Introduction to structural testing and dataflow testing

Automated testing and verification

J.P. Galeotti - Alessandra Gorla

Structural testing

- Judging test suite thoroughness based on the structure of the program itself
- Also known as "white-box", "glass-box", or "code-based" testing
- To distinguish from functional (requirements-based, "black-box" testing)
- "Structural" testing is still testing product functionality against its specification. Only the measure of thoroughness has changed.

Why structural (code-based) testing?

- One way of answering the question "What is missing in our test suite?"
 - If part of a program is not executed by any test case in the suite, faults in that part cannot be exposed
 - But what's a "part"?
 - Typically, a control flow element or combination:
 - Statements (or CFG nodes), Branches (or CFG edges)
 - Fragments and combinations: Conditions, paths
- Complements functional testing: Another way to recognize cases that are treated differently
 - Recall fundamental rationale: Prefer test cases that are treated differently over cases treated the same

No guarantees

- Executing all control flow elements does not guarantee finding all faults
 - Execution of a faulty statement may not always result in a failure
 - The state may not be corrupted when the statement is executed with some data values
 - · Corrupt state may not propagate through execution to eventually lead to failure
- What is the value of structural coverage?
 - Increases confidence in thoroughness of testing
 - Removes some obvious *inadequacies*

Structural testing complements functional testing

- Control flow testing includes cases that may not be identified from specifications alone
 - Typical case: implementation of a single item of the specification by multiple parts of the program
 - Example: hash table collision (invisible in interface spec)
- Test suites that satisfy control flow adequacy criteria could fail in revealing faults that can be caught with functional criteria
 - Typical case: missing path faults

Structural testing in practice

- Create functional test suite first, then measure structural coverage to see what is missing
- Interpret unexecuted elements
 - may be due to natural differences between specification and implementation
 - or may reveal flaws of the software or its development process
 - inadequacy of specifications that do not include cases present in the implementation
 - coding practice that radically diverges from the specification
 - inadequate functional test suites
- Attractive because automated
 - coverage measurements are convenient progress indicators
 - sometimes used as a criterion of completion
 - use with caution: does not ensure *effective* test suites

Statement testing

- Adequacy criterion: each statement (or node in the CFG) must be executed at least once
- Coverage:

executed statements

statements

 Rationale: a fault in a statement can only be revealed by executing the faulty statement

Statements or blocks?

- Nodes in a control flow graph often represent basic blocks of multiple statements
 - Some standards refer to basic block coverage or node coverage
 - Difference in granularity, not in concept
- No essential difference
 - 100% node coverage <-> 100% statement coverage
 - but levels will differ below 100%
 - A test case that improves one will improve the other
 - though not by the same amount, in general

Example

```
T<sub>0</sub> =
{"", "test",
"test+case%1Dadequacy"}
17/18 = 94% Stmt Cov.
```

T₁ =
{"adequate+test
%0Dexecution%7U"}
18/18 = 100% Stmt Cov.

T₂ =
{"%3D", "%A", "a+b",
"test"}
18/18 = 100% Stmt Cov.

Coverage is not size

Coverage does not depend on the number of test cases

-
$$T_0$$
, T_1 : $T_1 >_{coverage} T_0$ $T_1 <_{cardinality} T_0$

-
$$T_1$$
, T_2 : $T_2 =_{coverage} T_1$ $T_2 >_{cardinality} T_1$

- Minimizing test suite size is seldom the goal
 - small test cases make failure diagnosis easier
 - a failing test case in T₂ gives more information for fault localization than a failing test case in T₁

"All statements" can miss some cases

- Complete statement coverage may not imply executing all branches in a program
- Example:
 - Suppose block F were missing
 - Statement adequacy would not require *false* branch from D to L

```
T<sub>3</sub> = {"", "+%0D+%4J"}
100% Stmt Cov.
No false branch from D
```


Branch testing

- Adequacy criterion: each branch (edge in the CFG) must be executed at least once
- Coverage:

```
# executed branches
# branches
```

```
T_3 = \{\text{""}, \text{"} + \text{\%0D} + \text{\%4J"}\}
```

100% Stmt Cov. 88% Branch Cov. (7/8 branches)

$$T_2 = \{\text{"%3D"}, \text{"%A"}, \text{"a+b"}, \text{"test"}\}$$

100% Stmt Cov. 100% Branch Cov. (8/8 branches)

Statements vs branches

- Traversing all edges of a graph causes all nodes to be visited
 - So test suites that satisfy the branch adequacy criterion for a program P also satisfy the statement adequacy criterion for the same program
- The converse is not true (see T₃)
 - A statement-adequate (or node-adequate) test suite may not be branch-adequate (edge-adequate)

Subsume relation

Branch criterion subsumes statement criterion

Does this mean that if it is possible to find a fault with a test suite that satisfies statement criterion then the same fault will be discovered by any other test suite satisfying branch criterion?

