
Model based testing

Automated testing and
verification

J.P. Galeotti - Alessandra Gorla

Thursday, January 17, 13

(c) 2007 Mauro Pezzè & Michal Young

Model based testing

• We already know how it works... right?

• At least partially...

Thursday, January 17, 13

(c) 2007 Mauro Pezzè & Michal Young

Model based testing

• We already know how it works... right?

• At least partially...

Control flow
and

data flow
graphs are
models, too

Thursday, January 17, 13

(c) 2007 Mauro Pezzè & Michal Young

Functional Specifications

Independently Testable Feature

ModelRepresentative Values

Test Case Specifications

Test Cases

Ide
nt if

y

R ep re sen
ta tive

Va lue
s

 Id
en

tif
y

In
de

p e
n d

en
tl y

Te

st
a b

le

F
e a

tu
re

s

De rivea Mode l

Gen era te T est- Case

Specifica tions Gen
era

te T
es

t- C
as

e

Spec
ific

a tion
s

G
en

er
at

e
T

es
t C

as
es

Scaffolding

In
st

an
tia

te
Te

st
s

Brute
Force

Testing

Finite State Machine
Grammar
Algebraic Specification
Logic Specification
Control/Data Flow Graph

Semantic Constraints
Combinatorial Selection
Exaustive Enumeration
Random Selection

Test Selection Criteria

Manual Mapping
Symbolic Execution
A-posteriori Satisfaction

Thursday, January 17, 13

(c) 2007 Mauro Pezzè & Michal Young

Functional Specifications

Independently Testable Feature

ModelRepresentative Values

Test Case Specifications

Test Cases

Ide
nt if

y

R ep re sen
ta tive

Va lue
s

 Id
en

tif
y

In
de

p e
n d

en
tl y

Te

st
a b

le

F
e a

tu
re

s

De rivea Mode l

Gen era te T est- Case

Specifica tions Gen
era

te T
es

t- C
as

e

Spec
ific

a tion
s

G
en

er
at

e
T

es
t C

as
es

Scaffolding

In
st

an
tia

te
Te

st
s

Brute
Force

Testing

Finite State Machine
Grammar
Algebraic Specification
Logic Specification
Control/Data Flow Graph

Semantic Constraints
Combinatorial Selection
Exaustive Enumeration
Random Selection

Test Selection Criteria

Manual Mapping
Symbolic Execution
A-posteriori Satisfaction

Thursday, January 17, 13

(c) 2007 Mauro Pezzè & Michal Young

Why model-based testing?

• Models used in specification or design have structure

• Useful information for selecting representative classes of behavior;

• Difficult to capture that structure clearly and correctly in constraints in
combinatorial testing.

• We can devise test cases to check actual behavior against behavior specified
by the model

• “Coverage” similar to structural testing, but applied to specification and
design models

Thursday, January 17, 13

(c) 2007 Mauro Pezzè & Michal Young

Deriving test cases from finite state machines
A common kind of model for describing behavior that
depends on sequences of events

Thursday, January 17, 13

(c) 2007 Mauro Pezzè & Michal Young

Finite State Machines

• Good at describing interactions in systems with a small number of modes.

• Good at describing transducers (via finite state machines).

• Widely used in industry (Statecharts).

• Most systems are “infinite state” (or effectively so), but many systems are finite state +
parameters – there are a finite set of states that control the way data is moved around.

• Good examples are systems like communication protocols or many classes of control
systems (e.g. automated braking, flight control systems).

• Good for describing interactive systems that rarely reach a final state

Thursday, January 17, 13

(c) 2007 Mauro Pezzè & Michal Young

From an informal specification…
 Maintenance: The Maintenance function records the history of items undergoing maintenance.

	 If the product is covered by warranty or maintenance contract, maintenance can be requested either by
calling the maintenance toll free number, or through the web site, or by bringing the item to a designated
maintenance station.

	 If the maintenance is requested by phone or web site and the customer is a US or EU resident, the item is
picked up at the customer site, otherwise, the customer shall ship the item with an express courier.

	 If the maintenance contract number provided by the customer is not valid, the item follows the procedure
for items not covered by warranty.

	 If the product is not covered by warranty or maintenance contract, maintenance can be requested only by
bringing the item to a maintenance station. The maintenance station informs the customer of the estimated
costs for repair. Maintenance starts only when the customer accepts the estimate.

