
Automated testing and
verification JP Galeotti, Alessandra Gorla

Web Applications Testing

Thursday, January 31, 13

Why are Web applications different

Web 1.0: Static content
Client and Server side execution
Different components and technologies co-exist

Web 2.0: Dynamic contents
Heavy use of JavaScript and Ajax.
Users can collaborate, socialize and share...

Thursday, January 31, 13

Important qualities in Web applications

• Reliability

• Usability

• Performance

• Robustness/Scalability

• Security

Thursday, January 31, 13

Usability

• Assessing the ease of use and learnability of web application

• Useful

• Ease of use

• Ease of learning

• Pleasant look

Thursday, January 31, 13

Usability : Bad examples

A lot of information
in the homepage

Several clicks before
finding wanted information

Bad colors

Thursday, January 31, 13

Assessing Usability

• Some properties can be verified to assess usability:

• Use colors that are compatible with color-blind people

• Have a limited number of clicks to reach any information on the website

• Provide a maximum number of links per page.

• ...

Thursday, January 31, 13

Usability testing

• Usability testing techniques can be applied to web applications as well:

• Exploratory testing to investigate mental model of users

• Comparison testing to evaluate different options

• Usability validation testing to assess the overall usablity

Thursday, January 31, 13

Performance

• Assure that the web application can deal with expected workloads.

• E.g. I should expect usually between 100 to 1000 user requests per hour.

• Workloads can vary

Thursday, January 31, 13

Load test

• Simulate expected workload to test the ability of web application to deal with it.

• Goals:

• Evaluate if the current infrastructure (HW and SW) is enough to satisfy the
required SLA given the amount of expected workload.

• Estimate how many requests can be currently handled.

• Typically done when the system is ready

Thursday, January 31, 13

Approach for Load Testing

• Identify performance acceptance criteria

• Page should load fast --> Page should be fully loaded in less than 3 seconds.

• Identify key scenarios

• E.g. Browse catalog; Select item; Add to cart; buy;

• Create a workload model

• Define workload distribution, considering different scenarios

• Identify the target load levels

• Identify metrics

• Design specific tests

• Run tests

• Analyze results

Thursday, January 31, 13

Load test

• Historically tests were manually done (asking real users to perform tests)

• Now, lots of automation.

• Tools can register activities of real users and create scripts to reproduce
the same activities.

• Scripts can be configured to create a set of virtual users who do same
activities at the same time.

Thursday, January 31, 13

LoadRunner from Mercury (now HP)

Industrial standard for load
testing.

Can emulate the load
generated by any number

of users, from few to
several thousands.

Supports different types of
applications and systems:

web server, database, ERP,
firewall...

Thursday, January 31, 13

JMeter - the open source alternative

• GUI desktop application designed to load test functional behavior and measure
performance. It was originally designed for testing Web Applications but has since
expanded to other test functions.

• It can be used to simulate a heavy load on a server, network or object to test
its strength or to analyze overall performance under different load types

• Remote Distributed Execution: it is possible to generate load using multiple
test servers (by running multiple server components of JMeter remotely).

• Possible to control it by a single JMeter GUI to gather results.

Thursday, January 31, 13

Create a test plan: Sampler

Create HTTP/HTTPS
requests to a web

server.

Possible to specify
whether JMeter

should parse HTML
for resources (e.g.
images, frames...)

Thursday, January 31, 13

Logic controllers

Execute sequentially
Execute samplers in loops

Alternate among different samplers
Random

Conditionally execute
...

Determine the order in which Samplers are processed.

Thursday, January 31, 13

Listeners
Meant to “listen” to the test results. Provide means to view, save and read

saved test results.

Thursday, January 31, 13

Robustness/Scalability

• Assure that software behaves in acceptable way even in presence of
situations that were not mentioned in the requirements.

• The most important variable for web apps is the workload.

• Scalability: Managing several requests with QOS. Being able to deal with
workloads that are heavier than originally considered.

Thursday, January 31, 13

Stress testing

Highest estimated workload:
1000 requests per second

Test with 2000, 5000,
10000 ... requests per

second

Thursday, January 31, 13

Security testing

• Goal: Assure that the application protects data and maintains functionality as intended.

• Mostly manual, little automation support

Manual Automation

Security experts try
to actually break the

system and find
vulnerabilities

Static analysis techniques:
scan application code and
detect likely security flaws

Fuzz testing techniques:
create random/malformed
inputs to make app crash

or find security hole

Thursday, January 31, 13

Fuzzers

• Generators use combinations of static fuzzing vectors (values that are known to be dangerous), or
totally random data.

• A fuzzer would try combinations of attacks on:

• numbers (signed/unsigned integers/float) : zero, possibly negative or very big numbers

• chars (URLs, command-line inputs): escaped, interpretable characters/instructions (e.g. quotes
and commands for SQL requests)

• metadata: (user-input text)

• pure binary sequences

• Usually black-box

• White-box fuzzers start from well-formed inputs and use dynamic symbolic execution to generate
new ones.

