
Automated testing and 
verification J.P.Galeotti Alessandra Gorla

Integration, System and 
Regression Testing

Thursday, January 31, 13



(c) 2007 Mauro Pezzè & Michal Young

16 A Framework for Test and Analysis

Actual Needs and 
Constraints

System Test

Integration Test

Module Test

User Acceptance (alpha, beta test)

R
ev

ie
w

Analysis / 
Review

Analysis / 
Review

User review of external behavior as it is 
determined or becomes visible

Unit/
Components

Subsystem 
Design/Specs Subsystem

System 
Specifications

System 
Integration

Delivered 
Package

Validation

Verification 

Le
ge

nd

Unit/Component 
Specs

Figure 2.1: Validation activities check work products against actual user requirements,
while verification activities check consistency of work products.

system that is consistent with its specification is dependable.1D dependable

“Verification” is checking the consistency of an implementation with a specifica-D verification

tion. Here, “specification” and “implementation” are roles, not particular artifacts. For
example, an overall design could play the role of “specification” and a more detailed
design could play the role of “implementation”; checking whether the detailed design
is consistent with the overall design would then be verification of the detailed design.
Later, the same detailed design could play the role of “specification” with respect to

1A good requirements document, or set of documents, should include both a requirements analysis and
a requirements specification, and should clearly distinguish between the two. The requirements analysis
describes the problem. The specification describes a proposed solution. This is not a book about requirements
engineering, but we note in passing that confounding requirements analysis with requirements specification
will inevitably have negative impacts on both validation and verification.

Thursday, January 31, 13



(c) 2007 Mauro Pezzè & Michal Young

What is integration testing?

Module test Integration test System test

Specification: Module interface Interface specs, module 
breakdown

Requirements 
specification

Visible structure: Coding details Modular structure 
(software architecture) — none —

Scaffolding 
required: Some Often extensive Some

Looking for faults 
in: Modules Interactions, 

compatibility
System 

functionality

Thursday, January 31, 13



(c) 2007 Mauro Pezzè & Michal Young

Integration versus Unit Testing

• Unit (module) testing is a necessary foundation

– Unit level has maximum controllability and visibility

– Integration testing can never compensate for inadequate unit testing

• Integration testing may serve as a process check

– If module faults are revealed in integration testing, they signal inadequate 
unit testing

– If integration faults occur in interfaces between correctly implemented 
modules, the errors can be traced to module breakdown and interface 
specifications

Thursday, January 31, 13



(c) 2007 Mauro Pezzè & Michal Young

Integration Faults

• Inconsistent interpretation of parameters or values

– Example:  Mixed units (meters/yards) in Martian Lander

• Violations of value domains, capacity, or size limits

– Example: Buffer overflow

• Side effects on parameters or resources

– Example: Conflict on (unspecified) temporary file

• Omitted or misunderstood functionality

– Example: Inconsistent interpretation of web hits

• Nonfunctional properties

– Example: Unanticipated performance issues

• Dynamic mismatches

– Example: Incompatible polymorphic method calls

Thursday, January 31, 13



(c) 2007 Mauro Pezzè & Michal Young

Example: A Memory Leak

Apache web server, version 2.0.48

	 Response to normal page request on secure (https) port

static void ssl io filter disable(ap filter t *f) {  

    bio filter in ctx t *inctx = f->ctx;

    inctx->ssl = NULL; 

    inctx->filter ctx->pssl = NULL; 

} 	

No obvious error, but Apache 
leaked memory slowly (in normal 
use) or quickly (if exploited for a 

DOS attack)

Thursday, January 31, 13



(c) 2007 Mauro Pezzè & Michal Young

Example: A Memory Leak

Apache web server, version 2.0.48

	 Response to normal page request on secure (https) port

static void ssl io filter disable(ap filter t *f) {   

   bio filter in ctx t *inctx = f->ctx;

    SSL_free(inctx -> ssl);

    inctx->ssl = NULL; 

    inctx->filter ctx->pssl = NULL; 

} 	

The missing code is for a 
structure defined and 

created elsewhere, 
accessed through an opaque 

pointer.

