Automated Testing & Verification

Richer type systems

Galeotti/Gorla/Rau
Saarland University

What is a type?

Is a set of values of an expression
Example: intx; { x €7 | MIN_INT<=x<= MAX_INT }

Together with the operations that can be applied to these
values

int x

X+ 4 :int

x + “hello"?

What is a type system?
A set of types and the rules for creating and using them.

What are they good for?

Classify/Filter programs
If a program does not type checks, then it is not part

of the lanquage

Forbid undesirable behaviors
Adding “dates” to “words”
Unsafe handling of a pointer

Force the usage of user-defined interfaces
Abstract types

Basic type checking

The type checking follows the syntactic
structure of the term to check

There is an inference rule for each node in the
syntax tree

A |-Ex:int
A |- E2:int

A |- E2+E2:int (sum)

Where A |- E: T is a type judgement

given A=[x:T ..., x.:T] a set of type assumptions,
it can be derived from these typing rules that E is of
type T

We say a term is well typed if [] |- E: T

Type-system rules example

Terms:
aisavariable
..,71, 0,1,... are integer expressions
E + E : is the addition
T m(T a) { Body } is a method declaration
m(E) is an invocation to method m

Tisatype

A|-T2 m(Tla) {..}: T1 =T2

A@)=T Al-E:T1
Al-a:T (var) A|-m(E) :T2 (app)
n=..-1,0,1, ... Al-El:int

A |-E2:int

[1]- n:int (const)

A |- E1+E2:int (sum)

Type-system rules example

A|-T2 m(Tla) {..}: Tl = T2 int m()
A@)=T A|-E:T1 {

Al-a:T (var) Al-m(E) :T2 (app)

return inc(4+2);
}

1, .. Al-El:int int inc(a: int)
Al-E2:int {

[1]- n:int (const) A |- E1+E2:int (sum) eEiELhen ey

}

app

|- 4:int (const) |- 2:int (const)

inc

|- 4+2:int (sum) |-intinc(a:int){...}: int -> int

|-inc(4+2): int (app) v

Type-system rules example

A|-T2 m(Tla) {..}: T1 = T2
A@)=T A|-E:TI

Al-a:T (var) A|-m(E) :T2 (app)

n=..-1,0,1, .. Al-El:int
A|-E2:int

[1]- n:int (const) A |-E1+E2:int (sum)

|- 4:int (const) |-“a":?

|- 4+"a":Error! (sum)

int m()
{
return inc(4+”7a”);

}
int inc(a: int)
{

return a+l;

}

app

inc

Type Inference

We call erase(e) to a function taking a “well-
typed” e that returns e with no type-
information.

Given a non-typed term e Is this the result of
erase(e) for some e? Which are the types of e?

This is the type inference problem. We have to
find valid types instead of just checking their
validity.

Type Inference

. . int m()

Discover all type annotations such ;

that the program typechecks. return inc(4+2);
Idea: Introduce unknowns to the rules b
and see if the rules can be solved ? inc(a: ?)
consistely {
Al-Exint return a+l;
A Ez2:int A xT1|-E:T2

A |- Ex+E2:int (sum) A |-T2 func(x:tTa) {E} : T1=> T2 (func)

Func(a)
fa:int} |- a:int |- 2:int
A=int Inc
B=int *
{a:Al |- a+1:B =int (sum)
a 1
|- B inc(a:A) {a+1; }: A>B (func) -int inc(a:int) fa+1; }

A richer type system

Idea: Use types to filter out programs with
undesirable behavior
Examples:
Potential runtime exceptions
Non-null types

Security/Protection
Reference inmmutability / ownership types

A certain protocol is not obeyed
Type states

Non-null types

class C {
D f;
c() A
if (bluemoon()) { Was freally initialized?
} b ¢ [t depends on a condition
C(D x) {
) = Does f point to an object?
void m() f{ ¢ It depends on the value x

f.90;
}
}
Can field f be null?

