Problem: linked data structures

What about this case?
Can we reason about them modularly?

class Meeting { class Person {
int day; int freeDay;
invariant 0 = day<7; Meeting next;
invariant this.next != null
void Reschedule(int d) => this.next.day != freeDay;
requires 0 = d <7; }
{
expose(this){
day = d;
}
}

}
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Threats to Person’s object invariant
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Threats to Person’s object invariant
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Expose+ownership
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Expose+ownership
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Expose+ownership
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Expose+ownership
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Expose+ownership
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Expose+ownership

next.day != freeDay

call reschedule(4)
o
» D
= |5
D B | D
=" 2]
) =
& D
v =
m:MeetingW

inv = Valid

Committed
11/16/12 9




Expose+ownership
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Expose+ownership
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Expose+ownership
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Objects invariants + ownership
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Object invariants + ownership

ownership is an acyclic relation null
| can not own my owner

JOUMO

Each object has at most one owner

Ownership rule:

If 0.inv = Mutable, then owner(o), owner(owner(0)),
... are Mutable.

JOUMO

The object invariant of o can only depend on:

The fields of o

Any field of any other object which o owns
(recursively)

JOUMO
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Supporting Ownership

A new ghost field is added:

owner: reference to the “"owner” of the object
Field inv values are € {Committed, Valid,
Mutable}
An object status is Committed if:

The object invariant holds

Its owner is not in Mutable status
Commited: acts as a lock to guarantee validity
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Rep References - Example

The rep (representation) modifier introduces
implicitly ownership invariants

class Person {
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int freeDay;
[rep] Meeting next;

/*implicit invariant
next # null = next.owner

*/

this;
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Pack/Unpack+Ownership

pack/unpack is extended to support this new

protocol

unpack o:

assert o.inv = Valid;

o.1nv := Mutable;

foreach (¢ |c.owner = o)
{ c.inv := Valid; }
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pack o:

assert o.inv = Mutable;
assert Vc: c.owner = o =
c.ilnv = Valid;
foreach (¢ |c.owner = o)
{ c.inv := Committed; }
assert Invariant(o);
o.inv := Valid
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Invariants+Ownerships/Rep

Memory state:
Vo: o.inv = mutable =
Inv(0) A
(Vc: c.owner = 0 = c.inv = Committed))

Admissible Invariants:

Only accesses to fields
this.f,. ... .f, where f, ... .f, are fields of “rep”
references
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Example (reloaded)

class Person { class Meeting {
int freeDay; int day;
rep Meeting next; void reschedule( int d )
requires inv==valid; {
invariant next = null = expose(this) {
next.day = freeDay; day = d;
}
int doTravel(int td) }
requires inv==valid; }
modifies this.*;
{ Person person = ... ;
expose(this) { Meeting meeting = ... ;
freeDay = td; person.next := meeting ;

if (next!=null) {
next.reschedule((td+1)%7);
}i
}
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Rep references

*/[Rep] defines an object hierarchy
*What happens to other (recursive) structures?

@0

11/16/12



Example: cyclic list?

class CyclicList {
[rep] Node header;

//implicit invariant header.owner

}

class Node {
[rep] Node next;

//implicit invariant next.owner ==

}
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== this

this
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Problem with cyclic lists

class CyclicList {

[rep] Node header; :CyclicList
header
} owner
class Node { ez
A
[rep] Node next; owner
next
} :Node
next

owner?
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Peer references

class T1 {
[rep] Object f1;

/*f1l.owner=this*/

}

class T1 {
[peer] Object £f1;

/*f1l.owner=this.owner*/

}
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The [rep] modifier
states | am the owner
of the reference

The [peer] modifier
states the reference
and | share the same
owner
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Example: cyclic lists

class CyclicList {

[rep] Node header;

//header.owner ==

}

class Node ({

[peer] Node next;

// next.owner ==

}
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Modular verification of invariants in Spec#

This methodology deals with
Re-entrancy (using the “inv” field value)
Nested structures (using ownership)

It handles:
Recursive linked structures (lists)
Recursion, ownership transference (not seen today)

It allows a modular verification
Check only the invariant of the class under analysis

Access protocol (inv field)
Aliasing is not restricted
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Some references

Tutorial Spec#

http://www.cs.nuim.ie/~rosemary/ETAPS-
SpecSharp-Tutorial.pdf

Paper:
M. Barnett et al. Boogie: A modular reusable
verifier for object-oriented programs. 2006