	 If the customer does not accept the estimate, the product is returned to the customer.

	 Small problems can be repaired directly at the maintenance station. If the maintenance station cannot solve
the problem, the product is sent to the maintenance regional headquarters (if in US or EU) or to the
maintenance main headquarters (otherwise).

	 If the maintenance regional headquarters cannot solve the problem, the product is sent to the maintenance
main headquarters.

	 Maintenance is suspended if some components are not available.

	 Once repaired, the product is returned to the customer.

Thursday, January 17, 13

(c) 2007 Mauro Pezzè & Michal Young

From an informal specification…
 Maintenance: The Maintenance function records the history of items undergoing maintenance.

	 If the product is covered by warranty or maintenance contract, maintenance can be requested either by
calling the maintenance toll free number, or through the web site, or by bringing the item to a designated
maintenance station.

	 If the maintenance is requested by phone or web site and the customer is a US or EU resident, the item is
picked up at the customer site, otherwise, the customer shall ship the item with an express courier.

	 If the maintenance contract number provided by the customer is not valid, the item follows the procedure
for items not covered by warranty.

	 If the product is not covered by warranty or maintenance contract, maintenance can be requested only by
bringing the item to a maintenance station. The maintenance station informs the customer of the estimated
costs for repair. Maintenance starts only when the customer accepts the estimate.

	 If the customer does not accept the estimate, the product is returned to the customer.

	 Small problems can be repaired directly at the maintenance station. If the maintenance station cannot solve
the problem, the product is sent to the maintenance regional headquarters (if in US or EU) or to the
maintenance main headquarters (otherwise).

	 If the maintenance regional headquarters cannot solve the problem, the product is sent to the maintenance
main headquarters.

	 Maintenance is suspended if some components are not available.

	 Once repaired, the product is returned to the customer.

Multiple choices in the first
step ...

... determine the possibilities for
the next step ...

... and so on ...

Thursday, January 17, 13

(c) 2007 Mauro Pezzè & Michal Young

…to a finite
state
machine…

NO
Maintenance

 Maintenance
(no warranty)

es
tim

a
te

co
sts

request a
t

maintenance station

(n o warranty)

request
by phone or web

[US or EU resident]

(contract number)

Wait for
pick up

Repair
(maintenance

station)

pi ck up

re
qu

es
t a

t
m

ai
nt

en
a

nc
e

s t
at

ion
o r

 b
y

e x
p

r e
ss

 c
ou

r i
er

(c
o

n t
r a

ct
 n

um
be

r)

Wait for
acceptance

accept
estimate

Wait for
returning

reject estim
a te

pi ck up

Repairedrepair completed

return

Repair
(regional

headquarters)

Repair
(main

headquarters)

su
cc

es
sfu

l re
pa

ir

un able to repa ir

(US or EU r esident)

su
cc

es
sf

ul
 re

pa
ir

u
nable

 to
rep

ai r

Wait for
component

lack
 c om

pon
en

t (a
)

lack component (b)

lack component (c)
component
arrives (c)

component
arrives (b)

component
arrives (a)

invalidcont ract
number

unable to repair
(not US or EU resident)

1 2 3

0

4 5 6

7 8

9

Thursday, January 17, 13

(c) 2007 Mauro Pezzè & Michal Young

…to a test suite

TC1 0 2 4 1 0

TC2 0 5 2 4 5 6 0

TC3 0 3 5 9 6 0

TC4 0 3 5 7 5 8 7 8 9 6 0

Meaning: From state 0 to
state 2 to state 4 to state 1 to

state 0

Is this a thorough test suite?
How can we judge?

