
The perfect talk
Andreas Zeller

Goals of the Seminar

• Find your way into scientific cha"enges

• Structure and present scientific material

• Train your social and communication skills

Preparation

• Check the material

• Identify central topics and claims

• Outline the talk

• Make a detailed sketch

Ask Yourself

• Do the claims hold?

• Are the examples illustrative?

• Can I do better in presenting?

• What are the central claims, anyway?

• And how are they supported?

The Perfect Talk

• Hug0Pratt

•

Organizing Your Talk

• Motivation

• Solution (including failures)

• Results

• Conclusion

Motivation

• Present the general topic
A vi"age in the woods

• Show a concrete problem
Wicked dragon attacks the peasants

• Show that the state of the art is not enough
Peasants’ forks can not pierce dragon armor

Solution + Results

• Show new approach and its advantages
Hero comes with vorpal blade and fights dragon

• Show how approach solves concrete problem
Vorpal blade goes snicker-snick; dragon is slayed

• Does the approach generalize?
Would this work for other dragons, too? Why?

Outline

• Tell a story

• Make slides invisible

• Use examples, lots of examples

• Connect to the audience

• Hope for questions and feedback
What’s wrong with this
slide?

Outlines

• Don’t use talk outlines at the beginning

• Don’t use talk outlines in between

• Actually, don’t use talk outlines at a"

• Better: Use a graphic after 5 minutes

• Think of this graphic as a memorizable image

Run
¬isEmpty

add()

remove()

add()

remove()

<init>

isEmpty
Run

Run
Run

Run

v1: Vector v2: Vector

v3: Vector

Model Mining

Model

Induction

Mining Metrics to Predict Component Failures

Nachiappan Nagappan
Microsoft Research

Redmond, Washington

nachin@microsoft.com

Thomas Ball
Microsoft Research

Redmond, Washington

tball@microsoft.com

Andreas Zeller*
Saarland University

Saarbrücken, Germany

zeller@cs.uni-sb.de

ABSTRACT

What is it that makes software fail? In an empirical study of the

post-release defect history of five Microsoft software systems, we

found that failure-prone software entities are statistically

correlated with code complexity measures. However, there is no

single set of complexity metrics that could act as a universally

best defect predictor. Using principal component analysis on the

code metrics, we built regression models that accurately predict

the likelihood of post-release defects for new entities. The

approach can easily be generalized to arbitrary projects; in

particular, predictors obtained from one project can also be

significant for new, similar projects.

Categories and Subject Descriptors

D.2,7 [Software Engineering]: Distribution, Maintenance, and

Enhancement—version control. D.2.8 [Software Engineering]:

Metrics—Performance measures, Process metrics, Product

metrics. D.2.9 [Software Engineering]: Management—Software

quality assurance (SQA)

General Terms

Measurement, Design, Reliability.

Keywords

Empirical study, bug database, complexity metrics, principal

component analysis, regression model.

1. INTRODUCTION
During software production, software quality assurance consumes

a considerable effort. To raise the effectiveness and efficiency of

this effort, it is wise to direct it to those which need it most. We

therefore need to identify those pieces of software which are the

most likely to fail—and therefore require most of our attention.

One source to determine failure-prone pieces can be their past: If

a software entity (such as a module, a file, or some other

component) was likely to fail in the past, it is likely to do so in the

future. Such information can be obtained from bug databases—

especially when coupled with version information, such that one

can map failures to specific entities. However, accurate

predictions require a long failure history, which may not exist for

the entity at hand; in fact, a long failure history is something one

would like to avoid altogether.

A second source of failure prediction is the program code itself:

In particular, complexity metrics have been shown to correlate

with defect density in a number of case studies. However,

indiscriminate use of metrics is unwise: How do we know the

chosen metrics are appropriate for the project at hand?

In this work, we apply a combined approach to create accurate

failure predictors (Figure 1): We mine the archives of major

software systems in Microsoft and map their post-release failures

back to individual entities. We then compute standard complexity

metrics for these entities. Using principal component analysis, we

determine the combination of metrics which best predict the

failure probability for new entities within the project at hand.

Finally, we investigate whether such metrics, collected from

failures in the past, would also good predictors for entities of

other projects, including projects be without a failure history.

!"#

$%&%'%()

*+,)
*+,)
*+,)

-.&/&0 -.&/&0 -.&/&0

12),/3&+2-.&/&0 4%/5"2)

62+'%'/5/&0

!"#$%&&'()#*+,-)#./)/

0"#1/,#,%2)34'&'/2'#5/*&-4'2#)%#.'5'()2#*+#'+)*)*'2

6"#74'.*()#5/*&-4'#,4%8/8*&*)9#5%4#+':#'+)*)*'2

7)2(/+.