Thursday, January 31, 13



(c) 2007 Mauro Pezzè & Michal Young

Example: A Memory Leak

Apache web server, version 2.0.48

	 Response to normal page request on secure (https) port

static void ssl io filter disable(ap filter t *f) { 

    bio filter in ctx t *inctx = f->ctx;

    SSL_free(inctx -> ssl);

    inctx->ssl = NULL; 

    inctx->filter ctx->pssl = NULL; 

} 	

Almost impossible to find with 
unit testing.  (Inspection and 
some dynamic techniques 

could have found it.)

Thursday, January 31, 13



(c) 2007 Mauro Pezzè & Michal Young

Maybe you’ve heard ... 

Yes, I implemented 
⟨module A⟩, but I didn’t 
test it thoroughly yet.  It 
will be tested along with 
⟨module B⟩ when that’s 
ready.  

Thursday, January 31, 13



(c) 2007 Mauro Pezzè & Michal Young

Translation... 

Yes, I implemented 
⟨module A⟩, but I didn’t 
test it thoroughly yet.  It 
will be tested along with 
⟨module B⟩ when that’s 
ready.  

I didn’t think at all 
about the strategy for 
testing.  I didn’t design 
⟨module A⟩ for 
testability and I didn’t 
think about the best 
order to build and test 
modules ⟨A⟩ and ⟨B⟩.    

Thursday, January 31, 13



(c) 2007 Mauro Pezzè & Michal Young

System Architecture

Integration Plan + Test Plan

• Integration test plan 
drives and is driven 
by the project “build 
plan”

– A key feature of the 
system architecture 
and project plan

Build Plan

...

...

Test Plan

...

Thursday, January 31, 13



(c) 2007 Mauro Pezzè & Michal Young

Big Bang Integration Test

An extreme and desperate approach: 

Test only after integrating all modules

+ Does not require scaffolding

• The only excuse, and a bad one

- Minimum observability, diagnosability, efficacy, feedback

- High cost of repair

• Recall: Cost of repairing a fault rises as a function of time between error and 
repair 

Thursday, January 31, 13



(c) 2007 Mauro Pezzè & Michal Young

Structural and Functional Strategies

• Structural orientation:
Modules constructed, integrated and tested based on a hierarchical project 
structure

– Top-down, Bottom-up, Sandwich

• Functional orientation:
Modules integrated according to application characteristics or features

– Threads, Critical module

Thursday, January 31, 13



(c) 2007 Mauro Pezzè & Michal Young

Top down .

Top

stub A stub B stub C

Working from the top level (in terms of “use” or 
“include” relation) toward the bottom.

No drivers required if program tested from top-
level interface (e.g. GUI, CLI, web app, etc.)

Thursday, January 31, 13



(c) 2007 Mauro Pezzè & Michal Young

Top

A stub B stub C

stub Ystub X

Top down ..

Write stubs of called or 
used modules at each 
step in construction

Thursday, January 31, 13



(c) 2007 Mauro Pezzè & Michal Young

Top

A B C

stub Ystub X

Top down ...

As modules replace 
stubs, more 

functionality is 
testable

Thursday, January 31, 13



(c) 2007 Mauro Pezzè & Michal Young

Top

A B C

YX

Top down ... complete

... until the program is 
complete, and all 

functionality can be 
tested

Thursday, January 31, 13



(c) 2007 Mauro Pezzè & Michal Young

Bottom Up .

Driver

X

Starting at the leaves of the 
“uses” hierarchy, we never 

need stubs

Thursday, January 31, 13



(c) 2007 Mauro Pezzè & Michal Young

Bottom Up ..

YX

Driver Driver ... but we must 
construct drivers for 
each module (as in 

unit testing) ... 

Thursday, January 31, 13



(c) 2007 Mauro Pezzè & Michal Young

Bottom Up ...

