed to grow
at roughly the same rate as the number of source files; how-
ever, as shown by the difference between average and me-
dian file size below, there was great variation in file size in
some parts of the system. We decided, therefore, that using
number of source files would mean losing some of the full
story of the evolution of Linux, especially at the subsystem
level.

6 Observations on the Evolution of Linux

We examined the evolution of the Linux kernel both at
the system level as well as within each of the major subsys-
tems; we found that the system as a whole exhibited such a
strong rate of growth that an investigation of the major sub-
systems was appropriate. We now discuss our observations.

8We also plotted the difference between the two counts and we found
that the percentage of source file lines that were comments or blank stayed
almost constant at between 28 and 30 percent. We consider this constancy
to be a healthy sign. A decrease in the amount of commenting often in-
dicates poorly maintained code, and a significant increase in commenting
often indicates that a system has become difficult to understand and re-
quires extra explanation.

6.1 System Level Growth

We first examined how the system has grown using sev-
eral common metrics. For example, Fig. 1 shows the growth
in size of the compressed tar files for the full kernel re-
lease, and Fig. 2 shows the growth of the number of lines
of code (LOC). We also measured the growth of the num-
ber of source files and the growth of the number of global
functions, variables, and macros; however, we have omitted
the graphs for these measurements for the sake of brevity as
the growth patterns they show are very similar to those of
Fig. 1 and Fig. 2.

It is interesting that these measurements all seem to tell
the same story. They clearly show that the development re-
leases are growing at a super-linear rate over time, which
contradicts Lehman and Turski’s inverse square growth rate
hypothesis [14, 23].9 The early stable kernel paths (ver-
sions 1.2.X, and 2.0.X, which can be seen on the graphs
as starting in March 1995 and July 1996 respectively) are
growing at a much slower rate than the corresponding de-
velopment release paths, as one would expect. However,
the most recent stable release path, version 2.2.X (which
started in January 1999), has shown remarkable growth for
a “stable” path. Subsequent investigation has determined
that most of this growth has been in the addition of new
features and support for new architectures rather than de-
fect fixing [7]. The recent rapid rise in the popularity of
Linux has resulted in a large amount of contributed stable
code from third parties, such as IBM for their S/390 main-
frame [24], together with external pressure to “fast track”
integration of this code into the stable release path.

We plotted all growth against time rather than version
number (Lehman et al. suggest the latter approach [14]). It
made no sense to us to plot stable and development paths
that were parallel in real time as being sequential; to do so
would have led to apparent “dips” where one kind of release
path finished and another began. Also, the behaviour of the
two kinds of paths were understandably different: develop-
ment kernels were released with great frequency and varied
greatly in size, while early stable kernel releases varied in
frequency but (until version 2.2.X) were relatively small in
size. We also note that Linux emphatically does not appear
to obey Lehman’s third law of software evolution, which
states that the incremental effort spent on each release re-
mains constant throughout a system’s lifetime [15]; for ex-
ample, the update “patch” files within the 2.3.X release path

9Our statistical analysis shows that the growth rate of uncommented
LOC along the development release paths fits well into a quadratic model.
If X is the number of days since version 1.0 was released andY is the size
of the Linux kernel in uncommented LOC, then the following function is
a good model of the growth, as calculated using a “least squares” approxi-
mation:

Y = 0:21 �X2
+ 252 �X + 90;055

The co-efficient of determination for this model is 0.997.



0

2,000,000

4,000,000

6,000,000

8,000,000

10,000,000

12,000,000

14,000,000

16,000,000

18,000,000

20,000,000

Jan 1993 Jun 1994 Oct 1995 Mar 1997 Jul 1998 Dec 1999 Apr 2001

S
iz

e 
in

 b
yt

es

Development releases (1.1, 1.3, 2.1, 2.3)

Stable releases (1.0, 1.2, 2.0, 2.2)

Figure 1. Growth of the compressed tar file for the full Linux kernel source release.