$%&%'%()

Figure 1. After mapping historical failures to entities, we can

use their complexity metrics to predict failures of new entities.

* Andreas Zeller was a visiting researcher with the Testing,

Verification and Measurement Group, Microsoft Research in the

Fall of 2005 when this work was carried out.

Daikon

14

Trace

InvariantInvariantInvariantInvariant

get trace

filter invariants

report resultsPostcondition
b[] = orig(b[])
return == sum(b)

RunRunRunRunRun
✔

Slide contents

• Use examples first, abstraction afterwards

• Concentrate on the bare necessities
(e.g. at most 5 bullets per slide)

• Do not present full sentences on a slide,
because these are far too long and hard to read;
also, they may tempt you in reading them loud.

• Use milestones to summarize results so far

Read full sentence aloud

Building Models

add()

remove()

v: Vector

<init> isEmpty()

true
add(1)

isEmpty()

false
add(2)add(3)remove(1)remove(2)remove(3)

isEmpty()

true
1 2 3

<init>

isEmpty()

add()

remove()

¬isEmpty()

Slide layout

• Focus on clarity

• Avoid all that distracts from the message

• Slides should support your (spoken) word.

• Always prefer graphics over text

• Avoid bullet lists (like this one)

<?xml version="1.0" encoding="UTF-8"?>
<defects project="eclipse" release="3.0">
<package name="org.eclipse.core.runtime">
 <counts>
 <count id="pre" value="16" avg="0.609" points="43" max="5">
 <count id="post" value="1" avg="0.022" points="43" max="1">
 </counts>
 <compilationunit name="Plugin.java">
 <counts>
 <count id="pre" value="5">
 <count id="post" value="1">

Bugs • Fixes • Changes

bu
g

de
ns

ity

Plugin.java had 5 failures)
before and one failure after
release (``post''). The
package contains 43 files
(``points'') and encountered 16
failures before and one failure
after release; on average each
file in this package had 0.609
failures before and 0.022
failures after release (``avg'')

Maths

fh,ε(x, y) = εEx,y

∫ tε

0
Lx,yε(εu)ϕ(x) du

= h

∫
Lx,zϕ(x)ρx(dz)

+ h

[
1
tε

(
Ey

∫ tε

0
Lx,yx(s)ϕ(x) ds − tε

∫
Lx,zϕ(x)ρx(dz)

)

+
1
tε

(
Ey

∫ tε

0
Lx,yx(s)ϕ(x) ds − Ex,y

∫ tε

0
Lx,yε(εs)ϕ(x) ds

)]

= hL̂xϕ(x) + hθε(x, y)
(64)

State abstraction abs:V → S

Concrete state v = (x1, x2, . . . , xn)v ∈ V

xi

with
– Return value of an inspector

Trace t =
[

(v1,m1, v
′

1), (v2,m2, v
′

2), . . .
]

vi ∈ V mi and – name of a mutatorwith

Transition condition
∃(v,m,v′) ∈ t · abs(v) = s ∧ abs(v′) = s′

s
m

!→ s
′ s, s′ ∈ Swith iff

Formal Background

Model with transitions s
m

!→ s
′ s, s′ ∈ Sand states

Maths

• Avoid maths.

• Formulae are for papers, not slides

• Few people can read + understand complex
formulae in 30 seconds

• Demonstrate that the formal foundation can
be presented on demand

• Examples are more important than maths

Graphics

• Use simple, clear graphics

• Convey exactly one message per graphics

• Usage of color helps

7%

38% 55%
Body language
Voice
Content

Model Sizes

0

50

100

150

1 2 3 4 5 6 7 8 9 10 11 12 13 +

8
121114225

15
22

53

130

States

C
la

ss
es

The human factor

• Every presenter is nervous (and so am I)

• Legs start shaking

• Need for air

• Brain goes into stand-by mode

• … but nobody will notice, let alone worry

The human factor

• Before the talk:

• Sit down

• Go through your slides

• Remember the first sentences

• A" presenters are nervous!

The talk

• Do not read your slides (from paper or slides)

• Speak slowly, loudly and clearly

• Speak persona"y (Use “I”, not “one”)

• Change your tone – and use breaks

Your impression

7%

38% 55%

Body language
Voice
Content

• Talk directly to the audience

• Ask rhetorical questions
(“What should the poor peasants do?”)

• Search eye contact to audience
(not to slides, not to professor)

Connecting to the audience

Conclusion

• Refer to the beginning
…and they lived in peace henceforth

• Summarize
…and the key point is:

• Open issues
…but there are more dragons that loom in the dark

• Consequences
If you ever see a dragon, …

Detecting Anomalies

¬isEmpty

add()

remove()

isEmpty()

<init>

Failing runs

!

add()

¬isEmpty

add()

clear()
clear()

isEmpty()

<init>

Passing runs

!