Subsume relation

Branch criterion subsumes statement criterion

Does this mean that if it is possible to find a fault with a test suite that satisfies statement criterion then the same fault will be discovered by any other test suite satisfying branch criterion?

NO!

"All branches" can still miss conditions

Sample fault: missing operator (negation)

- Branch adequacy criterion can be satisfied by varying only digit_high
 - The faulty sub-expression might never determine the result
 - We might never really test the faulty condition, even though we tested both outcomes of the branch

Other structural testing criteria

- Basic condition testing
- Compound conditions testing
- MC/DC
- Path testing
- Boundary interior testing
- •
- (to be continued...)

Dataflow testing

Automated testing and verification

J.P. Galeotti - Alessandra Gorla

Motivation

- Middle ground in structural testing
 - Node and edge coverage don't test interactions
 - Path-based criteria require impractical number of test cases
 - And only a few paths uncover additional faults, anyway
 - Need to distinguish "important" paths
- Intuition: Statements interact through data flow
 - Value computed in one statement, used in another
 - Bad value computation revealed only when it is used

Dataflow concept

- Value of x at 6 could be computed at 1 or at 4
- Bad computation at 1 or 4 could be revealed only if they are used at 6
- (1,6) and (4,6) are def-use (DU) pairs
 - defs at 1,4
 - use at 6

Terms

• DU pair: a pair of *definition* and *use* for some variable, such that at least one DU path exists from the definition to the use

x = ... is a definition of x

 $= \dots \times \dots$ is a use of \times

- DU path: a definition-clear path on the CFG starting from a definition to a use of a same variable
 - Definition clear: Value is not replaced on path
 - Note loops could create infinite DU paths between a def and a use

Definition-clear path

- 1,2,3,5,6 is a definitionclear path from 1 to 6
 - x is not re-assigned between 1 and 6
- 1,2,4,5,6 is not a definitionclear path from 1 to 6
 - the value of x is "killed" (reassigned) at node 4
- (1,6) is a DU pair because 1,2,3,5,6 is a definition-clear path (c) 2007 Mauro Pezzè & Michal Young

Adequacy criteria

- All DU pairs: Each DU pair is exercised by at least one test case
- All DU paths: Each simple (non looping) DU path is exercised by at least one test case
- All definitions: For each definition, there is at least one test case which exercises a DU pair containing it
 - (Every computed value is used somewhere)

All du pairs (all-uses)

- Requires to cover all the following pairs:
 - def at 1 use at 6
 - def at 1 use at 7
 - def at 4 use at 6
 - def at 4 use at 7

All du paths

- Requires to cover all the following pairs:
 - def at 1 use at 9 (through 7)
 - def at 1 use at 9 (through 8)
 - def at 4 use at 9 (through 7)
 - def at 4 use at 9 (through 8)

All definitions

- Requires to cover 2 pairs:
 - def at 1 use at 6OR
 - def at 1 use at 7

- def at 4 use at 6 OR
- def at 4 use at 7

Infeasibility

- Suppose cond has not changed between 1 and 5
 - Or the conditions could be different, but the first implies the second
- Then (3,5) is not a (feasible) DU pair
 - But it is difficult or impossible to determine which pairs are infeasible
- Infeasible test obligations are a problem
 - No test case can cover them

Infeasibility

- The path-oriented nature of data flow analysis makes the infeasibility problem especially relevant
 - Combinations of elements matter!
 - Impossible to (infallibly) distinguish feasible from infeasible paths. More paths = more work to check manually.
- In practice, reasonable coverage is (often, not always) achievable
 - Number of paths is exponential in worst case, but often linear
 - All DU paths is more often impractical

It is a forward may analysis

in[n], out[n] = set of definitions of variables
 gen(n) = vn where var v is defined at node n
 kill(n) = vx where var v is defined at node n and x
 ⊕ = U (of sets)

 $in[n] := \bigcup \{out[m] \mid m \ pred(n)\}$ $out[n] := gen(n) \cup (in[n] - kill[n])$