Thursday, January 17, 13

(c) 2007 Mauro Pezzè & Michal Young

TC1 0 2 4 1 0

TC2 0 5 2 4 5 6 0

TC3 0 3 5 9 6 0

TC4 0 3 5 7 5 8 7 8 9 6 0

Thursday, January 17, 13

(c) 2007 Mauro Pezzè & Michal Young

TC1 0 2 4 1 0

TC2 0 5 2 4 5 6 0

TC3 0 3 5 9 6 0

TC4 0 3 5 7 5 8 7 8 9 6 0

Thursday, January 17, 13

(c) 2007 Mauro Pezzè & Michal Young

TC1 0 2 4 1 0

TC2 0 5 2 4 5 6 0

TC3 0 3 5 9 6 0

TC4 0 3 5 7 5 8 7 8 9 6 0

Thursday, January 17, 13

(c) 2007 Mauro Pezzè & Michal Young

TC1 0 2 4 1 0

TC2 0 5 2 4 5 6 0

TC3 0 3 5 9 6 0

TC4 0 3 5 7 5 8 7 8 9 6 0

Thursday, January 17, 13

(c) 2007 Mauro Pezzè & Michal Young

TC1 0 2 4 1 0

TC2 0 5 2 4 5 6 0

TC3 0 3 5 9 6 0

TC4 0 3 5 7 5 8 7 8 9 6 0

Thursday, January 17, 13

(c) 2007 Mauro Pezzè & Michal Young

TC1 0 2 4 1 0

TC2 0 5 2 4 5 6 0

TC3 0 3 5 9 6 0

TC4 0 3 5 7 5 8 7 8 9 6 0

Thursday, January 17, 13

(c) 2007 Mauro Pezzè & Michal Young

“Covering” finite state machines

• State coverage:

• Every state in the model should be visited by at least one test case

• Transition coverage

• Every transition between states should be traversed by at least one test
case.

– This is the most commonly used criterion

• A transition can be thought of as a (precondition, postcondition) pair

Thursday, January 17, 13

(c) 2007 Mauro Pezzè & Michal Young

Path sensitive criteria?

• Basic assumption: States fully summarize history

• No distinction based on how we reached a state; this should be true of well-designed
state machine models

• If the assumption is violated, we may distinguish paths and devise criteria to
cover them

• Single state path coverage:

• traverse each subpath that reaches each state at most once

• Single transition path coverage:

• traverse each subpath that reaches each transition at most once

• Boundary interior loop coverage:

• each distinct loop of the state machine must be exercised the minimum, an
intermediate, and the maximum or a large number of times

• Of the path sensitive criteria, only boundary-interior is common

Thursday, January 17, 13

(c) 2007 Mauro Pezzè & Michal Young

Completeness of the model

• Finite State Machines are usually incomplete

• don’t care transitions (do anything or nothing)

• error transitions (trigger error-handling procedure)

• self transitions (remain in the same state)

• Implicit transitions usually represent impossible or irrelevant transitions.

• Not necessary to test them

Thursday, January 17, 13

(c) 2007 Mauro Pezzè & Michal Young

Testing decision structures
Some specifications are structured as decision tables,

decision trees, or flow charts. We can exercise these as if
they were program source code.

Thursday, January 17, 13

(c) 2007 Mauro Pezzè & Michal Young

from an informal specification..
Pricing: The pricing function determines the adjusted price of a configuration for

a particular customer.
	 The scheduled price of a configuration is the sum of the scheduled price of

the model and the scheduled price of each component in the configuration.
The adjusted price is either the scheduled price, if no discounts are
applicable, or the scheduled price less any applicable discounts.

 	There are three price schedules and three corresponding discount schedules,
Business, Educational, and Individual.

 ….
• Educational prices: The adjusted price for a purchase charged to an

educational account in good standing is the scheduled price from the
educational price schedule. No further discounts apply.

…
• Special-price non-discountable offers: Sometimes a complete configuration is

offered at a special, non-discountable price. When a special, non-
discountable price is available for a configuration, the adjusted price is the
non-discountable price or the regular price after any applicable discounts,
whichever is less

Thursday, January 17, 13

(c) 2007 Mauro Pezzè & Michal Young

Boolean expressions as outputs

(individual account

AND NOT current purchase > tier1 individual threshold

AND NOT special offer price < individual scheduled price)

OR (business account

AND NOT current purchase > tier1 business threshold

AND NOT current purchase > tier1 business yearly threshold

AND NOT special offer price < business scheduled price)

-> no discounts

Thursday, January 17, 13

(c) 2007 Mauro Pezzè & Michal Young

…to a decision table …
eduedu individualindividualindividualindividualindividualindividual

EduAc T T F F F F F F
BusAc - - F F F F F F

CP > CT1 - - F F T T - -
YP > YT1 - - - - - - - -
CP > CT2 - - - - F F T T
YP > YT2 - - - - - - - -
SP < Sc F T F T - - - -
SP < T1 - - - - F T - -
SP < T2 - - - - - - F T

out Edu SP ND SP T1 SP T2 SP

Thursday, January 17, 13

(c) 2007 Mauro Pezzè & Michal Young

businessbusinessbusinessbusinessbusinessbusinessbusinessbusinessbusinessbusinessbusinessbusiness
EduAc - - - - - - - - - - - -
BusAc T T T T T T T T T T T T