Thursday, January 31, 13

Reliability

• Assure that the system performs and maintains its functions in normal
circumstances.

• Classic functional, structural and model based techniques can be used for
web applications as well.

• Different automation support to implement and run unit and system tests

• Major challenge: Assure that a web application works correctly in different
environments (OS, Browsers ...)

• Cross browser compatibility

Thursday, January 31, 13

Unit testing - HttpUnit

• HttpUnit: JUnit for web

• It models HTML documents, and provides an API that allows to invoke pages,
fill out forms, click links...

@Test
public void homePage() throws Exception {
 final WebClient webClient = new WebClient();
 final HtmlPage page = webClient.getPage("http://htmlunit.sourceforge.net");
 Assert.assertEquals("HtmlUnit - Welcome to HtmlUnit", page.getTitleText());

 final String pageAsXml = page.asXml();
 Assert.assertTrue(pageAsXml.contains("<body class=\"composite\">"));

 final String pageAsText = page.asText();
 Assert.assertTrue(pageAsText.contains("Support for the HTTP and HTTPS protocols"));

 webClient.closeAllWindows();
}

Limited JavaScript support
Thursday, January 31, 13

http://htmlunit.sourceforge.net
http://htmlunit.sourceforge.net

Unit testing - JSUnit

• JUnit for Javascript
<html>
 <script type='text/javascript'>

 function setUp(){
 // perform fixture set up
 }
 function tearDown() {
 // clean up
 }
 function testOneThing(){
 // instantiating a SystemUnderTest, a class in the drw namespace
 var sut = new drw.SystemUnderTest();
 var thing = sut.oneThing();
 assertEquals(1, thing);
 }

 function testAnotherThing(){
 var sut = new drw.SystemUnderTest();
 var thing = sut.anotherThing();
 assertNotEquals(1, thing);
 }
 </script>
 </head>
 <body/>
</html>

Thursday, January 31, 13

Unit testing

• Other tools:

• HtmlUnit (same as HttpUnit, but better Javascript support)

• Canoo Web testing

• Built on top of HtmlUnit

• Makes it easier to organize and run test cases

• ...

Thursday, January 31, 13

Unit testing - QUnit

• Advanced Javascript unit testing framework
<!DOCTYPE	
 html>
<html>
<head>
	
 	
 <meta	
 charset="utf-­‐8">
	
 	
 <title>QUnit	
 Example</title>
	
 	
 <link	
 rel="stylesheet"	
 href="/resources/qunit.css">
</head>
<body>
	
 	
 <div	
 id="qunit"></div>
	
 	
 <div	
 id="qunit-­‐fixture"></div>
	
 	
 <script	
 src="/resources/qunit.js"></script>
	
 	
 <script	
 src="/resources/tests.js"></script>
</body>
</html>

test(
 "hello	
 test",	
 function()	
 {
	
 	
 ok(
 1	
 ==	
 "1",	
 "Passed!"	
);
});

Thursday, January 31, 13

System test

Easily capture and replay actions

Thursday, January 31, 13

Selenium IDE

Thursday, January 31, 13

Selenium RC
// You may use any WebDriver implementation. Firefox is used
here as an example
WebDriver driver = new FirefoxDriver();

// A "base url", used by selenium to resolve relative URLs
 String baseUrl = "http://www.google.com";

// Create the Selenium implementation
Selenium selenium = new WebDriverBackedSelenium(driver,
baseUrl);

// Perform actions with selenium

selenium.open("http://www.google.com");
selenium.type("name=q", "cheese");
selenium.click("name=btnG");

// Get the underlying WebDriver implementation back. This will
refer to the
// same WebDriver instance as the "driver" variable above.
WebDriver driverInstance = ((WebDriverBackedSelenium)
selenium).getWrappedDriver();

//Finally, close the browser. Call stop on the
WebDriverBackedSelenium instance
//instead of calling driver.quit(). Otherwise, the JVM will
continue running after
//the browser has been closed.
selenium.stop();

APIs in Java, Python, Ruby,
Php, JavaScript ...

Thursday, January 31, 13

http://www.google.com
http://www.google.com
http://www.google.com
http://www.google.com

Cross browser compatibility

• Elements in Web pages may appear differently on different combinations

• Functionality may work on some browsers and not on others

• Most of the issues are related to CSS and JavaScript

Browser OS Resolution

Thursday, January 31, 13

Example of layout issue

Thursday, January 31, 13

Cross browser testing

• Load specific web page on relevant combinations of browsers, OS and
resolutions and compare the output.

• Provide URL to a service, and have your web page loaded in the requested
combinations.

• A set of “screenshots” as a result.

Thursday, January 31, 13

Comparing results
Screenshots

mostly manual

Document Object Models

Can be automated. Tricky, DOM
APIs are different across browsers

Thursday, January 31, 13

Webmate

http://www.st.cs.uni-saarland.de/webmate/

Thursday, January 31, 13

http://www.st.cs.uni-saarland.de/webmate/
http://www.st.cs.uni-saarland.de/webmate/