A

YX

Driver

... an intermediate 
module replaces a 

driver, and needs its 
own driver ... 

Thursday, January 31, 13



(c) 2007 Mauro Pezzè & Michal Young

Bottom Up ....

A B

YX

Driver Driver

Thursday, January 31, 13



(c) 2007 Mauro Pezzè & Michal Young

A B C

YX

Driver Driver Driver

Bottom Up .....

... so we may have 
several working 
subsystems ... 

Thursday, January 31, 13



(c) 2007 Mauro Pezzè & Michal Young

Bottom Up (complete)

Top

A B C

YX

... that are eventually 
integrated into a 
single system.

Thursday, January 31, 13



(c) 2007 Mauro Pezzè & Michal Young

Top (parts)

Stub C

Y

Sandwich .

Working from the extremes 
(top and bottom) toward 
center, we may use fewer 

drivers and stubs

Thursday, January 31, 13



(c) 2007 Mauro Pezzè & Michal Young

Sandwich ..

Top (more)

A C

YX

Sandwich integration is 
flexible and adaptable, 
but complex to plan

Thursday, January 31, 13



(c) 2007 Mauro Pezzè & Michal Young

Top

A C

X

Thread ...

A “thread” is a portion of several 
modules that together provide a 

user-visible program feature.

Thursday, January 31, 13



(c) 2007 Mauro Pezzè & Michal Young

Top

A B C

YX

Thread ...

Integrating one thread, then 
another, etc., we maximize 

visibility for the user

Thursday, January 31, 13



(c) 2007 Mauro Pezzè & Michal Young

Thread ...

Top

A B C

YX

As in sandwich integration 
testing, we can minimize stubs 
and drivers, but the integration 

plan may be complex

Thursday, January 31, 13



(c) 2007 Mauro Pezzè & Michal Young

Critical Modules

Strategy: Start with riskiest modules

• Risk assessment is necessary first step

• May include technical risks (is X feasible?), process risks (is schedule for X realistic?), 
other risks

• May resemble thread or sandwich process in tactics for flexible build order

– E.g., constructing parts of one module to test functionality in another

• Key point is risk-oriented process

– Integration testing as a risk-reduction activity, designed to deliver any bad news as 
early as possible

Thursday, January 31, 13



(c) 2007 Mauro Pezzè & Michal Young

Choosing a Strategy

• Functional strategies require more planning

– Structural strategies (bottom up, top down, sandwich) are simpler

– But thread and critical modules testing provide better process visibility, 
especially in complex systems

• Possible to combine

– Top-down, bottom-up, or sandwich are reasonable for relatively small 
components and subsystems

– Combinations of thread and critical modules integration testing are often 
preferred for larger subsystems

Thursday, January 31, 13



(c) 2007 Mauro Pezzè & Michal Young

Working Definition of Component

• Reusable unit of deployment and composition

– Deployed and integrated multiple times

– Integrated by different teams (usually)

• Component producer is distinct from component user

• Characterized by an interface or contract

• Describes access points, parameters, and all functional and non-functional behavior 
and conditions for using the component

• No other access (e.g., source code) is usually available

• Often larger grain than objects or packages

– Example: A complete database system may be a component

Thursday, January 31, 13



(c) 2007 Mauro Pezzè & Michal Young

Component Interface Contracts

• Application programming interface (API) is distinct from implementation

– Example: DOM interface for XML is distinct from many possible 
implementations, from different sources

• Interface includes everything that must be known to use the component

– More than just method signatures, exceptions, etc

– May include non-functional characteristics like performance, capacity, 
security

– May include dependence on other components

Thursday, January 31, 13



(c) 2007 Mauro Pezzè & Michal Young

Challenges in Testing Components

• The component builder’s challenge: 

– Impossible to know all the ways a component may be used

– Difficult to recognize and specify all potentially important properties and 
dependencies

• The component user’s challenge: 