CP > CT1 F F T T F F T T - - - -
YP > YT1 F F F F T T T T - - - -
CP > CT2 - - F F - - - - T T - -
YP > YT2 - - - - F F - - - - T T
SP > Sc F T - - - - - - - - - -
SP > T1 - - F T F T - - - - - -
SP > T2 - - - - - - F T F T F T

out ND SP T1 SP T1 SP T2 SP T2 SP T2 SP

Thursday, January 17, 13

(c) 2007 Mauro Pezzè & Michal Young

…with constraints…

at-most-one (EduAc, BusAc)

at-most-one (YP < YT1, YP > YT2)

YP > YT2 -> YP > YT1

at-most-one (CP < CT1, CP > CT2)

CP > CT2 -> CP > CT1

at-most-one (SP < T1, SP > T2

SP > T2 -> SP > T1

Thursday, January 17, 13

(c) 2007 Mauro Pezzè & Michal Young

…to test cases

• Basic condition coverage

• a test case specification for each column in the table

• Compound condition adequacy criterion

• a test case specification for each combination of truth values of basic
conditions

• Modified condition/decision adequacy criterion (MC/DC)

• each column in the table represents a test case specification.

• we add columns that differ in one input row and in outcome, then merge
compatible columns

Thursday, January 17, 13

(c) 2007 Mauro Pezzè & Michal Young

Example MC/DC

C.1 C.1a C.1b C.10

EduAc T F T -
BusAc - - - T

CP > CT1 - - - F
YP > YT1 - - - F
CP > CT2 - - - -
YP > YT2 - - - -
SP > Sc F F T T
SP > T1 - - - -
SP > T2 - - - -

out Edu * * SP

Thursday, January 17, 13

(c) 2007 Mauro Pezzè & Michal Young

Example MC/DC

C.1 C.1a C.1b C.10

EduAc T F T -
BusAc - - - T

CP > CT1 - - - F
YP > YT1 - - - F
CP > CT2 - - - -
YP > YT2 - - - -
SP > Sc F F T T
SP > T1 - - - -
SP > T2 - - - -

out Edu * * SP

Generate C.1a and C.
1b by flipping one

element of C.1

C.1b can be merged
with an existing

column (C.10) in the
spec

Outcome of
generated columns

must differ from
source column

Thursday, January 17, 13

(c) 2007 Mauro Pezzè & Michal Young

Flowgraph based testing
If the specification or model has both decisions and

sequential logic, we can cover it like program source code.

Thursday, January 17, 13

(c) 2007 Mauro Pezzè & Michal Young

from an informal spec (i/iii)...

• Process shipping order: The Process shipping order
function checks the validity of orders and prepares the
receipt
A valid order contains the following data:

• cost of goods: If the cost of goods is less than the minimum
processable order (MinOrder) then the order is invalid.

• shipping address: The address includes name, address, city, postal
code, and country.

• preferred shipping method: If the address is domestic, the shipping
method must be either land freight, expedited land freight, or
overnight air; If the address is international, the shipping method
must be either air freight, or expedited air freight.

Thursday, January 17, 13

(c) 2007 Mauro Pezzè & Michal Young

...(ii/iii)...

• a shipping cost is computed based on

• address and shipping method.

• type of customer which can be individual, business, educational

• preferred method of payment. Individual customers can use only credit
cards, business and educational customers can choose between credit
card and invoice

• card information: if the method of payment is credit card, fields credit
card number, name on card, expiration date, and billing address, if
different than shipping address, must be provided. If credit card
information is not valid the user can either provide new data or abort the
order

Thursday, January 17, 13

(c) 2007 Mauro Pezzè & Michal Young

...(iii/iii)

• The outputs of Process shipping order are

• validity: Validity is a boolean output which indicates whether
the order can be processed.

• total charge: The total charge is the sum of the value of goods
and the computed shipping costs (only if validity = true).

• payment status: if all data are processed correctly and the
credit card information is valid or the payment is invoice,
payment status is set to valid, the order is entered and a
receipt is prepared; otherwise validity = false.

