Problem: linked data structures

What about this case?
Can we reason about them modularly?

class Meeting { class Person {
int day; int freeDay;
invariant 0 = day<7; Meeting next;
invariant this.next != null
void Reschedule(int d) => this.next.day != freeDay;
requires 0 = d <7; }
{
expose(this){
day = d;
}
}

}

11/16/12 1



Threats to Person’s object invariant

next.day != freeDay

(p1 :Personw

\ /

Another object might invoke clo .
to a method of class Meeting
breaking Person’s invariant

1Xau
Th
=
o
®)

@ v T T
CallZowwetile) (1 Moeting 8,
> By modifying m | might

L J break the invariant of
other class (Foo)

11/16/12



Threats to Person’s object invariant

next.day != freeDay

( - Person W

- %
call Me(@ st %,

J Restrict Meeting's
N .
aliasing

v

11/16/12 3



Expose+ownership

next.day != freeDay

(p1 :Personw

\ /

A

1Xau

JOUMO

v
(m:MeetingW

. J {_

Valid

Committed
11/16/12 4




Expose+ownership

next.day != freeDay

call reschedule(4) ( p1 ;Personw
\L J requires this.inv=Valid

7

A

1Xau

JOUMO

\ 4
(m:MeetingW

. ) Mutale |

inv = Va“d

Committed
11/16/12 >




Expose+ownership

next.day != freeDay

call reschedule(4)
-]
Q)
X
- @)
=
-]
D
v -
(m:MeetingW

inv = Valid

Committed
11/16/12 6




Expose+ownership

next.day != freeDay

call reschedule(4)
o
nw QL
S5
© g | D
=" 2]
o) s
& @
v -
. . . m:MeetingW
requires this.inv=Valid t J

inv = Valid

Committed
11/16/12 7




Expose+ownership

next.day != freeDay

call reschedule(4)
o
28
> : -]
3P |2
s ~ | Q
o) =
-]
N o)
v -

inv = Valid

Committed
11/16/12 8




Expose+ownership

next.day != freeDay

call reschedule(4)
o
» D
= |5
D B | D
=" 2]
) =
& D
v =
m:MeetingW

inv = Valid

Committed
11/16/12 9




Expose+ownership

next.day != freeDay

call reschedule(4)
)
L)
X
- @)
=
-]
D
v -
(m:MeetingW

inv = Valid

Committed

11/16/12 10




Expose+ownership

next.day != freeDay

call reschedule(4) ( p1 ;Personw

\ /

A

p1:Person will return
m:Meeeting to
Commited status

1Xau

JOUMO

\ 4
(m:MeetingW

. ) Mutale |

inv = Va“d

Committed

11/16/12 H




Expose+ownership

next.day != freeDay

In case it exists, ( p1 :Personw
P1’s owner will L J
return this object to A

Commited status

1Xau

JOUMO

A4
(m:MeetingW

— e |

inv = Valid

Committed

11/16/12 12




Objects invariants + ownership

Which objects must be in Mutable null
status if Room is Mutable? T%
_ f :Pe;son )
From Person’ s perspective, what | )
fields can | access? F
( :Meetingw
)
:
( ‘Room W
L

11/16/12



Object invariants + ownership

ownership is an acyclic relation null
| can not own my owner

JOUMO

Each object has at most one owner

Ownership rule:

If 0.inv = Mutable, then owner(o), owner(owner(0)),
... are Mutable.

JOUMO

The object invariant of o can only depend on:

The fields of o

Any field of any other object which o owns
(recursively)

JOUMO

11/16/12



Supporting Ownership

A new ghost field is added:

owner: reference to the “"owner” of the object
Field inv values are € {Committed, Valid,
Mutable}
An object status is Committed if:

The object invariant holds

Its owner is not in Mutable status
Commited: acts as a lock to guarantee validity

11/16/12



Rep References - Example

The rep (representation) modifier introduces
implicitly ownership invariants

class Person {

11/16/12

int freeDay;
[rep] Meeting next;

/*implicit invariant
next # null = next.owner

*/

this;

16



Pack/Unpack+Ownership

pack/unpack is extended to support this new

protocol

unpack o:

assert o.inv = Valid;

o.1nv := Mutable;

foreach (¢ |c.owner = o)
{ c.inv := Valid; }

11/16/12

pack o:

assert o.inv = Mutable;
assert Vc: c.owner = o =
c.ilnv = Valid;
foreach (¢ |c.owner = o)
{ c.inv := Committed; }
assert Invariant(o);
o.inv := Valid

17




Invariants+Ownerships/Rep

Memory state:
Vo: o.inv = mutable =
Inv(0) A
(Vc: c.owner = 0 = c.inv = Committed))

Admissible Invariants:

Only accesses to fields
this.f,. ... .f, where f, ... .f, are fields of “rep”
references

11/16/12 18



Example (reloaded)

class Person { class Meeting {
int freeDay; int day;
rep Meeting next; void reschedule( int d )
requires inv==valid; {
invariant next = null = expose(this) {
next.day = freeDay; day = d;
}
int doTravel(int td) }
requires inv==valid; }
modifies this.*;
{ Person person = ... ;
expose(this) { Meeting meeting = ... ;
freeDay = td; person.next := meeting ;

if (next!=null) {
next.reschedule((td+1)%7);
}i
}

11/16/12 19



Rep references

*/[Rep] defines an object hierarchy
*What happens to other (recursive) structures?

@0

11/16/12



Example: cyclic list?

class CyclicList {
[rep] Node header;

//implicit invariant header.owner

}

class Node {
[rep] Node next;

//implicit invariant next.owner ==

}

11/16/12

== this

this

21



Problem with cyclic lists

class CyclicList {

[rep] Node header; :CyclicList
header
} owner
class Node { ez
A
[rep] Node next; owner
next
} :Node
next

owner?

11/16/12 22



Peer references

class T1 {
[rep] Object f1;

/*f1l.owner=this*/

}

class T1 {
[peer] Object £f1;

/*f1l.owner=this.owner*/

}

11/16/12

The [rep] modifier
states | am the owner
of the reference

The [peer] modifier
states the reference
and | share the same
owner

23



Example: cyclic lists

class CyclicList {

[rep] Node header;

//header.owner ==

}

class Node ({

[peer] Node next;

// next.owner ==

}

11/16/12

this

v

:CyclicList ,

A

header
owne

v

‘Node

owner

owner next

next

:Node

24



Modular verification of invariants in Spec#

This methodology deals with
Re-entrancy (using the “inv” field value)
Nested structures (using ownership)

It handles:
Recursive linked structures (lists)
Recursion, ownership transference (not seen today)

It allows a modular verification
Check only the invariant of the class under analysis

Access protocol (inv field)
Aliasing is not restricted

25



Some references

Tutorial Spec#

http://www.cs.nuim.ie/~rosemary/ETAPS-
SpecSharp-Tutorial.pdf

Paper:
M. Barnett et al. Boogie: A modular reusable
verifier for object-oriented programs. 2006