Non-null types

class C {

. — Field fis non-null !
£

c(O |
if (bluemoon()) {
f = new D();

} Now the errors are explicit
} ‘
1. Pathsdo notinitialize f
clo o« 2. x can not be assigned to f
= x;
}
void m() {
£.907;

Non-null Annotation

Extend the type system to:
Improve documentation
Record intention

Usage:
Detect errors during source compilation
Detect errors sooner, possibly before dereference
Low the number of runtime exceptions
Optimization
Useful for other analysis

Extensions

@Nullable

Types given a class T /\

Non-null: T! (@nonNull T) Null Non-null
Possibly-null: T (@Nullable T)

1

Use T! for arguments, return, fields, variables ...

object
Explicity type cast from Tto T/ / \
/C Object'
New type hierarchy D, \ ya
Changes in semantic of constructors D!/

T £ = new T(...);// createan objectof type non-null

Tn=t; // OK:nullable super type of non-null

if (n '= null)

t = n; // herenhastypeT!
t = (T")n; // requires a cast (runtime check)
int x = t.£; // requirest non-null
tm(R I // requirestnon-null

throw t; // requirestnon-null

Component initialization (constructors, arrays)
Default reference initialization is to null!

Constructors must enforce object invariants
Each non-null field must be initialized

Do we grant access to partially initialized objects?

No: simpler, but more limited
No method invocation is allowed from the constructor!

Yes: what is the type for those objects?

Example

class A §
string! name;
public A(string! s) {
this.name =s;
this.m(55);

OK: name is
initialized before its
use

}

virtual void m(int x) { ... }

}

Example (cont.)

classB:A{
string! path; !
public B(string! p, string! s)
: base(s) {
; this.path = p;

override void m(int x) {
... a =this.path ...

}

m() is invoked from A’s
constructor, before B()
class A { initialized path!

string! name;

public A(string! s) {
this.name =s;
this.m(55);

virtual void m(intx) { ...}

Solution

The “raw” type

x: T object partially
initialized of type T

A constructor can only call methods ﬁ S TR,
accepting Raw data types. b

For raw objects, the rules reading and
writing fields change:

Given x: T [f the field x.f has type C!:
read (t =x.f) returnst: C (it might be null)

write(x.f =b) requires b:C! (whatever we write, it
might be non-null)

Example

class A §{ classB:A{
string! name;

public A(string! s) {

this.name =s; public B(string! p, string! s)

string! path;

this.m(s5); : base(s) { this.path = p; }
[Raw]
virtual void m(intx) {... } [Raw]))
} override void m(int x) {
... a =this.path ...

}

Now a is @Nullable }
So any dereference of a fails!

20

An implementation

Spec# type system

http://research.microsoft.com/en-us/projects/
specsharp/

A richer type system

Idea: Use types to filter out programs with
undesirable behavior
Examples:
Potential runtime exceptions
Non-null types

Security/Protection
Reference inmmutability / ownership types

A certain protocol is not obeyed
Type states

Reference immutability

Any problem with this program?

class C {
private int data;

public int getData () {
return data;
}
}

int i = myClass.getData();
1++;

Reference immutability

And with this program?

class C {
private string data;

public string getData() {
return data;
}
}

String s = myClass.getData() ;
s.trim();

Reference immutability

Information Leak

=And with this one?

class C {
private List data;

public List getData() {
return data;
}
}

List 1 = myClass.getData() ;
l.add();

¢ Mutation error: a side-effect leads to an
undesired update.

=A security leak in JDK 1.1

class Class {
private Object[] signers;
Object[] getSigners() {
return signers;

}

Example

A possible solution

class C {
private List data;

Is this what we want?

' ?
sublic List getbata() | Is always that simple?
)7

return new List (data
}
}

List 1 = myClass.getData();
l.add();

It does not seem to be a feasible solution

Enriching our type system

=\We might indicate that a given reference is immutable

class C {
private List data;

public @ReadOnly List getData() {
return data;
}
}

List 1 = myClass.getData() ;
l.add(); // compilation error!

Protecting arguments

public void m(Graph g) {

g.addEgde (nl,n2) ;
}

We want to forbid changes to g
Is this enough?

No! “final” only avoids a reference
from being modified.

public void m(final Graph g) {

g.addEgde (nl,n2) ;
}

public void m(@ReadOnly Graph g) { Is it enough now?
... Yes! Readonly protects the
g.addEgde (nl, n2) ;// compilation error reference

Kinds of Immutability

Object immutability: an object can not be
modified by any reference

Graph temp = new Graph() ;
// construct the graph

readonly Graph g = temp;
temp = null;

Reference immutability: independent control for each
reference

Abstract state mutation

Mutation: any change to the abstract state of
the object.
Abstract state: by default all fields. Some fields can be

excluded. The abstract state is recursive over all
reachable objects.