Thursday, January 17, 13

(c) 2007 Mauro Pezzè & Michal Young

…to a
flowgraph

preferred shipping method = land freight,
OR expedited land freight OR overnight air

Process shipping order

CostOfGoods < MinOrder

shipping address

no

yes

domestic

preferred shipping method = air
freight OR expedited air freight

international

calculate domestic shipping chargecalculate international shipping charge

total charge = goods + shipping

individual customer no

yes

obtain credit card data: number, name
on card, expiration date

method of payement

credit card

invoice

billing address = shipping address

obtain billing address

no

yes

valid credit card
information

no

yes

payement status = valid
enter order

prepare receipt

invalid order

nono

abort order?
no

yes

Thursday, January 17, 13

(c) 2007 Mauro Pezzè & Michal Young

...from the flow graph to test cases

Case
 Too

Small
 Ship

Where
Ship

Method
Cust
Type

Pay
Method

Same
Address CC valid

TC-1 No Int Air Bus CC No Yes
TC-2 No Dom Land - - - -
TC-3 Yes - - - - - -
TC-4 No Dom Air - - - -
TC-5 No Int Land - - - -
TC-6 No - - Edu Inv - -
TC-7 No - - - CC Yes -
TC-8 No - - - CC - No (abort)

TC-9 No - - - CC -
No (no
abort)

Branch testing: cover all branches

Thursday, January 17, 13

(c) 2007 Mauro Pezzè & Michal Young

Grammar-based testing
Complex input is (or can) often be described by a context-

free grammar

Thursday, January 17, 13

(c) 2007 Mauro Pezzè & Michal Young

Grammars in specifications

• Grammars are good at:

• Representing inputs of varying and unbounded size

• With recursive structure

• And boundary conditions

• Examples:

• Complex textual inputs

• Trees (search trees, parse trees, ...)

• Note XML and HTML are trees in textual form

• Program structures

• Which are also tree structures in textual format!

Thursday, January 17, 13

(c) 2007 Mauro Pezzè & Michal Young

Grammar-based testing

• Test cases are strings generated from the grammar

• Coverage criteria:

• Production coverage: each production must be used to generate at
least one (section of) test case

• Boundary condition: annotate each recursive production with
minimum and maximum number of application, then generate:

• Minimum

• Minimum + 1

• Maximum - 1

• Maximum

Thursday, January 17, 13

(c) 2007 Mauro Pezzè & Michal Young

from an informal specification (i/iii)...

• The Check-configuration function checks the validity of a computer
configuration.

• The parameters of check-configuration are:

• Model

• Set of components

Thursday, January 17, 13

(c) 2007 Mauro Pezzè & Michal Young

... (ii/iii)...

• Model: A model identifies a specific product and
determines a set of constraints on available components.
Models are characterized by logical slots for components,
which may or may not be implemented by physical slots
on a bus. Slots may be required or optional. Required
slots must be assigned with a suitable component to
obtain a legal configuration, while optional slots may be
left empty or filled depending on the customers' needs

• Example: The required ``slots'' of the C20 laptop computer include
a screen, a processor, a hard disk, memory, and an operating
system. (Of these, only the hard disk and memory are
implemented using actual hardware slots on a bus.) The optional
slots include external storage devices such as a CD/DVD writer.

Thursday, January 17, 13

(c) 2007 Mauro Pezzè & Michal Young

... (iii/iii)

• Set of Components: A set of [slot,component] pairs, which must
correspond to the required and optional slots associated with the
model. A component is a choice that can be varied within a model, and
which is not designed to be replaced by the end user. Available
components and a default for each slot is determined by the model.
The special value empty is allowed (and may be the default selection)
for optional slots. In addition to being compatible or incompatible with
a particular model and slot, individual components may be compatible
or incompatible with each other.

• Example: The default configuration of the C20 includes 20 gigabytes of
hard disk; 30 and 40 gigabyte disks are also available. (Since the hard disk
is a required slot, empty is not an allowed choice.) The default operating
system is Ubuntu 12, personal edition, Ubuntu 10 edition may also be
selected. The 12 edition requires at least 30 gigabytes of hard disk.