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

Jan 1993 Jun 1994 Oct 1995 Mar 1997 Jul 1998 Dec 1999 Apr 2001

T
o

ta
l L

O
C

Total LOC ("wc -l") -- development releases
Total LOC ("wc -l") -- stable releases
Total LOC uncommented -- development releases
Total LOC uncommented -- stable releases

Figure 2. Growth in the number of lines of code measured using two methods: the Unix command
“wc -l”, and an awk script that removes comments and blanks lines.



varied in size from a few hundred bytes to a few megabytes.
We hypothesize that this is a direct consequence of the OSD
process model, for reasons stated above.

Since the growth patterns seem to be similar for each of
the metrics we used, we tried dividing one measure by an-
other to see if the resulting curve was a straight line. We
therefore plotted the average file sizes (total uncommented
LOC divided by number of source files) as well as the me-
dian sizes of both “dot-c” (implementation) and “dot-h”
(header) source files. Figure 3 and Fig. 4 show that me-
dian file sizes were fairly stable, with slight growth in the
size of dot-c files, while average file sizes showed definite
growth over time. This indicates that while some dot-c files
are becoming quite large, most are not. Our subsequent in-
vestigation showed that almost all of the largest files were
drivers for complicated hardware devices.10 We consider
the flatness of the median dot-h file size curve to be a good
sign, as it suggests that new features were not being added
indiscriminately to the dot-h files. Investigation into the rise
in average size of dot-h files revealed that there were a small
number of very large dot-h files for device drivers that con-
tained mostly data; these very large dot-h files tended to
skew the overall average file size.

An interesting trend arises beginning in mid-1996 with
the stable release 2.0.X and its parallel development re-
lease 2.1.X as shown in Fig. 3 and Fig. 4. Along release
path 2.0.X, we can see that the average dot-c file size in-
creased, while along release path 2.1.X this value decreased
before eventually beginning to increase again. At the same
time, the average dot-h file size along release path 2.0.X in-
creased slowly but steadily, while along 2.1.X the average
dot-h file size increased more significantly and dominated
the stable release path. By cross referencing this graph with
the growth in the number of files, we note that the number
of source files grew slowly along stable release 2.0.X, while
there was a larger steady increase in the number of source
files along 2.1.X, with a significant jump at the same point
where its average dot-c file size dipped.11 This suggests
that along the stable release path, its increase in average file
size is likely due to bug fixes and simple enhancements that
added code to existing files, as one would expect from a sta-
ble release path. Along the development release path, it is
likely that many new small files were created due to new
features being added, causing the average dot-c file size to
decrease.12 We consider it a healthy sign that new develop-

10For example, in the most recent development kernel (v2.3.39) while
six of the largest eight dot-c files were drivers for SCSI cards, four of the
six largest dot-h files were for network card drivers. This led us to the
initial conjectures that SCSI cards have complicated logic, and network
cards have complicated interfaces. It turned out that while SCSI cards do
have complicated logic, most of the content of the network card dot-h files
was simply data.

11At the same time, the ratio of the number of dot-c files to dot-h files
remained almost constant along both paths.

12The large jump in average dot-h file size that occurred at release 2.1.20

ment seemed to result in additional infrastructure (i.e., new
small files) that were then “filled out” over time.

6.2 Growth of Major Subsystems

After investigating the growth of Linux at a system-wide
level, we then decided to investigate the growth of the major
subsystems (as defined by the source directory hierarchy).
There are ten major source subsystems [19]:

� drivers contains a large collection drivers for vari-
ous hardware devices;

� arch contains the kernel code that is specific to partic-
ular hardware architectures/CPUs, including support
for memory management and libraries;

� include contains most of the system’s include (dot-
h) files;

� net contains the main networking code such as sup-
port for sockets and TCP/IP (code for particular net-
working cards is contained in the drivers/net sub-
system);

� fs contains support for various kinds of file systems;

� init contains the initialization code for the kernel;

� ipc contains the code for inter-process communica-
tions;

� kernel contains the main kernel code that is archi-
tecture independent;

� lib contains the (architecture independent) library
code; and

� mm contains the (architecture independent) memory
management code.

Figure 5 shows the growth of the major kernel subsys-
tem. We can see immediately that the drivers subsystem
is not only the largest subsystem it is also the fastest grow-
ing, with almost one million (uncommented) lines of code
in the latest release. Figure 6 shows that this subsystem has
grown steadily relative to the rest of the system to the point
where it now comprises more than 60 percent of the total
system.

