
Seminar Configurable Systems

Prof. Zeller / Christian Lindig Vesta

Summary

Caching Function Calls Using Precise Dependencies by Heydon, Levin, and
Yu presents a caching architecture for an untyped functional programming lan-
guage. The language is part of a software repository and build system called
Vesta, where the language is used to describe the build process. The interpreter
implementing the language maintains a cache that it consults before it evalu-
ates a potentially expensive function call. If possible, it uses the cached result
from a prior invocation of the function.

The paper solves the problem how to record the dependencies between cache
entries, the statically known function body, and only dynamically known values
of function parameters. The main contribution of Heydon et al. is a two-level
cache architecture which uses cryptographic hashes over values for keys, and
syntax-directed rules for calculating dependencies.

A program in the Vesta language specifies how to build a program from
source files by calling (external) compiler and linkers in the right order. To
update the system after the change of a source file, the entire program con-
ceptually is evaluated again. However, the interpreter now uses cached results
such that the amount of work is only proportional to the size of the change
rather the size of the system. Therefore, the efficiency of an incremental build
in Vesta is delegated to the interpreter’s implementation of caching.

Heydon et al. claim a better performance and scalability than Make and
support the claim with some experiments. They attribute the improved perfor-
mance to Vesta’s ability to cache the results of high-level functions where Make
has to prove bottom-up that files don’t need to be updated. While the better
performance is evident it is less clear why Make is slower; the paper lacks a
detailed study for the reasons.

Because the paper focuses on dependencies and cache architecture it is dif-
ficult to compare the Vesta language with other build tools. In particular,
concepts like scoping, modules, and the handling of directory structures cannot
be judged but only guessed.

The most interesting aspect of the paper is that a build specification is very
much like an ordinary (functional) program. Unlike in Make, no notion of de-
pendency exists at the langauge level. Dealing with incremental recompilation
in Vesta becomes an optimization problem for the implementation. While the
paper does not present a larger example to get a feel for the advantages of this
approach, I expect the absence of dependencies at the language level to be a
simplification. This simplification for the user comes at the price of an increased
complexity of the Vesta implementation. It is fair to say that Vesta is not so
much a tool like Make or Cons, but a system. Vesta comes with its own file
system which it uses to observe the dependencies of call that invoke external
tools such that the user is not forced to specify them.

1