Two control mechanisms:
Mutability
Assignability

Mutability

It defines if the (abstract) state of an object can
be modified.

class Date {
int year;

}

/*mutable*/ Date d;
readonly Date rd;
d.year = 2005; // OK
rd.year = 2005; // Error

Mutability annotations

They are applied on fields and variables

readonly: The referent abstract state can not be
modified

mutable: The abstract state can be modified
Default for all local variables

this-mutable: (all for fields)
Mutability depends on container class
It can be modified if the container instance is mutable

It can't be modified if the container class is read-only
this.f is mutable if this is mutable and f is this-mutable
this.f is readonly if this is readonly y fis this-mutable

Mutability vs. Assignability

Mutable Assignable
It is a part of the type It's not a part of the type
readonly final
final Date fd = null;

@readonly Date rd = null;

fd = new Date(); // Error: final
rd = null; // OK

Date dl1 = fd; // OK
Date d2 = rd; // Error: wrong type

Type system

Each (mutable) type T has readonly T assuper
type
In other words, we can assign a mutable to a readonly
reference, but not the other way around.

readonly
Object

T

/*mutable*/ readonly
Object Date

\/’

/*mutable*/
Date

readonly

class Account {
@ReadOnly Customer owner;
@Mutable RequestLog requests;
Balance bal; //def:this-mutable
t

Account a; //def:mutable
@ReadOnly Account ra;
a.owner.setName (“Bob”); // Error
ra.owner.setName (“Bob”) ; // Error

Mutability of ref. £

Declared Resolved mutability of ref
mutability of £

mutable readonly

readonly readonly readonly

mutable this-mutable

class Account { class Account { R
@ReadOnly Customer owner; mutable excludes @ReadOnly Customer owner; this-mutable:the
@Mutable RequestLog requests; requests fromthe @Mutable RequestLog requests; mutability of bal
Balance bal; //def:this-mutable abstract state of the Balance bal; //def:this-mutable depends on the

} object. } mutability of this

Account a; //def:mutable Account a; //def:mutable

@ReadOnly Account ra; @ReadOnly Account ra;

a.requests.add(“checkBalance”); // OK a.balance.withdraw(1000); // OK

ra.requests.add (“checkBalance”); // OK

Mutability of ref. £
Mutability of ref. £ Declared Resolved mutability of ref
Declared Resolved mutability of ref mutability of £ | 1y taple readonly
mutability of £ | mytable readonly readonly readonly | readonly
readonly readonly | readonly mutable mutable mutable
mutable mutable mutable this-mutable | mutable <? readonly>

this-mutable

Recap

class Account { . . class Account { Mutability of ref . £
@ReadOnly Customer owner; this-mutable:the @ReadOnly Customer owner; D ility of
. tability of bal . eclared Resolved mutability of ref
@Mutable Requestlog requests; mu Yy @Mutable RequestLog requests; mutability of
Balance bal; //def:this-mutable depends on the Balance bal; //def:this-mutable £ mutable | readonly
e . }
) mutablllty of this - readonly readonly | readonly
coo 9 i£3 1
Account a; //def:mutable pecount a; //def:mutable mutable mutable | mutable

@ReadOnly Account ra;
@Readonly Account ra; this-mutable | mutable | <? readonly>
a.balance.withdraw(1000); // OK i Y
ra.balance.withdraw(1000); // Error

Mutability of ref. £ a.owner.setName (“Bob”) ; // Error
" ra.owner.setName (“Bob”); // Error
Declared Resolved mutability of ref a.requests.add (“checkBalance”); // OK
mutability of £ ra.requests.add (“checkBalance”); // OK
mutable readonly a.balance.withdraw (1000); // OK

readonly readonly readonly ra.balance.withdraw(1000); // Error
mutable mutable mutable
this-mutable mutable <? readonly>

Assignability

Assignability

Assignability (ref. £)]
Declared Mutability (re£)]
assignability of £ mutable readonly
final no-assignable |no-assignable
assignable assignable assignable
this-assignable assignable no-assignable
class Bicycle { =h.id = 5;
final int id; =rb.id = 5;

@Assignable int hashCode; - -
int gear; //def:this-assignable *b.hashCode = 5;
} *rb.hashCode = 5;

Bicycle b; //def:mutable
@ReadOnly Bicycle rb; sph gear = 5:
- ’

*rb.gear = 5;

