Automated Testing & Verification

Intraprocedural Dataflow Analysis

Dataflow Static Analyzers

All tools that evaluate code directly (no code execution)

All possible executions are modeled

Over an abstraction of the program state
Less precise than dynamic analysis (no concrete program executions)
Safer than underapproximating

Targets "mechanical” errors (difficult to find through Testing or code
Inspection)
Memory usage errors (null dereferences, uninitialized data, double free errors)
Resource Leaking (locks, files, memory)
Vulnerabilities (buffer overruns, SQL injection)
APl violations, private data being exposed
Non handled exceptions, concurrency issues (race conditions), etc.

Property Inference
Specifications, invariants, resource usage

Dataflow Analysis

Motivation:

Find interesting properties/errors
x is null, x is copied toy, y is a des-referenced

Optimization
Execution time, memory consumption, etc

Guarantee of Correctness

Critical Systems
To make sure abscence of a certain kind of errors

Guarantees are needed for Optimizing
Example: eliminate dead code, move a statement outside the loop

Automaticity
Cost Reducction
Unfeasiable manually

Dataflow analysis: common uses

For code optimization
Detect unused variables;
Remove dead code
Detect frequently used expressions.
Purity (method with no side-effects)
Valid object dereference (avoid null checking).

For program understanding
Infer the type of a function
Obtain pre/post, invariants.
Resource Usage

Reverse engineering

Call-graph of a OO program
Behavioral models

Examples

Classical:

Live variable analysis, Reaching definitions, Available expressions,
etc..

Mainly for optimization

Safety / Program Understanding
Zero analysis
Null pointer
Intervals: array ranges
Invariants

For further analysis:
Points-to analysis
Call graph
Aliasing

Available expressions

Detect which expressions are
available at each program point

Remove redundant computations
An expression (x op y) is available in a

given program point if for all
program executions leading to that

point

xop y is computed at least once

x e yis not redefined since the moment
when x op y was computed

——

{

int b = a + 2;

{ a + 2}

int ¢ = b*b;

{ a + 2, b*b }
int d =c¢ + 1;

{ a + 2, b*b, c+1}
c = 4;

{ a + 2, b*b }
if(b < c) b = 2;
else ¢ = atl;

{ a + 2}

return d;

Live variable analysis

Identify which variables are
"alive” (namely, will be used later in the
program)
x is alive since the moment it was defined until
the last use or until it is redefined

Uses:
Assign variables to registers

Remove dead code

Remove code linked to assigning variables no
longer alive

e B e O N e T i e T i e T e e

©))))
-~ Q. Il Q& O+ p

Q

}

b =a +
}

C = b*b;
}

d =c +
}

4;

y €}
urn d+c;

Zero analysis

Infer the value for
each variable and
answer

Is X equal to Zero?

Uses:

Early bug detection
Division by zero
Null dereference

Constant Propagation

while y > -1 do

X .

y

X/ Y;
y-2;

>;

Zero analysis

Infer the value for
each variable and
answer

Is X equal to Zero?

Uses:

Early bug detection
Division by zero
Null dereference

Constant Propagation

[]
X := 8;
[x=>» NZ]
y = X;
x> NZ, y=> NZ]
Z := 0;
[x=>» NZ, y=>» NZ, z=>» Z]
while y > -1 do
x> NZ, y=> MZ, 22 MZ]
X =X/ Y;
[x=>» NZ, y=>» MZ, z=» MZ]
y 1= y-2;
[x=» NZ, y=>» MZ, z=» MZ]
z := 5;
x> NZ, y=>» MZ, z=» NZ]

Dataflow Analysis

One of the most popular static analysis

techniques.

1:x:=8
Purpose: Infer automatically 2:y:=x
interesting properties of a program G

Specifically, to a given program point

y> -1
Principle: Model execution of a program as 4:x:=x/y
the solution of a set of equations describing
the flow of values throught the program 5:y:=y-2

Instructions.

6:z:=5

Dataflow Analysis: Intuition

"execute” the program using abstract values.

Collect in each program point all the information
flowing to that point

It can give us information for each program point.

Which are the possible values of variable Y after executing
instruction #57?

Can the “null” value flow towards x in any instruction?

It can distinguish instruction order
Was a file read after it was closed?