Differences point to error location

Searching Failure Causes

v: Vector !
add()

remove()

• Which mutators
cause the failure?

• Simplifying with
delta debugging

void testVector()

{

 v.add(1);

 v.remove(1);

 assert(v.isEmpty());

}

!exists,!isDirty,
toString!=null,getParent=FAIL,

getName!=null

<init>

exists,isDirty,
toString!=null,getParent=FAIL,

getName!=null

create()

getLocation(),
setDerived(),

writeWovenBytes()

Finding Violations

Can I call
setDerived()

here?

Assessing Changes

add()
add()

clear()

<init>

Version 2

isEmpty() ¬isEmpty

Differences point to potential errors

Version 1
add()

¬isEmpty

add()

clear()
clear()

isEmpty()

<init>

PointcutDeclaration

getPointcut!=null,
makeResolvedPointcutDefinition=FAIL,

makeAttribute=FAIL

<init>

postParse()

getPointcut!=null,
makeResolvedPointcutDefinition!=null,

makeAttribute!=null

parseStatements()

resolveStatements(),
generateCode()

LineNumberGen

getLineNumber!=null,
getSourceLine=0

setInstruction()

getLineNumber!=null,
getSourceLine>0

setSourceLine()

<init>

getLineNumber=FAIL,
getSourceLine>0

setInstruction()

updateTarget()

HashTableOfObject

clone!=null,
size=0

<init>

containsKey(),
get()

clone!=null,
size>0

put()

put(),
containsKey(),

get()

DeferredWriteFile

!exists,!isDirty,
toString!=null,getParent=FAIL,

getName!=null

<init>

exists,isDirty,
toString!=null,getParent=FAIL,

getName!=null

create()

getLocation(),
setDerived(),

writeWovenBytes()

• Documentation

• Specification

• Model Checking

• Static Analysis

Program Comprehension

“Normal behavior
is correct behavior”

Building Models

¬isEmpty()

add()

remove()

add()

remove()

v: Vector

<init>

isEmpty()

Detecting Anomalies

¬isEmpty

add()

remove()

isEmpty()

<init>

Failing runs

!

add()

¬isEmpty

add()

clear()
clear()

isEmpty()

<init>

Passing runs

!

Differences point to error location

Searching Failure Causes

v: Vector !
add()

remove()

• Which mutators
cause the failure?

• Simplifying with
delta debugging

void testVector()

{

 v.add(1);

 v.remove(1);

 assert(v.isEmpty());

}

!exists,!isDirty,
toString!=null,getParent=FAIL,

getName!=null

<init>

exists,isDirty,
toString!=null,getParent=FAIL,

getName!=null

create()

getLocation(),
setDerived(),

writeWovenBytes()

Finding Violations

Can I call
setDerived()

here?

Assessing Changes

add()
add()

clear()

<init>

Version 2

isEmpty() ¬isEmpty

Differences point to potential errors

Version 1
add()

¬isEmpty

add()

clear()
clear()

isEmpty()

<init>

PointcutDeclaration

getPointcut!=null,
makeResolvedPointcutDefinition=FAIL,

makeAttribute=FAIL

<init>

postParse()

getPointcut!=null,
makeResolvedPointcutDefinition!=null,

makeAttribute!=null

parseStatements()

resolveStatements(),
generateCode()

LineNumberGen

getLineNumber!=null,
getSourceLine=0

setInstruction()

getLineNumber!=null,
getSourceLine>0

setSourceLine()

<init>

getLineNumber=FAIL,
getSourceLine>0

setInstruction()

updateTarget()

HashTableOfObject

clone!=null,
size=0

<init>

containsKey(),
get()

clone!=null,
size>0

put()

put(),
containsKey(),

get()

DeferredWriteFile

!exists,!isDirty,
toString!=null,getParent=FAIL,

getName!=null

<init>

exists,isDirty,
toString!=null,getParent=FAIL,

getName!=null

create()

getLocation(),
setDerived(),

writeWovenBytes()

• Documentation

• Specification

• Model Checking

• Static Analysis

Program Comprehension

“Normal behavior
is correct behavior”

Building Models

¬isEmpty()

add()

remove()

add()

remove()

v: Vector

<init>

isEmpty()

Model Mining

Again, think visual!

Any Questions

• Questions after a talk may be embarrassing…

• …but the worst embarrassment is
to have no questions at a"

• Questions help to direct and shape own work

Dealing with Questions

• Repeat question (helpful for audience + gives
time for preparing an answer)

• In doubt: “I don’t know, but I’ll look into it”

• Or: “Let’s just take this offline”

• Be respectful to the audience – no punching in
the lecture room

Summary

• Tell a story

• Make slides invisible

• Use examples, lots of examples

• Connect to the audience

• Hope for questions and feedback

