Automatic Testing & Verification

Recap

Juan Pablo Galeotti,Alessandra Gorla,
Software Engineering Chair—Computer Science
Saarland University, Germany

Feb. 7th : Exam

30% projects (20% each)
At least 50% threshold for exam admittance
Groups of 2

70% final exam (see course schedule)
Closed-book

Allowed: one A4 page (both sides!)

Verification, Validation, Synthesis, Inference

Verification Inference
Against a specification Discover some
It might be an implicit Interesting properties
specification about the program
Validation Synthesis
Does the system do Create a new program:
what the user wants? optimize (compiler),
Failures in specifications control (scheduler)

We will focus on verification and inference

Programming with Contracts

Contract

A (formal) agreement between

Method M (callee) Callers of M

Rights Responsabilities Rights Responsabilities

Verifying Programs

Q

Translator

Logical
Formula

Automatic
Theorem Prover

oo

> Verifier

Some JML Annotations

@requires

@ensures

@signals
@normal_behavior/exceptional_behavior
(@assert/assume

@assignable/pure

@loop_invariant/decreases
@ghost

Program states

§ x>=4 && y<-2}
X:1=X+1
{ x>=5 && y<o0}

WP

X:i=X+1
X=g
Y=-1
X:=X+1 - -
X=1
N s ;
\ - Xi=XF1 - ‘S
X>=4 88 y<-2 / .\///\/
X:=X+1

A/

X>=5 && y<o

Calculating the Weakest

Precondition

WP(skip, B) =4, B

WP(x:=E, B) =4.¢ BIXx2E]
WP(sl;s2,B)=4.sWP(s1, WP(s2, B))
WP(1f (E) {sl}else{s2},B) =4

E=>\WP(s1,B) &&
IE =>\WP(s2,B)

Exercise!

Complete the following Hoare Triple with the
weakest precondition:

2727

While_(x>=0,x) x>0 do
X:=x-1
EndWhile

{x=0}

Problems with WP computation?

Loop iterations!
WP_k(while (E) {S},B)
WP_o(...) =4 'E => B
WP_1(...) =go¢ 'E => B && E => WP (S,B)
=WP_o(...) && E =>WP(S,B)
WP_2(...) =4os WP_1(...) && E=>WP(S, WP_1(...))

WP_i+1(...) =40 WP_i && E=>WP(S,WP_i(...))

Dealing with loops

Solutions:

Unroll loops: Verify a fixed set of execution traces

Add loop invariants to programs

Handling Loops

We extend our WP definition for the new
language constructs:

WP (havoc x, B) == \forall x. B
WP (assume E, B) == E=>B
WP (assert E, B) ==E && B

Verifying Loops

We transform loop code following this rule:

While_(I,T). % === 2wl FFariant hold at loop entry
assert |

havocT

assume |

if (E) then
S
assej

assume false
endif

Check loop body preservers
Invariant

Object Invariant semantics

An object invariant is a property that holds on every
visible state of an object.

What is a visible state?

The pre and post state of an invocation to a method of
that object

How to verify object invariants?

Modularity

When we verify a method C.M() :

Assume that ALL invariants of all pre existitng
objects hold at the method entry.

Prove that ALL invariants of all existing objects at

the method exit hold
When we invoke method C'.M’() from method C.M():

Prove that ALL invariants of all pre-existing
objects hold before executing the method.

Assume ALL invariants of all existing objects hold
‘ D U - = U JUUIC

Object invariants + ownership

Object states: null
Mutable %
Valid @

Commited
Each object might have a single owner

Ownership is a acyclic relation
In order to change a field value the object must be in
mutable state
In order to make the object valid all owned objects
have to be in valid state.
The Committed state acts as a lock

JOUMO

JOUMO

2/5/13

Dataflow Analysis

Over approximates all program behaviors
Abstract State of behavior

Dataflow direction: forward vs. backward
May analysis vs. Must Analysis

Forward reaching defs, zero analysis available expressions

Backward live variable analysis very busy expressions

(Forward) work-list algorithm

Compute out[n] for each n EN:
out[n]:=1
work.add= {entry}
WHILE work is not empty:
n:= work.pop();

in'[n] :=® { out[m] | m Epred(n) }
out’[n] := transfer[n](in’[n])
IF '(out’[n] C out[n])

foreach m €succ(n) work.add(m);
out[n] := out’[n]; In[n] := In"[n];

Interprocedural Dataflow Analysis

Analyze a program with many methods
Strategies:
Build an interprocedural CFG
Inlining/Cloning
Assume/Guarantee
Context sensitivity
Inlining
Call string

Compute “summaries”

Dynamic Symbolic Execution

Choose next path
Code to generate inputs for: Solve aecute&Monitor\
void CoverMe (int[] a) _ _
‘ Constraints to solve |Data Observed constraints
- 1f (a == null) return; null a==null
if (a.Length > 0) al=null &&
if (a[0] == 1234567890) a!=nU}\1\/ {} | (a.Length>0)
throw new Exoeption ("oug") ; ™ ..
o 7" ai=nul1 ¢ Negated condition L%
a.Length>. S .

a—nul1 al=null && {123.} | al!=null &&
a.Length>0 && a.Length>0 &&
a[0]==1234567890 a[0]==12345678%0
/{ a.Length>0
Done: There is no path left.
a[0]=123..
\T>©

Random Testing

Create program inputs randomly

Observe if the program behaves “correctly”
Using explicit contracts (pre & posts)
Implicitly: runtime undeclared exceptions

Advantages:
Easy to implement
Good coverage if the test suite is big enough

Exhaustive Testing - Idea

Generate all non-isomorphic valid inputs up
to a given size.

Use programmatic contracts to decide if an
input is valid.

Prune search space efficiently.

Genetic Algorithms

Initialize Evaluate While not
Population Populatlon done

Return best
solution

parents

{Select parents}

[Recomblne

Approach level

Number of control dependent edges between
goal and chosen path

Approach = Number of dependent nodes -
number of executed nodes

Branch distance

Critical branch = branch where control flow
diverged from reaching target

Distance to branch = distance to predicate being
true / false

Some tools

ESC/Javaz, JMLForge
Spec#

Soot

Javari/Plural

Pex

Korat

EvoSuite

