Introduction to structural testing and dataflow testing
Structural testing

- Judging test suite thoroughness based on the *structure* of the program itself

- Also known as “white-box”, “glass-box”, or “code-based” testing

- To distinguish from functional (requirements-based, “black-box” testing)

- “Structural” testing is still testing product functionality against its specification. Only the measure of thoroughness has changed.
Why structural (code-based) testing?

- One way of answering the question “What is missing in our test suite?”
 - If part of a program is not executed by any test case in the suite, faults in that part cannot be exposed
 - But what’s a “part”?
 - Typically, a control flow element or combination:
 - Statements (or CFG nodes), Branches (or CFG edges)
 - Fragments and combinations: Conditions, paths
 - Complements functional testing: Another way to recognize cases that are treated differently
 - Recall fundamental rationale: Prefer test cases that are treated differently over cases treated the same
No guarantees

• Executing all control flow elements does not guarantee finding all faults
 - Execution of a faulty statement may not always result in a failure
 • The state may not be corrupted when the statement is executed with some data values
 • Corrupt state may not propagate through execution to eventually lead to failure
 • What is the value of structural coverage?
 - Increases confidence in thoroughness of testing
 • Removes some obvious inadequacies
Structural testing **complements** functional testing

• Control flow testing includes cases that may not be identified from specifications alone

 - Typical case: implementation of a single item of the specification by multiple parts of the program

 - Example: hash table collision (invisible in interface spec)

• Test suites that satisfy control flow adequacy criteria could fail in revealing faults that can be caught with functional criteria

 - Typical case: missing path faults
Structural testing in practice

- Create functional test suite first, then measure structural coverage to see what is missing

- Interpret unexecuted elements
 - may be due to natural differences between specification and implementation
 - or may reveal flaws of the software or its development process
 - inadequacy of specifications that do not include cases present in the implementation
 - coding practice that radically diverges from the specification
 - inadequate functional test suites

- Attractive because automated
 - coverage measurements are convenient progress indicators
 - sometimes used as a criterion of completion
 - use with caution: does not ensure effective test suites
Statement testing

• Adequacy criterion: each statement (or node in the CFG) must be executed at least once

• Coverage:

\[
\frac{\text{# executed statements}}{\text{# statements}}
\]

• **Rationale**: a fault in a statement can only be revealed by executing the faulty statement
Statements or blocks?

- Nodes in a control flow graph often represent basic blocks of multiple statements
 - Some standards refer to *basic block coverage or node coverage*
 - Difference in granularity, not in concept

- No essential difference
 - 100% node coverage <-> 100% statement coverage
 - but levels will differ below 100%
 - A test case that improves one will improve the other
 - though not by the same amount, in general
Example

\[T_0 = \{ "", "test", "test+case\%1Dadequacy" \} \]
17/18 = 94% Stmt Cov.

\[T_1 = \{ "adequate+test \%0Dexecution\%7U" \} \]
18/18 = 100% Stmt Cov.

\[T_2 = \{ "\%3D", "\%A", "a+b", "test" \} \]
18/18 = 100% Stmt Cov.
Coverage is not size

- Coverage does not depend on the number of test cases

 \[T_0, T_1 : T_1 \succ \text{coverage} T_0 \quad T_1 \prec \text{cardinality} T_0 \]

 \[T_1, T_2 : T_2 = \text{coverage} T_1 \quad T_2 \succ \text{cardinality} T_1 \]

- Minimizing test suite size is seldom the goal

 - small test cases make failure diagnosis easier

 - a failing test case in \(T_2 \) gives more information for fault localization than a failing test case in \(T_1 \)
“All statements” can miss some cases

- Complete statement coverage may not imply executing all branches in a program
- Example:
 - Suppose block F were missing
 - Statement adequacy would not require false branch from D to L

\[T_3 = \{\text{"", "+%0D+%4J"}\} \]

100% Stmt Cov.
No false branch from D

```c
int cgi_decode(char *encoded, char *decoded)
{
    char *eptr = encoded;
    char *dptr = decoded;
    int ok = 0;
    int digit_high = Hex_Values[*(++eptr)];
    int digit_low = Hex_Values[*(++eptr)];
    if (digit_high == -1 || digit_low == -1) {
        ok = 1;
    } else {
        *dptr = 16 * digit_high + digit_low;
    }
    while (*eptr) {
        *dptr = *eptr;
        *dptr = ' ';
        while (*eptr) {
            True
            if (c == '+') {
                *dptr = ' '; 
                return ok;
            }
            else {
                *dptr = *eptr;
                ++dptr;
            }
            ++eptr;
        }
        break;
    }
    *dptr = '*' ;
    return ok;
}
```
Branch testing

