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Structural testing

e Judging test suite thoroughness based on the structure of the program itself

e Also known as “white-box”, “glass-box”, or “code-based” testing

e To distinguish from functional (requirements-based, “black-box” testing)

e “Structural” testing is still testing product functionality against its
specification. Only the measure of thoroughness has changed.
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Why structural (code-based) testing”

« One way of answering the question “What is missing in our test suite?”

- If part of a program is not executed by any test case in the suite, faults in that part cannot
be exposed

- But what’s a “part™?
 Typically, a control flow element or combination:
o Statements (or CFG nodes), Branches (or CFG edges)
o Fragments and combinations: Conditions, paths
« Complements functional testing: Another way to recognize cases that are treated differently

- Recall fundamental rationale: Prefer test cases that are treated differently over cases
treated the same  AND AT
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No guarantees

e Executing all control flow elements does not guarantee finding all faults

- Execution of a faulty statement may not always result in a failure

» The state may not be corrupted when the statement is executed with some
data values

o Corrupt state may not propagate through execution to eventually lead to failure

 What is the value of structural coverage?

- Increases confidence in thoroughness of testing

« Removes some obvious inadequacies
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Structural testing complements functional testing

e Control flow testing includes cases that may not be identified from
specifications alone

- Typical case: implementation of a single item of the specification by
multiple parts of the program

- Example: hash table collision (invisible in interface spec)

o Test suites that satisfy control flow adequacy criteria could fail in revealing
faults that can be caught with functional criteria

- Typical case: missing path faults
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Structural testing in practice

« Create functional test suite first, then measure structural coverage to see what is
missing

e Interpret unexecuted elements
- may be due to natural differences between specification and implementation
- or may reveal flaws of the software or its development process
» inadequacy of specifications that do not include cases present in the implementation
e coding practice that radically diverges from the specification
» inadequate functional test suites
» Attractive because automated
- coverage measurements are convenient progress indicators
- sometimes used as a criterion of completion
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Statement testing

e Adequacy criterion: each statement (or node in the CFG) must be executed
at least once

 Coverage:

# executed statements

# statements

 Rationale: a fault in a statement can only be revealed by executing the faulty
statement
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Statements or blocks?

 Nodes in a control flow graph often represent basic blocks of multiple statements
- Some standards refer to basic block coverage or node coverage
- Difference in granularity, not in concept
 No essential difference
- 100% node coverage <-> 100% statement coverage
e but levels will differ below 100%
- A test case that improves one will improve the other
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—Xxample

TO =
{“” , “test” ,

“test+case%1Dadequacy”}
17/18 = 94% Stmt Cov.

T1 =
{*adequate+test

%0Dexecution%7U"}
18/18 = 100% Stmt Cov.

T2 -
{“%3D”, “%A”, “a+b”,
“test”}
18/18 = 100% Stmt Cov.

int cgi_decode(char *encoded, char *decoded)
v
[ while (*eptr) { (B )«

v
ﬂ
LTrueav

False

/

A

[{char *eptr = encoded;
char c; C
C = *eptr;
if (c=="+"){

char *dptr = decoded;
fFaIS

True \v

int ok = 0;
{elseif (c=="%"){ % g *dptr=""

:

FFaISe—LTru

e
*dptr = *eptr;
}

Ise

F ) [int digit_high = Hex_Values[*(++eptr)];
int digit_low = Hex_Values[*(++eptr)];
if (digit_high == -1 || digit_low == -1) {

ﬂ
vﬁFalse—)¥Trueﬁv
else {

ok = 1; |
*dptr = 16 * digit_high + }

digit_low;
} J
N y

ﬁeturn ok;
}

dptr ="\0";

v

/

o
) )
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Coverage is not size

e Coverage does not depend on the number of test cases

- Ty, Ty 14> T, T,< T,

coverage cardinality

—coverage

cardinality T1
e Minimizing test suite size is seldom the goal

- small test cases make failure diagnosis easier

- afailing test case in T, gives more information for fault localization than a
failing test case in T,

SOFTWARE TESTING
AND ANALYSIS

(c) 2007 Mauro Pezze & Michal Young

Thursday, December 6, 12



“*All statements” can miss some cases

int cgi_decode(char *encoded, char *decoded)

!
e« Complete statement [{char *eptr = encoded; ﬂ
. char *dptr = decoded;
coverage may not imply int ok = 0;
executing all branches in a ( Wh,le(i optr) { (B)- .
program / False T;Uﬁ
char c; C
e Example: [c=*eptr; %
f (¢ =="+){
- Suppose block F were ,—False True .
missing (elseifﬂ@ g*dptr="; @a
T
- Statement adequacy would e ue v