Thursday, January 17, 13

(c) 2007 Mauro Pezzè & Michal Young

…to a grammar

<Model> ::= <modelNumber> <compSequence>
<optCompSequence>

<compSequence> ::= <Component> <compSequence> | empty

<optCompSequence> ::= <OptionalComponent> <optCompSequence> |
empty

<Component> ::= <ComponentType> <ComponentValue>
<OptionalComponent> ::= <ComponentType>

<modelNumber> ::= string
<ComponentType> ::= string
<ComponentValue> ::= string

Thursday, January 17, 13

(c) 2007 Mauro Pezzè & Michal Young

…to a grammar with limits

Model <Model> ::= <modelNumber> <compSequence>
<optCompSequence>

compSeq1 [0, 16] <compSequence> ::= <Component> <compSequence>
compSeq2 <compSequence> ::= empty

optCompSeq1 [0,
16] <optCompSequence> ::= <OptionalComponent>

<optCompSequence>

optCompSeq2 <optCompSequence> ::= empty
Comp <Component> ::= <ComponentType> <ComponentValue>

OptComp <OptionalComponent> ::= <ComponentType>
modNum <modelNumber> ::= string
CompTyp <ComponentType> ::= string

CompVal <ComponentValue> ::= string

Thursday, January 17, 13

(c) 2007 Mauro Pezzè & Michal Young

…to test cases

• “Mod000”

• Covers Model, compSeq1[0], compSeq2, optCompSeq1[0],
optCompSeq2, modNum

• “Mod000 (Comp000, Val000) (OptComp000)”

• Covers Model, compSeq1[1], compSeq2, optCompSeq2[0],
optCompSeq2, Comp, OptComp, modNum, CompTyp,
CompVal

Thursday, January 17, 13

(c) 2007 Mauro Pezzè & Michal Young

Boundary condition grammar-based criterion

• compSeq1[0] (0 times)

• compSeq1[1] (1 time)

• compSeq1[15] (n-1 times)

• compSeq1[16] (n times)

• compSeq1[17] (n+1 times)

Thursday, January 17, 13

(c) 2007 Mauro Pezzè & Michal Young

Grammar vs. Combinatorial Testing

• Combinatorial specification-based testing is good for “mostly independent”
parameters

• We can incorporate a few constraints, but complex constraints are hard to
represent and use

• We must often “factor and flatten”

• E.g., separate “set of slots” into characteristics “number of slots” and
predicates about what is in the slots (all together)

• Grammar describes sequences and nested structure naturally

• But some relations among different parts may be difficult to describe and
exercise systematically, e.g., compatibility of components with slots

Thursday, January 17, 13

(c) 2007 Mauro Pezzè & Michal Young

Probabilistic grammar-based criteria

• Assign probabilities to productions, indicating which production to select at
each step to generate test cases.

• Probabilities as interpreted as weights that determine how frequent each
production is used to generate a test case.

Thursday, January 17, 13

(c) 2007 Mauro Pezzè & Michal Young

Summary: The big picture

• Models are useful abstractions

• In specification and design, they help us think and communicate about complex
artifacts by emphasizing key features and suppressing details

• Models convey structure and help us focus on one thing at a time

• We can use them in systematic testing

• If a model divides behavior into classes, we probably want to exercise each of
those classes!

• Common model-based testing techniques are based on state machines, decision
structures, and grammars

• but we can apply the same approach to other models

Thursday, January 17, 13

(c) 2007 Mauro Pezzè & Michal Young

Model based testing for
Object Oriented Software

Thursday, January 17, 13

(c) 2007 Mauro Pezzè & Michal Young

Characteristics of OO Software
Typical OO software characteristics that impact testing

• State dependent behavior

• Encapsulation

• Inheritance

• Polymorphism and dynamic binding

• Abstract and generic classes

• Exception handling

Thursday, January 17, 13

(c) 2007 Mauro Pezzè & Michal Young

Intraclass State Machine Testing

• Basic idea:

– The state of an object is modified by operations

– Methods can be modeled as state transitions

– Test cases are sequences of method calls that traverse the state
machine model

• State machine model can be derived from specification (functional testing),
code (structural testing), or both

Thursday, January 17, 13

(c) 2007 Mauro Pezzè & Michal Young

Informal state-full specifications

Slot: represents a slot of a computer model.

	 slots can be bound or unbound. Bound slots are assigned a compatible
component, unbound slots are empty. Class slot offers the following
services:

• Incorporate: slots can be installed on a model as required or optional.
...

• Bind: slots can be bound to a compatible component.
...

• Unbind: bound slots can be unbound by removing the bound component.

• IsBound: returns the current binding, if bound; otherwise returns the special
value empty.