Assignability (ref. £)]
Declared Mutability (ref)]
assignability of £ mutable readonly
final no-assignable |no-assignable
assignable assignable assignable
this-assignable assignable no-assignable
class Bicycle { =h.id = 5;
final int id; =rb.id = 5;

}

Bicycle b; //def:mutable
@ReadOnly Bicycle rb;

@Assignable int hashCode;

=h.hashCode = 5;
int gear; //def:this-assignable

=rb.hashCode = 5;

=h.gear = 5;
=rb.gear = 5;

Problematic example

Problematic example

class Student {
@Assignable GradeReport grades; //this-mutable

}

myMethod (@ReadOnly GradeReport rg ...) {
Student s = new Student(); //mutable
@ReadOnly Student rs = s;

GradeReport g; //mutable

rs.grades = rg;
g = s.grades;

A this-mutable reference from readonly should be
readonly?

class Student {
@Assignable GradeReport grades; //this-mutable

}

myMethod (@ReadOnly GradeReport rg...) {
Student s = new Student(); //mutable
@ReadOnly Student rs = s; // Valid

GradeReport g; //mutable

rs.grades = rg; //readonly assigned to this-mutable
g = s.grades; // now g has rg as mutable!

A this-mutable reference from readonly should be
readonly?

No! It might turn a readonly reference to a mutable
reference without explicitly stating that.

This-mutables refs from readonly refs

Solution: Forbid a readonly reference from being copied to
a this-mutable field.

class Student {

}

assignable /*this-mut*/ GradeReport grades;

This-mutable fields are:

Read as readonly GradeReport
Written asmutable GradeReport

rs.grades = rg; // error! readonly (rg) assigned to a

mutable (rs.grades)

Javari

Javari is a backward-compatible extension of the
Java language.

The programmer can specify that a particular
reference is read-only

Cannot be used t change the state of its referent

Javari compile-time checker verifies this
property.

Javari: reference immutability

A reference is immutable if we can not use this
reference to modify the object
Others references might modify it

An extension of the type system to deal with
updates through references.

“Depth” immutability control
All the reachable state

Javari

Static typing
It is checked at compilation time
Type casting delegates checking at execution time

Uses
Documentation checkeable by a computer
Prevent/detect errors
Useful information for other analyses

A richer type system

Idea: Use types to filter out programs with
undesirable behavior
Examples:
Potential runtime exceptions
Non-null types
Security/Protection
Reference inmmutability / ownership types

A certain protocol is not obeyed
Type states

Encapsulation

Encapsulation: Restrict access to object internal
representation

The inner state of an object is hidden to the external
objects

Goals:
Independent from representation
Side-effects (preserve invariants)
Modular reasoning
Think of objects as components

Foundamental for reasoning on complex systems
And also for automatic analysis!

Security

Ownership types

Types for Flexible Alias protection

Property: Each object has an owner

Owners control access to objects

Use type-checking to enforce this property on
the programs

Ownership Types

world

Types for alias protection

Types for alias protection

class HT<o, k, i> {
private Array<this,k> keys;
private Array<this,i> items;
public void put(H<k> key, 0<i> value);
public 0<i> get(H<k> key);
¥
class Student {
¥

*The first parameter is the owner
*<this> means internal representation
object (also rep)

*<0> Owner passed as parameter

<world> Default, means no restrictions

<owner>: protects and
controls object

<this> o rep:
internal
representation,
can only be
accessed from
the
implementation

<world>: object
that can be
accessed from the
client and the
representation.

class HT<o, k, i> {
private Array<this, k> keys;
private Array<this,i> items;
public void put(H<k> key, 0<i> value);
public 0<i> get(H<k> key);
}
class Student {
}

class Mark {
}

class Course<s> {
HT<this,s,this> marks;

}

*The first parameter is the owner
*<this> means internal representation
object (also rep)

*<0> Owner passed as parameter

<world> Default, means no restrictions

class HT<o, k, i> {
private Array<this,k> keys;
private Array<this,i> items;
public void put(H<k> key, 0<i> value)
public 0<i> get(H<k> key);
}
class Student {
):
class Mark {

}

class Course<s> {
HT<this,s,this> marks;

}

*The first parameter is the owner
*<this> means internal representation
object (also rep)

*<0> Owner passed as parameter

e<world> Default, means no restrictions

class HT<o, k, i> {
private Array<this,k> keys;
private Array<this,i> items;
public void put(H<k> key, 0<i> value),
public 0<i> get(H<k> key);
}
class Student {
}

class Mark {

}

class Course<s> {
HT<this,s,s> marks;

}

*The first parameter is the owner
*<this> means internal representation
object (also rep)

*<0> Owner passed as parameter

e<world> Default, means no restrictions

A richer type system

Idea: Use types to filter out programs with
undesirable behavior
Examples:

Potential runtime exceptions
Non-null types
Security/Protection
Reference inmmutability / ownership types

A certain protocol is not obeyed
Type states

API protocols

Increasing complexity of APIs
Dozens or hundreds of functions
Not always well documented -"p
Programs are more dependent on them
Framework APIs
Library APIs
Database conections APlIs, etc.