The size and growth rate of the drivers subsystem ac-
tually makes it difficult to see what has happened to the rest
of the system in Fig. 5. Fig.7, therefore, shows the relative
size of these subsystems as a percentage of the total sys-
tem. We can see that the arch, include, net, and fs
subsystems are significantly larger than the remaining five,

in January 1997 was mostly due to the addition of one very large device
driver dot-h file for a network card.



0

100

200

300

400

500

600

700

Jan 1993 Jun 1994 Oct 1995 Mar 1997 Jul 1998 Dec 1999 Apr 2001

U
n

co
m

m
en

te
d

 L
O

C

Average .c file size -- dev. releases

Average .c file size -- stable releases

Median .c file size -- dev. releases

Median .c file size -- stable releases

Figure 3. Median and average size of implementation files (“*.c”).

0

20

40

60

80

100

120

140

Jan 1993 Jun 1994 Oct 1995 Mar 1997 Jul 1998 Dec 1999 Apr 2001

U
n

co
m

m
en

te
d

 L
O

C

Average .h file size -- dev. releases

Average .h file size -- stable releases

Median .h file size -- dev. releases

Median .h file size -- stable releases

Figure 4. Median and average size of header files (“*.h”).



0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

Jan 1993 Jun 1994 Oct 1995 Mar 1997 Jul 1998 Dec 1999 Apr 2001

T
o

ta
l u

n
co

m
m

en
te

d
 L

O
C

drivers
arch
include
net
fs
kernel
mm
ipc
lib
init

Figure 5. Growth of the major subsystems (development releases only).

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

Jan 1993 Jun 1994 Oct 1995 Mar 1997 Jul 1998 Dec 1999 Apr 2001

P
er

ce
n

ta
g

e 
o

f 
to

ta
l s

ys
te

m
 u

n
co

m
m

en
te

d
 L

O
C

drivers
arch
include
net
fs
kernel
mm
ipc
lib
init

Figure 6. Percentage of total system LOC for each major subsystem (development releases only).



0.0

5.0

10.0

15.0

20.0

25.0

30.0

Jan 1993 Jun 1994 Oct 1995 Mar 1997 Jul 1998 Dec 1999 Apr 2001

P
er

ce
n

ta
g

e 
o

f 
to

ta
l s

ys
te

m
 u

n
co

m
m

en
te

d
 L

O
C

arch
include
net
fs
kernel
mm
ipc
lib
init

Figure 7. Percentage of total system LOC for each major subsystems, ignoring the drivers subsys-
tem (development releases only).

and that these four have continued to grow at a rate that ap-
pears to be linear or better. Figure 7 also shows that the
fs subsystem has grown more slowly than the others, and
its relative size as a percentage of the total kernel size has
significantly decreased over time.

Figure 8 shows the growth rate of the five smallest sub-
systems. We can see that while kernel and mm are grow-
ing steadily, these subsystems actually comprise a very
small amount of code. However, these five subsystems are
part of the core of the kernel; almost all of the code in these
subsystems in included in kernel compilations regardless of
the target hardware. Additionally, since operating system
kernels are usually designed to be as small and compact
as possible, undue growth in these core subsystems would
probably be regarded as an unhealthy sign.

Figure 9 shows the growth of development releases of the
sub-subsystems of drivers. The largest and fastest grow-
ing is drivers/net which contains driver code for net-
work devices such as ethernet cards. The growth in this sub-
system is a reflection of the number of network devices sup-
ported by Linux, the relative complexity of creating drivers
for them, and the fact that sometimes a lot of device-specific
data must be stored in the source files. We note that the av-
erage size of a source file in the drivers subsystem for
the most recent development kernel (2.3.39) was over 600

lines of code, which was the highest average among the ma-
jor subsystems. Most of the sub-subsystems of drivers
showed significant growth, a sign of the growing acceptance
of Linux as more users desire to run it with many different
makes of devices.