• Adequacy criterion: each branch (edge in the CFG) must be executed at least once

• Coverage:

\[
\frac{\text{# executed branches}}{\text{# branches}}
\]

\[T_3 = \{"", " +\%0D+\%4J"}\]

100% Stmt Cov. 88% Branch Cov. (7/8 branches)

\[T_2 = \{"\%3D", "\%A", "a+b", "test"\}\]

100% Stmt Cov. 100% Branch Cov. (8/8 branches)
Statements vs branches

- Traversing all edges of a graph causes all nodes to be visited

 - So test suites that satisfy the branch adequacy criterion for a program P also satisfy the statement adequacy criterion for the same program

- The converse is not true (see T_3)

 - A statement-adequate (or node-adequate) test suite may not be branch-adequate (edge-adequate)
Subsume relation

• Branch criterion subsumes statement criterion

Does this mean that if it is possible to find a fault with a test suite that satisfies statement criterion then the same fault will be discovered by any other test suite satisfying branch criterion?
Subsume relation

- Branch criterion subsumes statement criterion

Does this mean that if it is possible to find a fault with a test suite that satisfies statement criterion then the same fault will be discovered by any other test suite satisfying branch criterion?

NO!
“All branches” can still miss conditions

- Sample fault: missing operator (negation)

\[
\text{digit_high} == 1 \quad || \quad \text{digit_low} == -1
\]

- Branch adequacy criterion can be satisfied by varying only digit_high

 - The faulty sub-expression might never determine the result

 - We might never really test the faulty condition, even though we tested both outcomes of the branch
Other structural testing criteria

• Basic condition testing

• Compound conditions testing

• MC/DC

• Path testing

• Boundary interior testing

•

• (to be continued...)
Dataflow testing
Motivation

• Middle ground in structural testing
 • Node and edge coverage don’t test interactions
 • Path-based criteria require impractical number of test cases
 • And only a few paths uncover additional faults, anyway
 • Need to distinguish “important” paths

• Intuition: Statements interact through *data flow*
 • Value computed in one statement, used in another
 • Bad value computation revealed only when it is used
Dataflow concept

- Value of x at 6 could be computed at 1 or at 4

- Bad computation at 1 or 4 could be revealed only if they are used at 6

- (1,6) and (4,6) are def-use (DU) pairs
 - defs at 1,4
 - use at 6

(c) 2007 Mauro Pezzè & Michal Young
Terms

• DU pair: a pair of definition and use for some variable, such that at least one DU path exists from the definition to the use

\[x = \ldots \text{ is a definition of } x \]

\[= \ldots x \ldots \text{ is a use of } x \]

• DU path: a definition-clear path on the CFG starting from a definition to a use of a same variable

 • Definition clear: Value is not replaced on path

 • Note – loops could create infinite DU paths between a def and a use
Definition-clear path

- $1,2,3,5,6$ is a definition-clear path from 1 to 6
 - x is not re-assigned between 1 and 6

- $1,2,4,5,6$ is not a definition-clear path from 1 to 6
 - the value of x is “killed” (reassigned) at node 4

- $(1,6)$ is a DU pair because $1,2,3,5,6$ is a definition-clear path
Adequacy criteria

- **All DU pairs**: Each DU pair is exercised by at least one test case

- **All DU paths**: Each *simple* (non looping) DU path is exercised by at least one test case

- **All definitions**: For each definition, there is at least one test case which exercises a DU pair containing it

 - (Every computed value is used somewhere)
All du pairs (all-uses)

- Requires to cover all the following pairs:
 - def at 1 - use at 6
 - def at 1 - use at 7
 - def at 4 - use at 6
 - def at 4 - use at 7
All du paths

\[x = \ldots \]

- Requires to cover all the following pairs:
 - def at 1 - use at 9 (through 7)
 - def at 1 - use at 9 (through 8)
 - def at 4 - use at 9 (through 7)
 - def at 4 - use at 9 (through 8)

\[z = x + \ldots \]
All definitions

- Requires to cover 2 pairs:
 - def at 1 - use at 6
 OR
 - def at 1 - use at 7
 - def at 4 - use at 6
 OR
 - def at 4 - use at 7
Infeasibility

1. if \(\text{cond} \)

2. ...

3. \(x = \ldots \)

4. ...

5. if \(\text{cond} \)

6. \(y = x + \ldots \)

7. ...