– No visibility “inside” the component

– Often difficult to judge suitability for a particular use and context

Thursday, January 31, 13



(c) 2007 Mauro Pezzè & Michal Young

Testing a Component: Producer View

• First: Thorough unit and subsystem testing

– Includes thorough functional testing based on application program interface (API)

– Reusable component requires at least twice the effort in design, implementation, 
and testing as a subsystem constructed for a single use (often more)

• Second: Thorough acceptance testing

– Based on scenarios of expected use

– Includes stress and capacity testing

• Find and document the limits of applicability 

Thursday, January 31, 13



(c) 2007 Mauro Pezzè & Michal Young

Testing a Component: User View

• Not primarily to find faults in the component

• Major question: Is the component suitable for this application?

– Primary risk is not fitting the application context: 

• Unanticipated dependence or interactions with environment

• Performance or capacity limits

• Missing functionality, misunderstood API

– High risk when using component for first time

• Reducing risk: Trial integration early

– Often worthwhile to build driver to test model scenarios, long before actual integration

Thursday, January 31, 13



(c) 2007 Mauro Pezzè & Michal Young

Adapting and Testing a Component

Applications often access components through an 
adaptor, which can also be used by a test driver

Component

Adaptor

Application

Thursday, January 31, 13



(c) 2007 Mauro Pezzè & Michal Young

Summary

• Integration testing focuses on interactions

– Must be built on foundation of thorough unit testing

– Integration faults often traceable to incomplete or misunderstood 
interface specifications

• Prefer prevention to detection, and make detection easier by imposing 
design constraints

• Strategies tied to project build order

– Order construction, integration, and testing to reduce cost or risk

• Reusable components require special care

– For component builder, and for component user

Thursday, January 31, 13



System, Acceptance, and Regression Testing

Thursday, January 31, 13



(c) 2007 Mauro Pezzè & Michal Young

System Acceptance Regression

Test for ... Correctness, 
completion

Usefulness, 
satisfaction

Accidental 
changes 

Test by ... Development test 
group

Test group with 
users

Development 
test group

Verification Validation Verification

Thursday, January 31, 13



(c) 2007 Mauro Pezzè & Michal Young

System Testing

• Key characteristics: 

– Comprehensive (the whole system, the whole spec)

– Based on specification of observable behavior

Verification against a requirements specification, not validation, and 
not opinions

– Independent of design and implementation

Independence: Avoid repeating software design errors in system test 
design

Thursday, January 31, 13



(c) 2007 Mauro Pezzè & Michal Young

Independent V&V

• One strategy for maximizing independence: System (and acceptance) test 
performed by a different organization

– Organizationally isolated from developers (no pressure to say “ok”)

– Sometimes outsourced to another company or agency

•  Especially for critical systems

• Outsourcing for independent judgment, not to save money

• May be additional system test, not replacing internal V&V

– Not all outsourced testing is IV&V

• Not independent if controlled by development organization

Thursday, January 31, 13



(c) 2007 Mauro Pezzè & Michal Young

Independence without changing staff

• If the development organization controls system testing ...

– Perfect independence may be unattainable, but we can reduce undue influence

• Develop system test cases early

– As part of requirements specification, before major design decisions have been 
made

• Agile “test first” and conventional “V model” are both examples of designing 
system test cases before designing the implementation

• An opportunity for “design for test”:  Structure system for critical system 
testing early in project

Thursday, January 31, 13



(c) 2007 Mauro Pezzè & Michal Young

Incremental System Testing

• System tests are often used to measure progress

– System test suite covers all features and scenarios of use

– As project progresses, the system passes more and more system tests

• Assumes a “threaded” incremental build plan: Features exposed at top level 
as they are developed

 

Thursday, January 31, 13



(c) 2007 Mauro Pezzè & Michal Young

Global Properties

• Some system properties are inherently global

– Performance, latency, robustness, ... 