Problem: how to correctly use them?

Example: queue

enqueue (0) dequeue ()
FTE OPEN &
O

close()

| CLOSED
Q is_closed()
s | _State / return true
@ - Initial state

foo() - Transition
/ do_something - Effect of transition

is closed()
/ return false

Typestate: dynamic types

A typestate is a dynamic version of a type

Indicates what actions are allowed onan Indicates what actions are allowed on an
instance. instance at a given instant

Each state in a typestate prunes functionality

engueue (o) dequeue ()

R OPEN
is_closed()
. / return false
close ()

CLOSED

Controlling access to an object

publ}? a;éﬁ%cigo%ﬂef%S@gn%gggrggggc%om¥ggjgb§ect

public static void fzégFull Object myObj) {

// we can_modify the state”of my b% .
} // ?only “read-only” references” can exist)
public static void fS(QPure Object m Obj& {

// we can no$ modify the s at$ o¥ myOb3j
} // ?other references may modity

blic stati id f4(@Sh Object myObj

Publis SEELLC yoid fafeghare deject mob)) {
} // (other share” reterences can also modify it)
Permisions can be modified

§Unique:>1x Full & Nx@Pure

it)

Full => Nx@Imm
Full => Nx@Share & Mx@Pure

A queue protocol

@Full(requires=“OPEN”, ensures=“CLOSED”)

void Close() enqueue (0) dequeue()

@Full(requires=“OPEN”, ensures=“OPEN”) <:174474ﬁ

void enqueue(@Share Object o) ~_ OPEN

{ ") is_closed()
e N N
@TrueIndicates(“CLOSED”) close()

@FalseIndicates(“OPEN”)
boolean is_closed()

CLOSED

is closed()
Q/ Teturn true
@Pure(requires=“OPEN”,ensures=“OPEN”)

Object dequeue()

Queue and multithreads...

Analyzing Queue usage

final Blocking_queue queue = new Blocking_queue();
// OPEN

for(int i=@;i<5;i++)

// OPEN
queue.enqueue(”Object " + i);
// OPEN
queue.close(); enqueue (o) dequeue ()
// CLOSED
" OPEN
/ is closel
. Q / feturndf()alse
close()
| CLOSED

. is_closed()
/ return true

final Blocking_queue queue = new Blocking_queue();

(new Thread() {
@Override
public void run() {
while(![queue.is_closed()])
System.out.println(“Got object: "+queue.dequeue());
System.exit();
1) .start();

for(int i=0;i<5;i++)
queue.enqueue(”Object"” + 1i);

| queue.close(); |

Any problem? Race condition
- _Z

Verifying Producer

final Blocking_queue queue = new Blocking_queue();

// @Unique(queue) OPi

(...).start();

// @Full(queue) OPEN«

for(int 1=0;i<5;i++)
queue.enqueue("Object " + i); C———

// @Full(queue) OPEN

queue.close(); <«

<< ®WFull(queue)
CLOSED

@Pure Satisfies the

bomdome 2o —ooo i precondition
@Fu11(reauires=“0OPFN” .

@Full(requires="“OPEN”, ensures=“CLOSED”)
void close()

Verifying Consumer

@0override
public void run() {

// @Pure(queue) <
while(!queue.is_closed())

// @Pure(queue) <«
System.out.println("Got object: “ +

queue.dequeue()); <=
System.exit();
}
@ Purd auene
@Pure Precondition is

@ @Pure(requires=“OPEN”,ensures=“OPEN")
@ Object dequeue()
boolean is_closed()

not satisfied
ERROR

Plural (Aldrich et al.)

Eclipse plugin
http://code.google.com/p/pluralism/

Typechecking is done through dataflow

Modular: type annotations
User is able to specify:

Access permissions (aliasing control)
Object abstract states (typestates)