• Suppose \(\text{cond} \) has not changed between 1 and 5
 • Or the conditions could be different, but the first implies the second

• Then (3,5) is not a (feasible) DU pair
 • But it is difficult or impossible to determine which pairs are infeasible

• Infeasible test obligations are a problem
 • No test case can cover them
Infeasibility

• The path-oriented nature of data flow analysis makes the infeasibility problem especially relevant

 • Combinations of elements matter!

 • Impossible to (infallibly) distinguish feasible from infeasible paths. More paths = more work to check manually.

• In practice, reasonable coverage is (often, not always) achievable

 • Number of paths is exponential in worst case, but often linear

 • All DU paths is more often impractical

(c) 2007 Mauro Pezzè & Michal Young
Reaching definitions analysis

- It is a **forward may** analysis

\[
\begin{align*}
in[n], \ out[n] &= \text{set of definitions of variables} \\
gen(n) &= \text{vn where var v is defined at node n} \\
k\ell(n) &= \text{vx where var v is defined at node n and } x \\
\oplus &= \bigcup (\text{of sets})
\end{align*}
\]

\[
\begin{align*}
in[n] &= \bigcup \{out[m] \mid m \ pred(n)\} \\
out[n] &= gen(n) \cup (in[n] - kill[n])
\end{align*}
\]
Reaching definitions analysis

- It is a **forward may** analysis

\[\text{in}[n], \text{out}[n] = \text{set of definitions of variables} \]
\[\text{gen}(n) = v_n \text{ where var } v \text{ is defined at node } n \]
\[\text{kill}(n) = v_x \text{ where var } v \text{ is defined at node } n \text{ and } x \]
\[\oplus = \bigcup \text{(of sets)} \]
\[\text{in}[n] := \bigcup \{ \text{out}[m] | m \text{ pred}(n) \} \]
\[\text{out}[n] := \text{gen}(n) \cup (\text{in}[n] - \text{kill}[n]) \]
Reaching definitions analysis

- It is a **forward may** analysis

\[\text{in}[n], \text{out}[n] = \text{set of definitions of variables} \]
\[\text{gen}(n) = v_n \text{ where var } v \text{ is defined at node } n \]
\[\text{kill}(n) = v_x \text{ where var } v \text{ is defined at node } n \text{ and } x \]
\[\oplus = \bigcup \text{(of sets)} \]
\[\text{in}[n] := \bigcup \{ \text{out}[m] \mid m \ \text{pred}(n) \} \]
\[\text{out}[n] := \text{gen}(n) \cup (\text{in}[n] - \text{kill}[n]) \]

(c) 2007 Mauro Pezzè & Michal Young
Reaching definitions analysis

- It is a **forward may** analysis

\[
\begin{align*}
in[n], \ out[n] &= \text{set of definitions of variables} \\
gen(n) &= v_n \text{ where var } v \text{ is defined at node } n \\
kill(n) &= v_x \text{ where var } v \text{ is defined at node } n \text{ and } x \\
\oplus &= \bigcup \text{(of sets)} \\
in[n] &= \bigcup \{ \ out[m] \mid m \ pred(n) \} \\
out[n] &= gen(n) \cup (in[n] - kill[n])
\end{align*}
\]
Reaching definitions analysis

- It is a **forward may** analysis

\[\begin{align*}
\text{in}[n], \text{out}[n] &= \text{set of definitions of variables} \\
\text{gen}(n) &= \text{vn where var v is defined at node n} \\
\text{kill}(n) &= \text{vx where var v is defined at node n and x} \\
\oplus &= \bigcup \text{(of sets)} \\
\text{in}[n] &= \bigcup \{ \text{out}[m] \mid m \text{ pred}(n) \} \\
\text{out}[n] &= \text{gen}(n) \cup (\text{in}[n] - \text{kill}[n])
\end{align*}\]
Reaching definitions analysis

• It is a **forward may** analysis

\[
\begin{align*}
\text{in}[n], & \text{ out}[n] = \text{set of definitions of variables} \\
\text{gen}(n) & = v_n \text{ where var } v \text{ is defined at node } n \\
\text{kill}(n) & = v_x \text{ where var } v \text{ is defined at node } n \text{ and } x \\
\oplus & = \bigcup \text{ (of sets)} \\
\text{in}[n] & := \bigcup \{ \text{out}[m] \mid m \text{ pred}(n) \} \\
\text{out}[n] & := \text{gen}(n) \cup (\text{in}[n] - \text{kill}[n])
\end{align*}
\]
Reaching definitions analysis