. ‘else { int digit_high = Hex_Values[*(++eptr)]; G
not require false branch *dptr = *eptr; int igit_low = Hex_ Values[*(++ept)}
from D to L } if (digit_high == -1 || digit_low == -1) {
FalseJTru

else { ok 1
T3 = *dptr = 16 * digit_high +

{‘m, “+%OD+%4J”} d|g|t low;
100% Stmt Cov. :

*dptr='§0'; M +dptr
No false branch from D Eetum » % \ R )
)

(c) 2007 Mauro Pezze & Michal Young

Thursday, December 6, 12



Branch testing

« Adequacy criterion: each branch (edge in the CFG) must be executed at
least once

« Coverage:

# executed branches

# branches

T, =1{", "+%0D+%4J"}
100% Stmt Cov. 88% Branch Cov. (7/8 branches)

T2 — {“%SD”, “%A”, “a+b”, “testu}
100% Stmt Cov. 100% Branch Cov. (8/8 branches)

(c) 2007 Mauro Pezze & Michal Young

Thursday, December 6, 12



Statements vs branches

* Traversing all edges of a graph causes all nodes to be visited

- S0 test suites that satisfy the branch adequacy criterion for a program P
also satisfy the statement adequacy criterion for the same program

« The converse is not true (see T,)

- A statement-adequate (or node-adequate) test suite may not be branch-
adequate (edge-adequate)

SOFTWARE TESTING
AND ANALYSIS

(c) 2007 Mauro Pezze & Michal Young

Thursday, December 6, 12



Subsume relation

 Branch criterion subsumes statement criterion

Does this mean that if it is

possible to find a fault with a test
suite that satisfies statement
criterion then the same fault will
be discovered by any other test
suite satisfying branch criterion?
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Subsume relation

 Branch criterion subsumes statement criterion

Does this mean that if it is

possible to find a fault with a test
suite that satisfies statement
criterion then the same fault will
be discovered by any other test
suite satisfying branch criterion?

NO!
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“All branches” can still miss conditions

« Sample fault: missing operator (negation)

digit_high == 1 || digit_low == -1

 Branch adequacy criterion can be satisfied by varying only digit_high

- The faulty sub-expression might never determine the result

- We might never really test the faulty condition, even though we tested
both outcomes of the branch
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Other structural testing criteria

 Basic condition testing

- Compound conditions testing
- MC/DC

* Path testing

- Boundary interior testing

SOFTWARE TESTING

* (to be continued...)
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Dataflow testing

Automated testing and
verification
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Motivation

- Middle ground in structural testing
* Node and edge coverage don’t test interactions
- Path-based criteria require impractical number of test cases
- And only a few paths uncover additional faults, anyway
* Need to distinguish “important” paths
- Intuition: Statements interact through data flow
« Value computed in one statement, used in another

SOFTWARE TESTING
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Dataflow concept

* Value of x at 6 could be

<:I\ computed at 1 or at 4
S - Bad computation at 1 or 4
S R could be revealed only if they
- N are used at 6
3 :
5 > - - (1,6) and (4,6) are

! b def-use (DU) pairs

6 _ v
- X 4+ ... * defs at 1,4

« use at 6

(c) 2007 Mauro Pezze & Michal Young

Thursday, December 6, 12



Terms

- DU pair: a pair of definition and use for some variable, such that at least one
DU path exists from the definition to the use

X = ... is adefinition of x
=...X...isause of x

- DU path: a definition-clear path on the CFG starting from a definition to a use
of a same variable

» Definition clear: Value is not replaced on path

* Note - loops could create infinite DU paths between a def and a use e
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Definition-clear path

e 1,2,3,5,6 Is a definition-
clear path from 1 to 6

* X is not re-assigned between 1
and 6

« 1,2,4,5,6 Is not a definition-
clear path from 1 to 6

 the value of x is
“killed” (reassigned) at node 4

* (1,6) is a DU pair because
1,2,3,5,6 is a definition-clear guerrs
path oy
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Adequacy criteria

 All DU pairs: Each DU pair is exercised by at least one test case

- All DU paths: Each simple (non looping) DU path is exercised by at least one
test case

« All definitions: For each definition, there is at least one test case which
exercises a DU pair containing it

 (Every computed value is used somewhere)