– Early and incremental testing is still necessary, but provide only estimates

• A major focus of system testing

– The only opportunity to verify global properties against actual system 
specifications

– Especially to find unanticipated effects, e.g., an unexpected performance 
bottleneck

Thursday, January 31, 13



(c) 2007 Mauro Pezzè & Michal Young

Context-Dependent Properties

• Beyond system-global: Some properties depend on the system context and 
use

– Example:  Performance properties depend on environment and 
configuration 

– Example: Privacy depends both on system and how it is used

• Medical records system must protect against unauthorized use, and 
authorization must be provided only as needed

– Example: Security depends on threat profiles

• And threats change! 

Thursday, January 31, 13



(c) 2007 Mauro Pezzè & Michal Young

Establishing an Operational Envelope

• When a property (e.g., performance or real-time response) is parameterized by use ... 

– requests per second, size of database, ... 

• Extensive stress testing is required

– varying parameters within the envelope, near the bounds, and beyond

• Goal: A well-understood model of how the property varies with the parameter

– How sensitive is the property to the parameter?

– Where is the “edge of the envelope”? 

– What can we expect when the envelope is exceeded?

Thursday, January 31, 13



(c) 2007 Mauro Pezzè & Michal Young

Stress Testing

• Often requires extensive simulation of the execution environment

– With systematic variation:  What happens when we push the parameters?  
What if the number of users or requests is 10 times more, or 1000 times more?

• Often requires more resources (human and machine) than typical test cases

– Separate from regular feature tests

– Run less often, with more manual control

– Diagnose deviations from expectation

• Which may include difficult debugging of latent faults! 

Thursday, January 31, 13



(c) 2007 Mauro Pezzè & Michal Young

Estimating Dependability

• Measuring quality, not searching for faults

– Fundamentally different goal than systematic testing

• Quantitative dependability goals are statistical

– Reliability

– Availability

– Mean time to failure

– ...

• Requires valid statistical samples from operational profile

– Fundamentally different from systematic testing

Thursday, January 31, 13



(c) 2007 Mauro Pezzè & Michal Young

Statistical Sampling

• We need a valid operational profile (model)

– Sometimes from an older version of the system

– Sometimes from operational environment (e.g., for an embedded controller)

– Sensitivity testing reveals which parameters are most important, and which can be rough 
guesses

• And a clear, precise definition of what is being measured

– Failure rate?  Per session, per hour, per operation?

• And many, many random samples

– Especially for high reliability measures

Thursday, January 31, 13



(c) 2007 Mauro Pezzè & Michal Young

Is Statistical Testing Worthwhile?

• Necessary for ... 

– Critical systems (safety critical, infrastructure, ...)

• But difficult or impossible when ... 

– Operational profile is unavailable or just a guess

• Often for new functionality involving human interaction

– But we may factor critical functions from overall use to obtain a good model of only the 
critical properties

– Reliability requirement is very high

• Required sample size (number of test cases) might require years of test execution

• Ultra-reliability can seldom be demonstrated by testing

Thursday, January 31, 13



(c) 2007 Mauro Pezzè & Michal Young

Process-based Measures

• Less rigorous than statistical testing

– Based on similarity with prior projects

• System testing process

– Expected history of bugs found and resolved

• Alpha, beta testing

– Alpha testing:  Real users, controlled environment

– Beta testing: Real users, real (uncontrolled) environment

– May statistically sample users rather than uses

– Expected history of bug reports

Thursday, January 31, 13



(c) 2007 Mauro Pezzè & Michal Young

Usability

• A usable product 

– is quickly learned

– allows users to work efficiently

– is pleasant to use 

• Objective criteria

– Time and number of operations to perform a task

– Frequency of user error

• blame user errors on the product!