However, we note the growth and size of the drivers
subsystem distorts the idea of how large and complicated
the Linux system is. First, the nature of a device driver
is that it translates a common and well understood request
into a task that a particular hardware device can execute
efficiently. Device drivers are often quite large and com-
plicated, but also relatively self-contained and independent
of each other and of the rest of the system. Second, we
note that while old hardware may die out, old drivers tend
to live long lives, just in case some users still need them.
Consequently, there is a large number of relatively unused
(and relatively unmaintained) “legacy” drivers distributed
with each kernel version. Finally, we note that even for cur-
rent device drivers, most users tend to require only a few of
the range of possible drivers. For example, the two largest
drivers sub-subsystems are net and scsi, yet the vast
majority of PCs are sold today without network or SCSI
cards.

Figure 10 shows the shows the growth of development
releases of the sub-subsystems of arch, each of which rep-



0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Jan 1993 Jun 1994 Oct 1995 Mar 1997 Jul 1998 Dec 1999 Apr 2001

T
o

ta
l u

n
co

m
m

en
te

d
 L

O
C

kernel
mm
ipc
lib
init

Figure 8. Growth of the smaller, core subsystems (development releases only).

0

50,000

100,000

150,000

200,000

250,000

300,000

Jan 1993 Jun 1994 Oct 1995 Mar 1997 Jul 1998 Dec 1999 Apr 2001

T
o

ta
l u

n
co

m
m

en
te

d
 L

O
C

drivers/net
drivers/scsi
drivers/char
drivers/video
drivers/isdn
drivers/sound
drivers/acorn
drivers/block
drivers/cdrom
drivers/usb
drivers/"others"

Figure 9. Growth of the drivers subsystem (development releases only).



0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

Jan 1993 Jun 1994 Oct 1995 Mar 1997 Jul 1998 Dec 1999 Apr 2001

T
o

ta
l u

n
co

m
m

en
te

d
 L

O
C

arch/ppc/
arch/sparc/
arch/sparc64/
arch/m68k/
arch/mips/
arch/i386/
arch/alpha/
arch/arm/
arch/sh/
arch/s390/

Figure 10. Growth of the arch subsystem (development releases only).

resents a major CPU/hardware architecture supported by
Linux. What is most interesting here is the sudden upward
leaps made by many of these subsystems. The first such
leap occurred in early 1995, when it was decided to incor-
porate support for the Alpha, Sparc, and Mips architectures
into Linux, and which also led to code that was specific
to the Intel 386 architecture being moved from the main
kernel subsystem intoarch/i386. Subsequent leaps in
other arch sub-subsystems have resulted from externally
developed code being added in one large lump. In many
cases, this architecture support is developed and maintained
separately from the main Linux development kernel release
by relatively independent teams of developers (and some-
times by corporations). A common growth pattern for such
a subsystem is for large jumps as major new revisions are
added, followed by periods of relative stability involving
only minor revisions and bug fixes.

7 Conclusions

The Linux operating system kernel is a very success-
ful example of a large software system in widespread use
that has been developed using an “open source” develop-
ment (OSD) model. We have examined the growth of Linux
over its six year lifespan using several metrics, and we have
found that at the system level its growth has been super-
linear. This strong growth rate seems surprising given (a)

its large size (over two million lines of code including com-
ments and blank lines), (b) its development model (a highly
collaborative and geographically distributed set of develop-
ers, many of whom contributing their time and effort for
free), and (c) previously published research that suggests
that the growth of large software systems tends to slow
down as the systems become larger [14, 4, 23].

We found that, as previously suggested by Gall et al. [4],
it is useful to examine the growth patterns of the subsystems
to gain a better understanding of how and why the system
seems to have been able to evolve so successfully. We sug-
gest further that a “black box” examination is not enough;
one must investigate the natureof the subsystems and ex-
plore their evolutionary patternsto gain an understanding
of how and why the system as a whole has evolved. We
found that while the entire source tree for Linux is quite
large, more than half of the code consists of device drivers,
which are relatively independent of each other; we found
that a large part of the remaining system consists of parallel
features that are specific to particular CPUs; and we found
that the small, core kernel subsystems comprise only a small
part of the full source tree. That is to say, the Linux oper-
ating system kernel is not as large at it might seem since
(based on our own experiments) any compiled version is
likely to include only fifteen to fifty percent of the source
files in the full source tree.