SOFTWARE TESTING
AND ANALYSIS

(c) 2007 Mauro Pezze & Michal Young

Thursday, December 6, 12



All du pairs (all-uses)

<1\ * Requires to cover all the
4 X=.... following pairs:

| 'f defat1 -useat6

ST I / defat1 -useat7

-defat4 -use at6

Qy Ay
-defat4 -useat7

QZ X+
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All du paths

: * Requires to cover all the
Y following pairs:

A
4), — » def at 1 - use at 9 (through 7)
S

CoiL - def at 1 - use at 9 (through 8)

| ”c  def at 4 - use at 9 (through 7)

- def at 4 - use at 9 (through 8)
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All definitions

@ . * Requires to cover 2 pairs:

2 edefat1 -useat6
OR

A N
?‘v QX -defat1-useat?7
1k /

Qy X+.... defat4 - use at 6

OR
Z )(+... edefat4 -useat?7
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Infeasibllity

| « Suppose cond has not
: | changed between 1 and 5
@n‘ (cond) 7
o - 3\)‘ « Or the conditions could be different,
| X = but the first implies the second
N ~
) - Then (3,5) is not a (feasible)
@ ' DU pair
If (Cond) - But it is difficult or impossible to
/ \ determine which pairs are infeasible
-
|

* Infeasible test obligations are
a problem

SOFTWARE TESTING
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 No test case can cover them
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Infeasibllity

- The path-oriented nature of data flow analysis makes the infeasibility problem
especially relevant

« Combinations of elements matter!

- Impossible to (infallibly) distinguish feasible from infeasible paths. More
paths = more work to check manually.

- In practice, reasonable coverage is (often, not always) achievable

- Number of paths is exponential in worst case, but often linear

- All DU paths is more often impractical
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Reaching definitions analysis

- It is a forward may analysis @
X =
|
2 :
in[n], out[n] = set of definitions of variables | ...
gen(n) = vn where var v is defined at node n 3 ~ 4\
kill(n) = vx where var v is defined at node n and x | o —
® = U (of sets) 5 NS >

in[n] := U {out[m]| m pred(n)

out[n] := gen(n) U (in[n] - kill[n]) 6 | l |
® -xs..
7 !

QZ=X+...
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Reaching definitions analysis

- It is a forward may analysis @ i
X=....
|
2 :
in[n], out[n] = set of definitions of variables | ...
gen(n) = vn where var v is defined at node n 3 ~ 4\
kill(n) = vx where var v is defined at node n and x | o —
® = U (of sets) 5 NS >

in[n] := U {out[m]| m pred(n)

out[n] := gen(n) U (in[n] - kill[n]) 6 | l |
® -xs..
7 !

QZ=X+...
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Reaching definitions analysis

- It is a forward may analysis

in[n], out[n] = set of definitions of variables
gen(n) = vn where var v is defined at node n
kill(n) = vx where var v is defined at node n and x

® = U (of sets)
in[n] := U {out[m]| m pred(n)
out[n] := gen(n) U (in[n] - kill[n])

x1}

~
D), -
N ~

9
5 i
Qy=x+
7 |

QZ=X+...
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Reaching definitions analysis

- It is a forward may analysis @ U
X= ...
> — | (x1}
in[n], out[n] = set of definitions of variables |
gen(n) = vn where var v is defined at node n 3 x1) - 4\
kill(n) = vx where var v is defined at node n and x | . —
® = U (of sets) i ~ o

in[n] := U {out[m]| m pred(n)

out[n] := gen(n) U (in[n] - kill[n]) 6 | l |
® -xs..
7 !

QZ=X+...
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Reaching definitions analysis

- It is a forward may analysis @ U
X= ...
> — | (x1}

: .. _ IT ..
in[n], out[n] = set of definitions of variables |

gen(n) = vn where var v is defined at node n 3 x1) - 4\

kill(n) = vx where var v is defined at node n and x | . —
® = U (of sets) {X1}5\ o

in[n] := U {out[m]| m pred(n) ’

out[n] := gen(n) U (in[n] - kill[n]) 6 | l |
® -xs..
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Reaching definitions analysis

- It is a forward may analysis @ = U
> — | (x1}
- . _ IT ..
in[n], out[n] = set of definitions of variables | 1
gen(n) = vn where var v is defined at node n 3 {X1 } v 4\ { }
kill(n) = vx where var v is defined at node n and x | o —
® = U (of sets) {X1}5\ o

in[n] := U {out[m]| m pred(n) ’

out[n] := gen(n) U (in[n] - kill[n]) 6 | l |
® -xs..
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Reaching definitions analysis

- It is a forward may analysis @ = U
5 < ‘ {x1}
in[n], out[n] = set of definitions of variables | 1
gen(n) = vn where var v is defined at node n 3 {X1 } v 4\ { }
kill(n) = vx where var v is defined at node n and x | =
® = U (of sets) 11 i ~ o )

in[n] := U {out[m]| m pred(n)

out[n] := gen(n) U (in[n] - kill[n]) 6 | l |
® -xs..
7 !