• Plus overall, subjective satisfaction

Thursday, January 31, 13



(c) 2007 Mauro Pezzè & Michal Young

Verifying Usability

• Usability rests ultimately on testing with real users — validation, not 
verification

– Preferably in the usability lab, by usability experts

• But we can factor usability testing for process visibility — validation and 
verification throughout the project

– Validation establishes criteria to be verified by testing, analysis, and 
inspection

Thursday, January 31, 13



(c) 2007 Mauro Pezzè & Michal Young

Factoring Usability Testing
Validation 
(usability lab)

• Usability testing 
establishes usability 
check-lists
– Guidelines applicable across a 

product line or domain

• Early usability testing 
evaluates “cardboard 
prototype” or mock-up
– Produces interface design

Verification
(developers, testers)

• Inspection applies usability 
check-lists to specification 
and design

• Behavior objectively 
verified (e.g., tested) 
against interface design 

Thursday, January 31, 13



(c) 2007 Mauro Pezzè & Michal Young

Varieties of Usability Test

• Exploratory testing

– Investigate mental model of users

– Performed early to guide interface design

• Comparison testing

– Evaluate options (specific interface design choices)

– Observe (and measure) interactions with alternative interaction patterns

• Usability validation testing

– Assess overall usability (quantitative and qualitative)

– Includes measurement: error rate, time to complete

Thursday, January 31, 13



(c) 2007 Mauro Pezzè & Michal Young

Typical Usability Test Protocol
• Select representative sample of user groups

– Typically 3-5 users from each of 1-4 groups

– Questionnaires verify group membership

• Ask users to perform a representative sequence of tasks

• Observe without interference (no helping!)

– The hardest thing for developers is to not help. Professional usability 
testers use one-way mirrors.

• Measure (clicks, eye movement, time, ...) and follow up with questionnaire

Thursday, January 31, 13



(c) 2007 Mauro Pezzè & Michal Young

Accessibility Testing

• Check usability by people with disabilities

– Blind and low vision, deaf, color-blind, ...

• Use accessibility guidelines

– Direct usability testing with all relevant groups is usually impractical; checking compliance 
to guidelines is practical and often reveals problems

• Example: W3C Web Content Accessibility Guidelines

– Parts can be checked automatically

– but manual check is still required

• e.g., is the “alt” tag of the image meaningful? 

Thursday, January 31, 13



(c) 2007 Mauro Pezzè & Michal Young

Regression

• Yesterday it worked, today it doesn’t

– I was fixing X, and accidentally broke Y

– That bug was fixed, but now it’s back

• Tests must be re-run after any change 

– Adding new features

– Changing, adapting software to new conditions

– Fixing other bugs

• Regression testing can be a major cost of software maintenance

– Sometimes much more than making the change 

Thursday, January 31, 13



(c) 2007 Mauro Pezzè & Michal Young

Basic Problems of Regression Test

• Maintaining test suite

– If I change feature X, how many test cases must be revised because they use feature 
X?

– Which test cases should be removed or replaced? Which test cases should be added?

• Cost of re-testing

– Often proportional to product size, not change size

– Big problem if testing requires manual effort

• Possible problem even for automated testing, when the test suite and test execution 
time grows beyond a few hours

Thursday, January 31, 13



(c) 2007 Mauro Pezzè & Michal Young

Test Case Maintenance

• Some maintenance is inevitable

– If feature X has changed, test cases for feature X will require updating

• Some maintenance should be avoided

– Example: Trivial changes to user interface or file format should not invalidate 
large numbers of test cases

• Test suites should be modular! 

– Avoid unnecessary dependence

– Generating concrete test cases from test case specifications can help

Thursday, January 31, 13



(c) 2007 Mauro Pezzè & Michal Young

Obsolete and Redundant

• Obsolete: A test case that is not longer valid

– Tests features that have been modified, substituted, or removed

– Should be removed from the test suite

• Redundant: A test case that does not differ significantly from others

– Unlikely to find a fault missed by similar test cases

– Has some cost in re-execution

– Has some (maybe more) cost in human effort to maintain

– May or may not be removed, depending on costs

Thursday, January 31, 13



(c) 2007 Mauro Pezzè & Michal Young

Selecting and Prioritizing Regression Test Cases

• Should we re-run the whole regression test suite?  If so, in what order?