It is a forward may analysis

in[n], out[n] = set of definitions of variables
 gen(n) = vn where var v is defined at node n
 kill(n) = vx where var v is defined at node n and x
 ⊕ = U (of sets)

 $in[n] := \bigcup \{out[m] \mid m \ pred(n)\}$ $out[n] := gen(n) \cup (in[n] - kill[n])$

It is a forward may analysis

in[n], out[n] = set of definitions of variables
 gen(n) = vn where var v is defined at node n
 kill(n) = vx where var v is defined at node n and x
 ⊕ = U (of sets)

 $in[n] := \bigcup \{out[m] \mid m \ pred(n)\}$ $out[n] := gen(n) \cup (in[n] - kill[n])$

It is a forward may analysis

in[n], out[n] = set of definitions of variables
 gen(n) = vn where var v is defined at node n
 kill(n) = vx where var v is defined at node n and x
 ⊕ = U (of sets)

 $in[n] := \bigcup \{out[m] \mid m \ pred(n)\}$ $out[n] := gen(n) \cup (in[n] - kill[n])$

It is a forward may analysis

in[n], out[n] = set of definitions of variables
 gen(n) = vn where var v is defined at node n
 kill(n) = vx where var v is defined at node n and x
 ⊕ = U (of sets)

 $in[n] := \bigcup \{out[m] \mid m \ pred(n)\}$ $out[n] := gen(n) \cup (in[n] - kill[n])$

It is a forward may analysis

in[n], out[n] = set of definitions of variables
 gen(n) = vn where var v is defined at node n
 kill(n) = vx where var v is defined at node n and x
 ⊕ = U (of sets)

 $in[n] := \bigcup \{out[m] \mid m \ pred(n)\}$ $out[n] := gen(n) \cup (in[n] - kill[n])$

It is a forward may analysis

in[n], out[n] = set of definitions of variables
 gen(n) = vn where var v is defined at node n
 kill(n) = vx where var v is defined at node n and x
 ⊕ = U (of sets)

 $in[n] := \bigcup \{out[m] \mid m \ pred(n)\}$ $out[n] := gen(n) \cup (in[n] - kill[n])$

It is a forward may analysis

in[n], out[n] = set of definitions of variables
 gen(n) = vn where var v is defined at node n
 kill(n) = vx where var v is defined at node n and x
 ⊕ = U (of sets)

 $in[n] := \bigcup \{out[m] \mid m \ pred(n)\}$ $out[n] := gen(n) \cup (in[n] - kill[n])$

It is a forward may analysis

in[n], out[n] = set of definitions of variables
 gen(n) = vn where var v is defined at node n
 kill(n) = vx where var v is defined at node n and x
 ⊕ = U (of sets)

 $in[n] := \bigcup \{out[m] \mid m \ pred(n)\}$ $out[n] := gen(n) \cup (in[n] - kill[n])$

It is a forward may analysis

in[n], out[n] = set of definitions of variables
 gen(n) = vn where var v is defined at node n
 kill(n) = vx where var v is defined at node n and x
 ⊕ = ∪ (of sets)

 $in[n] := \bigcup \{out[m] \mid m \ pred(n)\}$ $out[n] := gen(n) \cup (in[n] - kill[n])$

It is a forward may analysis

in[n], out[n] = set of definitions of variables
 gen(n) = vn where var v is defined at node n
 kill(n) = vx where var v is defined at node n and x
 ⊕ = ∪ (of sets)

 $in[n] := \bigcup \{out[m] \mid m \ pred(n)\}$ $out[n] := gen(n) \cup (in[n] - kill[n])$

Every time a definition of variable x reaches a use of variable x we found a new DU pair

It is a forward may analysis

in[n], out[n] = set of definitions of variables
 gen(n) = vn where var v is defined at node n
 kill(n) = vx where var v is defined at node n and x
 ⊕ = U (of sets)

 $in[n] := \bigcup \{out[m] \mid m \ pred(n)\}$ $out[n] := gen(n) \cup (in[n] - kill[n])$

Every time a definition of variable x reaches a use of variable x we found a new DU pair

It is a forward may analysis

in[n], out[n] = set of definitions of variables
 gen(n) = vn where var v is defined at node n
 kill(n) = vx where var v is defined at node n and x
 ⊕ = ∪ (of sets)

 $in[n] := \bigcup \{out[m] \mid m \ pred(n)\}$ $out[n] := gen(n) \cup (in[n] - kill[n])$

Every time a definition of variable x reaches a use of variable x we found a new DU pair

Subsumes relation between data flow criteria