Finally, we consider this case study to be an important



data point in the study of large software system evolution.
We hope that this will encourage further investigation into
the evolution of OSD software systems, as well as com-
parisons with systems developed using more traditional ap-
proaches.

8 Acknowledgments

We thank David Toman for providing several useful
comments on the FreeBSD operating system, and we thank
Hugh Chipman and Dale Schuurmans for help on statistical
modelling.

References

[1] I. T. Bowman and R. C. Holt. Reconstructing ownership ar-
chitectures to help understand software systems. In Proc.
of the 1999 IEEE Workshop on Program Comprehension
(IWPC’99), Pittsburgh, PA, May 1999.

[2] I. T. Bowman, R. C. Holt, and N. V. Brewster. Linux as a
case study: Its extracted software architecture. In Proc. of
the21st Intl. Conf. on Software Engineering (ICSE-21), Los
Angeles, CA, May 1999.

[3] S. G. Eick, T. L. Graves, A. F. Karr, J. S. Marron, and
A. Mocku. Does code decay? Assessing the evidence from
change management data. to appear in IEEE Trans. on Soft-
ware Engineering.

[4] H. Gall, M. Jazayeri, R. Kloesch, and G. Trausmuth. Soft-
ware evolution observations based on product release his-
tory. In Proc. of the 1997 Intl. Conf. on Software Mainte-
nance (ICSM’97), Bari, Italy, Oct 1997.

[5] D. Hiebert. The Exuberant CTAGS homepage. Website.
http://home.HiWAAY.net/˜darren/ctags/.

[6] http://www.freebsd.org. The FreeBSD homepage. Website.
[7] http://www.kernelnotes.org. kernelnotes.org: The official

website of Linux kernel information. Website.
[8] http://www.kernel.org. The Linux kernel archives. Website.
[9] http://www.linux.org. The Linux homepage. Website.

[10] http://www.opensource.org. The open source homepage.
Website.

[11] http://www.vim.org. The VIM homepage. Website.
[12] C. F. Kemerer and S. Slaughter. An empirical approach to

studying software evolution. IEEE Trans. on Software Engi-
neering, 25(4), July/August 1999.

[13] M. M. Lehman and L. A. Belady. Program Evolution: Pro-
cesses of Software Change. Academic Press, 1985.

[14] M. M. Lehman, D. E. Perry, and J. F. Ramil. Implications
of evolution metrics on software maintenance. In Proc. of
the 1998 Intl. Conf. on Software Maintenance (ICSM’98),
Bethesda, Maryland, Nov 1998.

[15] M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E. Perry, and
W. M. Turski. Metrics and laws of software evolution — the
nineties view. In Proc. of the Fourth Intl. Software Metrics
Symposium (Metrics’97), Albuquerque, NM, 1997.

[16] D. L. Parnas. Software aging. In Proc. of the16th Intl.
Conf. on Software Engineering (ICSE-16), Sorrento, Italy,
May 1994.

[17] D. E. Perry. Dimensions of software evolution. In Proc. of
the 1994 Intl. Conf. on Software Maintenance (ICSM’94),
1994.

[18] E. S. Raymond. The Cathedral and the Bazaar: Musings
on Linux and Open Source by an Accidental Revolutionary.
O’Reilly and Associates, Oct 1999.

[19] D. A. Rusling. The Linux Kernel. Website.
http://www.linuxhq.com/guides/TLK/tlk.html.

[20] C. Salzenberg. Topaz: Perl for the 22nd century.
http://www.perl.com/pub/1999/09/topaz.html.

[21] J. B. Tran, M. W. Godfrey, E. H. S. Lee, and R. C. Holt.
Architecture analysis and repair of open source software. In
Proc. of 2000 Intl. Workshop on Program Comprehension
(IWPC’00), Limerick, Ireland, June 2000.

[22] J. B. Tran and R. C. Holt. Forward and reverse repair of
software architecture. In Proc. of CASCON 1999, Toronto,
Nov 1999.

[23] W. M. Turski. Reference model for smooth growth of soft-
ware systems. IEEE Trans. on Software Engineering, 22(8),
Aug 1996.

[24] L. Vepstas. Linux on the IBM ESA/390 mainframe archi-
tecture. Website. http://linas.org/linux/i370/i370.html.