– Maybe you don’t care.  If you can re-rerun everything automatically over lunch break, do it. 

– Sometimes you do care ... 

• Selection matters when 

– Test cases are expensive to execute 

• Because they require special equipment, or long run-times, or cannot be fully 
automated

• Prioritization matters when

– A very large test suite cannot be executed every day

Thursday, January 31, 13



(c) 2007 Mauro Pezzè & Michal Young

Code-based Regression Test Selection

• Observation: A test case can’t find a 
fault in code it doesn’t execute

– In a large system, many parts of the 
code are untouched by many test 
cases

• So: Only execute test cases that 
execute changed or new code 

New or changed

Executed by
 test case

Thursday, January 31, 13



(c) 2007 Mauro Pezzè & Michal Young

Control-flow and Data-flow Regression Test 
Selection 

• Same basic idea as code-based selection

– Re-run test cases only if they include changed elements

– Elements may be modified control flow nodes and edges, or definition-use (DU) pairs in 
data flow

• To automate selection: 

– Tools record elements touched by each test case

• Stored in database of regression test cases

– Tools note changes in program

– Check test-case database for overlap 

Thursday, January 31, 13



(c) 2007 Mauro Pezzè & Michal Young

Test Case Selection based on control flow
Regression Test Selection Techniques 433

True

*dptr = '\0';
return ok;
}

False

True

int digit_high = Hex_Values[*(++eptr)];
int digit_low = Hex_Values[*(++eptr)];
if (digit_high == -1 || digit_low == -1) {

True

ok = 1;
}

True
else {
*dptr = 16 * digit_high + 
digit_low;
}

False

False

False

else
*dptr = *eptr;
}

int cgi_decode(char *encoded, char *decoded)

F G

H I

M

 { char *eptr = encoded;
char *dptr = decoded;
int ok = 0;

A

while (*eptr) { B

char c;
c = *eptr;
if (c == '+') {  

C

*dptr = ' ';
} 

E elseif (c == '%') {
D

ok = 1; return; 
}

      if (! ( *(eptr + 1)  && *(eptr + 2) )) { X

Y
True False

   if (! isascii(*dptr)) { W

     *dptr = '?';
      ok = 1; 
    }

Z

++dptr;
++eptr;
}

L

True

False

Figure 22.4: The control flow graph of function cgi decode version 2.0. Gray back-
ground indicates the changes from the former version.

432 System, Acceptance, and Regression Testing

Id Test case Path
TC1 “ ” A B M
TC2 “test+case%1Dadequacy” A B C D F L ... B M
TC3 “adequate+test%0Dexecution%7U” A B C D F L ... B M
TC4 “%3D” A B C D G H L B M
TC5 “%A” A B C D G I L B M
TC6 “a+b” A B C D F L B C E L B C D F L B M
TC7 “test” A B C D F L B C D F L B C D F L B C D F L B M
TC8 “+%0D+%4J” A B C E L B C D G I L ... B M
TC9 “first+test%9Ktest%K9” A B C D F L ... B M

Figure 22.3: Paths covered by the structural test cases derived for version 1.0 of func-
tion cgi decode. Paths are given referring to the nodes of the control flow graph of
Figure 22.4.

fied pairs of definitions with uses (DU pairs, cf. Sections 6.1, page 77 and 13.2, page
236). DF regression selection techniques reexecute test cases that, when executed ondata flow (DF)

regression test the original program, exercise DU pairs that were deleted or modified in the revised
program. Test cases that executed a conditional statement whose predicate was altered
are also selected, since the changed predicate could alter some old definition-use asso-
ciations. Figure 22.5 shows the new definitions and uses introduced by modifications
to cgi decode.1 These new definitions and uses introduce new DU pairs and remove
others.

In contrast to code-based techniques, specification-based test selection techniques
do not require recording the control flow paths executed by tests. Regression test cases
can be identified from correspondence between test cases and specification items. For
example, when using category partition, test cases correspond to sets of choices, while
in finite state machine model-based approaches, test cases cover states and transitions.
Where test case specifications and test data are generated automatically from a spec-
ification or model, generation can simply be repeated each time the specification or
model changes.