Flow sensitive
Needs a control-flow graph

Dataflow Analysis: elements

Control-flow graph: A representation of
the flow of control in the program

MZ
Abstract values: represent information N
flowing through the program
Transfer function: what is the effect over NZ 2]
the program state for every program P——
Instruction 4 NZ, x> N2

Dataflow Equations: how abstract values
flow according to the control flow of the
program

Control-Flow Graph

Shows execution order

Operations are usually dicomposed into
simpler instructions

Example (3-address code) 2:y:=x

a=b+c+d=>t1=b+c;a=t1+d
3:z:=0

Iterative constructs are removed (while, for,
repeat) y> -1

They are modeled as backward-edges in the

control-flow graph 4:x:=x/y

Objective: to analyze a simpler operation one
at a time.

5:y:=y-2

6:z:=5

Abstract values

Choose an abstraction according to the interesting
property

MZ
?
X can be equal to Zero? NZ Z

Was expression a+b computed previously? —-
Do we need variable x at this point of the program?
Where does the value being assigned to x came from?
Is this file open?

Is variable x equal to null when it is de-referenced?

Do x and y represent the same object?

Key: The abstract state must be tractable
Abstract values must belong to a lattice.

Typically finite lattice (at least lattice height)

Abstraction requires approximation

Abstraction => do not handle the concrete state
We do not handle actual information

Example: Natural numbers

3—3=0 MZ

Abs(3) = NZ

How much is NZ — NZ? Z)
Abs(3) = NZ 0o 1,23.

Abs(3-3)=NZ-NZ => MZ

Transfer function

Indicates the effect of each instruction on the
abstract state

Given a node (instruction) and a abstract YD NZ, >
state it creates a new abstract state

l:x:=x+y
FStmt(O) = OJ [y NZ, x> NZ]
Example:
Frexey(ly™ NZ , x> Z]) = [y NZ, x> NZ]

Some properties:
It has to be monotonous : x <=y =2 f(x) <= f(y)

Closed under composition (f(f(x)) is always defined)

Dataflow Analysis: elements

Dataflow equations:

They provide how a node’s output is =
computed given its inputs

In which order data flow and how it is
combined

Forward: From the program entry towards its
exit

Zero analysis, available expressions, etc Y37, x> 7]
Backward: From the program exit to its entry

Live variables analysis

How to interpret the collected data

What to do if there are data flowing from to
different nodes:

Apply the “"upper bound”/ MAY Analysis
Apply the “lower bound”/ MUST Analysis

[y=> NZ, x=> Z]

X=Xty

[y=> NZ, x> NZ]

[y=> NZ, x=> Z]
l:x:=x+y

[y=> MZ , x> MZ]

Equation examples

Live variables analysis
in[n], out[n] = set of variables
transfer[n](X) = gen(n) U (X —kill(n))
gen(n) = read accesses to variables in node n
kill(n) = write accesses to variables in n

@® = U (of sets)
out[n] :=U{in[m] | m Esucc(n) }
in[n] := transfer[n](out[n])

Available expressions
in[n], out[n] = set of expressions
transfer[n](X) = gen(n) U (X N kill(n))

gen(n) = new expressions created

kill(n) = exprs containing variables written by n

@ =M (of sets)
in[n] :=N {fout[m]| m Epred(n) }
out[n] := transfer[n](in[n])

ty, 23
in
x = y+l
out {Xl Z}
x3 {z}
in in
succ n succ n
pred n pred n
out out
{a+b, b+2} fa+b} {a+b, a-c}
in
a=c¢c+d
out
fc+d}

Framework Dataflow

For each node n:

"in[n]: abstract values before program point n

mout[n]: abstract values after program point n

stransfer[n]: operation to apply on the values flowing through node n
For each analysis:

"®: join operator (for joining several input/output values)

Forward Given in[n], compute out[n] Given in[n], compute out[n]
Apply transfer[n] to Apply transfer[n] to predecessors[n]
predecessors[n] Property holds in all paths
Property holds in some path (available expressions)
(reaching defs, zero analysis)

Backward Given out[n], compute in[n] Given out[n], compute in[n]
Apply transfer[n] to successors[n] Apply transfer[n] to successors[n]
Property holds in some path Property holds in all paths

(live variable analysis) (very busy expressions)

Iterative algorithm

Compute out[n] for each n EN:
out[n] := L (or TOP if MUST analysis)
Repeat
For each n
in[n] := ®{out[m] | m Epred(n) }
out[n] := transfer[n](in[n])

Until no further changes to in/out