• It is a **forward may** analysis

\[
\text{in}[n], \text{out}[n] = \text{set of definitions of variables}
\]
\[
\text{gen}(n) = \text{vn where var } v \text{ is defined at node } n
\]
\[
\text{kill}(n) = \text{vx where var } v \text{ is defined at node } n \text{ and } x
\]
\[
\oplus = \bigcup \text{(of sets)}
\]
\[
\text{in}[n] := \bigcup \{ \text{out}[m] | m \text{ pred}(n) \}
\]
\[
\text{out}[n] := \text{gen}(n) \cup \text{in}[n] - \text{kill}[n]
\]
Reaching definitions analysis

• It is a **forward may** analysis

in\([n]\), out\([n]\) = set of definitions of variables

\(\text{gen}(n) = \{v_n\} \) where var \(v\) is defined at node \(n\)

\(\text{kill}(n) = \{v_x\} \) where var \(v\) is defined at node \(n\) and \(x\)

\(\oplus = \bigcup \) (of sets)

\(\text{in}[n] := \bigcup \{\text{out}[m] \mid m \text{ pred}(n)\}\)

\(\text{out}[n] := \text{gen}(n) \cup (\text{in}[n] - \text{kill}[n])\)
Reaching definitions analysis

- It is a **forward may** analysis

\[\text{in}[n], \text{out}[n] = \text{set of definitions of variables}\]
\[\text{gen}(n) = \text{vn where var v is defined at node n}\]
\[\text{kill}(n) = \text{vx where var v is defined at node n and } x\]
\[\oplus = \bigcup \text{(of sets)}\]

\[\text{in}[n] := \bigcup \{ \text{out}[m] | m \text{ pred}(n) \}\]
\[\text{out}[n] := \text{gen}(n) \cup (\text{in}[n] - \text{kill}[n])\]

(c) 2007 Mauro Pezzè & Michal Young
Reaching definitions analysis

- It is a **forward may** analysis

in[n], out[n] = set of definitions of variables

\[\text{gen}(n) = v_n \text{ where } v \text{ is defined at node } n \]

\[\text{kill}(n) = v_x \text{ where } v \text{ is defined at node } n \text{ and } x \]

\[\oplus = \bigcup \text{(of sets)} \]

\[\text{in}[n] := \bigcup \{ \text{out}[m] \mid m \text{ pred}(n) \} \]

\[\text{out}[n] := \text{gen}(n) \cup (\text{in}[n] - \text{kill}[n]) \]
Reaching definitions analysis

- It is a **forward may** analysis

\[
\begin{aligned}
in[n], \ out[n] &= \text{set of definitions of variables} \\
gen(n) &= \text{vn where var } v \text{ is defined at node } n \\
nkill(n) &= \text{vx where var } v \text{ is defined at node } n \text{ and } x \\
\oplus &= \cup \text{ (of sets)} \\
in[n] &= \cup \{ \text{out}[m] | m \text{ pred}(n) \} \\
out[n] &= \text{gen}(n) \cup (in[n] - \text{kill}[n])
\end{aligned}
\]

Every time a definition of variable x reaches a use of variable x we found a new DU pair.
Reaching definitions analysis

• It is a **forward may** analysis

\[
\text{in}[n], \text{out}[n] = \text{set of definitions of variables} \\
\text{gen}(n) = v_n \text{ where var } v \text{ is defined at node } n \\
\text{kill}(n) = v_x \text{ where var } v \text{ is defined at node } n \text{ and } x \\
\oplus = \bigcup \text{(of sets)}
\]

\[
\text{in}[n] := \bigcup \{ \text{out}[m] | m \text{ pred}(n) \} \\
\text{out}[n] := \text{gen}(n) \cup (\text{in}[n] - \text{kill}[n])
\]

Every time a definition of variable x reaches a use of variable x we found a new DU pair
Reaching definitions analysis

- It is a **forward may** analysis

\[
\text{in}[n], \text{out}[n] = \text{set of definitions of variables} \\
\text{gen}(n) = \text{vn where } \text{var } v \text{ is defined at node } n \\
\text{kill}(n) = \text{vx where } \text{var } v \text{ is defined at node } n \text{ and } x \\
\oplus = U \text{ (of sets)}
\]

\[
\text{in}[n] := U \{ \text{out}[m] \mid m \text{ pred}(n) \} \\
\text{out}[n] := \text{gen}(n) \cup (\text{in}[n] - \text{kill}[n])
\]

Every time a definition of variable x reaches a use of variable x we found a new DU pair
Subsumes relation between data flow criteria