QZ=X+...
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Reaching definitions analysis

- It is a forward may analysis @ = U
2 — | (x1)
in[n], out[n] = set of definitions of variables | e
gen(n) = vn where var v is defined at node n 3 {X1 } v 4\ { }
kill(n) = vx where var v is defined at node n and x | -
® = U (of sets) X1} - . - x4}
in[n] := U fout[m] | m pred(n)? ’ -
out[n] := gen(n) U (in[n] - kill[n]) 6 l {X1 ,X4}
®, _x. .
7 !

QZ=X+...
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Reaching definitions analysis

- It is a forward may analysis @ = U
2 — | (x1)
in[n], out[n] = set of definitions of variables | e
gen(n) = vn where var v is defined at node n 3 {X1 } v 4\ { }
kill(n) = vx where var v is defined at node n and x | -
® = U (of sets) X1} - . - x4}
in[n] := U fout[m] | m pred(n)? ’ -
out[n] := gen(n) U (in[n] - kill[n]) 6 l {X1 ,X4}
®, _x. .
7 !

{x1,x4}
=X+ ...
(c) 2007 Mauro Pezze & Michal Young g

Thursday, December 6, 12



Reaching definitions analysis

- It is a forward may analysis @ = U
2 — | (x1)
in[n], out[n] = set of definitions of variables | e
gen(n) = vn where var v is defined at node n 3 {X1 } v 4\ { }
kill(n) = vx where var v is defined at node n and x | -
® = U (of sets) X1} - . - x4}
in[n] := U fout[m] | m pred(n)? ’ -
out[n] := gen(n) U (in[n] - kill[n]) 6 l {X1 ,X4}
®, _x. .
7 !

{x1,x4}
QZ - X+ ...
{x1,x4}
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Reaching definitions analysis

- It is a forward may analysis @ = U
2 — | (x1)
in[n], out[n] = set of definitions of variables | e
gen(n) = vn where var v is defined at node n 3 {X1 } v 4\ { }
kill(n) = vx where var v is defined at node n and x | -
® = U (of sets) X1} - ~ - x4}
in[n] := U fout[m] | m pred(n)? ’ -
out[n] := gen(n) U (in[n] - kill[n]) 6 l {X1 ,X4}
®, _x. .
7 !

{x1,x4}
Every time a definition of variable x reaches QZ =X+ ..
a use of variable x we found a new DU pair
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Reaching definitions analysis

- It is a forward may analysis @ U
X = ...
. f | {x1}
in[n], out[n] = set of definitions of variables | ; 1
gen(n) = vn where var v is defined at node n 3 {X1 } - ‘: 4\ { }
kill(n) = vx where var v is defined at node n and x | = ...
® = U (of sets) (x1) i N P xd]
in[n] := U {out[m]| m pred(n) ’ -~
out[n] := gen(n) U (in[n] - kill[n]) 6 l {X1 ,X4}
Qy =X+ ...
7 }

{x1,x4}
Every time a definition of variable x reaches QZ =X+ ..
a use of variable x we found a new DU pair
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Reaching definitions analysis

- It is a forward may analysis @ U
X=...
. f | {x1}
in[n], out[n] = set of definitions of variables | .2 e
gen(n) = vn where var v is defined at node n 3 X1} / 4\ X1}
kill(n) = vx where var v is defined at node n and x ‘ K = ...
® = U (of sets) (x 1} \ / x4}
in[n] := U fout[m] | m pred(n)? o
out[n] := gen(n) U (in[n] - kill[n]) {X 1 x 4}
Qy .

{x1,x4}
Every time a definition of variable x reaches QZ X+ .
a use of variable x we found a new DU pair
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Subsumes relation between data flow criteria

ALL PATHS

v
ALL DU PATHS

\ 4
A_gL US‘_E.S
ALL-C/SOME -P ALLJ—PISOME-C
l i M ALL Fv> USES
ALL - C USES ALL DEFS -
v
BRANCH

v

STATEMENT
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