Thursday, January 17, 13

(c) 2007 Mauro Pezzè & Michal Young

Identifying states and transitions

• From the informal specification we can identify three states:

– Not_present

– Unbound

– Bound

• and four transitions

– incorporate: from Not_present to Unbound

– bind: from Unbound to Bound

– unbind: ...to Unbound

– isBound: does not change state

Thursday, January 17, 13

(c) 2007 Mauro Pezzè & Michal Young

Deriving an FSM and test cases

Not present Unbound Bound
1 20

isBound

isBound
bind

unBind

unBind

incorporate

• TC-1: incorporate, isBound, bind, isBound

• TC-2: incorporate, unBind, bind, unBind, isBound

Thursday, January 17, 13

(c) 2007 Mauro Pezzè & Michal Young

Testing with State Diagrams

• A statechart (called a “state diagram” in UML) may be produced as part of a
specification or design

• May also be implied by a set of message sequence charts (interaction
diagrams), or other modeling formalisms

• Two options:

– Convert (“flatten”) into standard finite-state machine, then derive test
cases

– Use state diagram model directly

Thursday, January 17, 13

(c) 2007 Mauro Pezzè & Michal Young

Statecharts specification

class model

modelSelected

workingConfiguration

noModelSelected

validConfiguration

addComponent(slot, component)

send mopdelDB: findComponent()

send slot:bind()

removeComponent(slot)

send slot:unbind()

addComponent(slot, component)

send Component_DB: get_component()

send slot:bind

deselectModel()

selectModel(model)

send modelDB: getModel(modelID,this)

removeComponent(slot)

send slot:unbind()

isLegalConfiguration()

[legalConfig = true]

Thursday, January 17, 13

(c) 2007 Mauro Pezzè & Michal Young

Statecharts specification

class model

modelSelected

workingConfiguration

noModelSelected

validConfiguration

addComponent(slot, component)

send mopdelDB: findComponent()

send slot:bind()

removeComponent(slot)

send slot:unbind()

addComponent(slot, component)

send Component_DB: get_component()

send slot:bind

deselectModel()

selectModel(model)

send modelDB: getModel(modelID,this)

removeComponent(slot)

send slot:unbind()

isLegalConfiguration()

[legalConfig = true]

super-state or
“OR-state”

Thursday, January 17, 13

(c) 2007 Mauro Pezzè & Michal Young

Statecharts specification

class model

modelSelected

workingConfiguration

noModelSelected

validConfiguration

addComponent(slot, component)

send mopdelDB: findComponent()

send slot:bind()

removeComponent(slot)

send slot:unbind()

addComponent(slot, component)

send Component_DB: get_component()

send slot:bind

deselectModel()

selectModel(model)

send modelDB: getModel(modelID,this)

removeComponent(slot)

send slot:unbind()

isLegalConfiguration()

[legalConfig = true]

super-state or
“OR-state”

method of
class Model

Thursday, January 17, 13

(c) 2007 Mauro Pezzè & Michal Young

Statecharts specification

class model

modelSelected

workingConfiguration

noModelSelected

validConfiguration

addComponent(slot, component)

send mopdelDB: findComponent()

send slot:bind()

removeComponent(slot)

send slot:unbind()

addComponent(slot, component)

send Component_DB: get_component()

send slot:bind

deselectModel()

selectModel(model)

send modelDB: getModel(modelID,this)

removeComponent(slot)

send slot:unbind()

isLegalConfiguration()

[legalConfig = true]

super-state or
“OR-state”

method of
class Model

called by
class Model

Thursday, January 17, 13

(c) 2007 Mauro Pezzè & Michal Young

From Statecharts to FSMs

workingConfiguration

noModelSelected

validConfiguration

addComponent(slot, component)

removeComponent(slot)addComponent(slot, component)

deselectModel()selectModel(model)

removeComponent(slot)

isLegalConfiguration()

[legalConfig=true]

deselectModel()

Thursday, January 17, 13

(c) 2007 Mauro Pezzè & Michal Young(c) 2008 Mauro Pezzè & Michal Young

Statechart based criteria

• In some cases, “flattening” a Statechart to a finite-state machine may cause
“state explosion”

• Particularly for super-states with “history”

• Alternative: Use the statechart directly

• Simple transition coverage:
execute all transitions of the original Statechart

• incomplete transition coverage of corresponding FSM

• useful for complex statecharts and strong time constraints
(combinatorial number of transitions)

 Ch 15, slide 14

Thursday, January 17, 13