Code-based regression test selection criteria can be adapted for model-based re-
gression test selection. Consider, for example, the control flow graph derived from the
process shipping order specification in Chapter 14. We add the following item to that
specification:

Restricted countries: A set of restricted destination countries is maintained, based on
current trade restrictions. If the shipping address contains a restricted destina-
tion country, only credit card payments are accepted for that order, and shipping

1When dealing with arrays, we follow the criteria discussed in Chapter 13: A change of an array value
is a definition of the array and a use of the index. A use of an array value is a use of both the array and the
index.

Thursday, January 31, 13



(c) 2007 Mauro Pezzè & Michal Young

Specification-based Regression Test Selection

• Like code-based and structural regression test case selection 

– Pick test cases that test new and changed functionality

• Difference: No guarantee of independence

– A test case that isn’t “for” changed or added feature X might find a bug in 
feature X anyway

• Typical approach: Specification-based prioritization

– Execute all test cases, but start with those that related to changed and 
added features

Thursday, January 31, 13



(c) 2007 Mauro Pezzè & Michal Young

Test Case Selection based on specifications

434 System, Acceptance, and Regression Testing

Variable Definitions Uses
*eptr X
eptr X
dptr Z W
dptr Z W
ok Y Z

Figure 22.5: Definitions and uses introduced by changes in cgi decode. Labels refer to
the nodes in the control flow graph of Figure 22.4.

proceeds only after approval by a designated company officer responsible for
checking that the goods ordered may be legally exported to that country.

The new requirement can be added to the flow graph model of the specification as
illustrated in Figure 22.6.

We can identify regression test cases with the CFG criterion that selects all cases
that correspond to international shipping addresses (i.e., test cases TC-1 and TC-5 from
the following table). The table corresponds to the functional test cases derived using to
the method described in Chapter 14 on page 259.

Case Too Ship Ship Cust Pay Same CC
small where method type method addr valid

TC-1 No Int Air Bus CC No Yes
TC-2 No Dom Land – – – –
TC-3 Yes – – – – – –
TC-4 No Dom Air – – – –
TC-5 No Int Land – – – –
TC-6 No – – Edu Inv – –
TC-7 No – – – CC Yes –
TC-8 No – – – CC – No (abort)
TC-9 No – – – CC – No (no abort)

Models derived for testing can be used not only for selecting regression test cases,
but also for generating test cases for the new code. In the preceding example, we can
use the model not only to identify the test cases that should be reused, but also to gen-
erate new test cases for the new functionality, following the combinatorial approaches
described in Chapter 11.

22.7 Test Case Prioritization and Selective Execution

Regression testing criteria may select a large portion of a test suite. When a regression
test suite is too large, we must further reduce the set of test cases to be executed.

Random sampling is a simple way to reduce the size of the regression test suite.
Better approaches prioritize test cases to reflect their predicted usefulness. In a con-

Thursday, January 31, 13



(c) 2007 Mauro Pezzè & Michal Young

Prioritized Rotating Selection

• Basic idea: 

– Execute all test cases, eventually

– Execute some sooner than others

• Possible priority schemes: 

– Round robin: Priority to least-recently-run test cases

– Track record: Priority to test cases that have detected faults before

• They probably execute code with a high fault density

– Structural: Priority for executing elements that have not been recently executed

• Can be coarse-grained:  Features, methods, files, ... 

Thursday, January 31, 13



(c) 2007 Mauro Pezzè & Michal Young

Summary

• System testing is verification

– System consistent with specification?

– Especially for global properties (performance, reliability) 

• Acceptance testing is validation

– Includes user testing and checks for usability 

• Usability and accessibility require both

– Usability testing establishes objective criteria to verify throughout development

• Regression testing repeated after each change

– After initial delivery, as software evolves

Thursday, January 31, 13


