Automated Testing&Verification

Verification Conditions

Juan Pablo Galeotti, Alessandra Gorla, Andreas Rau Saarland University, Germany

Course Grading

- 30% projects (10% each)
 - At least 50% threshold for exam admittance
 - Groups of 2
- 70% final exam (see course schedule)
 - Closed-book
 - Allowed: one A4 page (both sides!)

Verifying Programs

Translating a program to a formula

- Both program and its contract must be translated into the same formalism
- In order to do this, we need some way of encoding the program behavior in the logic we are using.
- Formal semantics for the programming language is needed:
 - Several approaches:
 - Operational: Simulation of the program execution in a "virtual" machine.
 - Denotational: Program is seen as mathematical function
 - Axiomatic: Program is seen as set of axioms and inference rules.

Axiomatic Semantics

- Hoare Triples
- Rule system aimed at the verification of imperative programs
- Partial Correctness: {A} program {B} if
 - Program starts in a state that satisfies A
 - In case exection finishes, B holds in final state.

A simple imperative language

Atomic statements

```
Skip: skip
```

• Assigment: x := E

Control-flow statements

```
Sequential: S1; S2
```

Conditional: if (cond) {S1} else {S2}

```
• Iteration: while (cond) {S}
```

Hoare Rules

```
{P} skip {P}
          {A} s1 {C} {C} s2 {B}
             {A} s1; s2 {B}
  {A && cond} s1 {B} {A && !cond} s2 {B}
  {A} if (cond) {s1} else {s2} {B}
\{A \&\& cond\} body \{A\} (A \&\& !cond) => B
    {A} while (cond) {body} {B}
```

Hoare rules: assignment

Forward rule:

```
\{A\} x := E \{\exists x' | A[x \rightarrow x'] \&\& x == E[x \rightarrow x']\}
```

- Intuition: x' is the previous value of x. (\old(x))
- Example:

```
  \{x>=3 \} x := x+2 \{\exists x' | (x>=3)[x \rightarrow x'] \&\& x == (x+2)[x \rightarrow x'] \} 
  \{x>=3 \} x := x+2 \{\exists x' | x'>=3 \&\& x == x'+2 \} 
  \{x>=3 \} x := x+2 \{\exists x' | x'>=3 \&\& x-2== x' \} 
  \{x>=3 \} x := x+2 \{x-2>=3 \} 
  \{x>=3 \} x := x+2 \{x>=5 \}
```

Hoare rules: assignment

Backward rule:

$$\{B[X \rightarrow E]\} x := E \{B\}$$

Intuition: Given B(x), then B(E) should hold if x:=E

Example:

```
{?} \mathbf{x} := \mathbf{x} + 2 \{x > = 5\}

{x > = 5[x \rightarrow x + 2]} \mathbf{x} := \mathbf{x} + 2 \{x > = 5\}

{x + 2 > = 5} \mathbf{x} := \mathbf{x} + 2 \{x > = 5\}

{x > = 3} \mathbf{x} := \mathbf{x} + 2 \{x > = 5\}
```

Verifying program behaviour

- Verification condition (VC)
 - A logical formula such that its validity means some aspect of program correctness
- Given the following Hoare triple:

$$\{x>= 4 \&\& y<-2\}$$

 $x := x +1$
 $\{x>=5 \&\& y<0\}$

Program states

Proving correctness

Since states(x>=4 && y<-2) \subsetof states(WP),
 then we have that

Calculating the Weakest Precondition

- WP(skip, B) = $_{def}$ B
- WP(x:=E, B) = $_{def}$ B[x \rightarrow E]
- WP(s1; s2, B) = def WP(s1, WP(s2, B))
- WP(if(E) {s1}else{s2}, B) = def
 E=> WP(s1,B) &&
 !E => WP(s2,B)

Verification Condition

Given the following Hoare triple

```
{Pre}
Program
{Post}
```

- The following formula is a Verification Condition (VC) for the triple:
 - Pre => WP(Program, Post)
- We call this a "backward" VC (in constrast with "forward" VC)

Example

- WP(skip, B) = $_{def}$ B
- WP(x:=E, B) = $_{def}$ B[x \rightarrow E]

```
WP(s1;s2,B)=def WP(s1, WP(s2,B))
WP(if(E){s1}else{s2},B)=def
E=>WP(s1,B)&&
!E => WP(s2,B)
```

```
bool P(bool a, bool b)
requires true
ensures c==a || b
{
  if (a)
    c=true
  else
    c=b
}
```

```
WP(if(a)..., c==a||b) =
    a=> WP(c=true, c==a||b) &&
    !a => WP(c=b, c==a||b)
    = (a => true==a||b) && (!a => b==a||b)
```

Verification Condition:

true => WP(P, c==a||b)
true =>(a=> true==a||b) && (!a => b==a||b)
$$\checkmark$$

Problems with WP computation?

Loop iterations!

```
    WP_k(while (E) {S}, B)
    WP_o(...) = def! E => B
    WP_1(...) = def! E => B && E => WP(S,B)
    = WP_o(...) && E => WP(S,B)
    WP_2(...) = def WP_1(...) && E=> WP(S, WP_1(...))
    ....
    WP_i+1(...) = def WP_i && E=> WP(S,WP_i(...))
```

Problems with WP computation?

- WP_k(while (E) {S}, B) ==
 - glb{WP_k(...) | for all k>=o)
 - glb means "greatest lower bound"

- Compute a precise WP might be impossible in some cases
 - An extremely expensive in other cases

Dealing with loops

Solutions:

Unroll loops: Verify a fixed set of execution traces

Add loop invariants to programs

Hoare Rules for loops

```
{cond && A} body {A}
(A && !cond)=>B
```

{A} while (cond) {body} {B}

Hoare Rules for loop invariants

```
{cond && Inv} body {Inv}
A=>Inv
(A && !cond)=>B

{A} while (cond) {body} {B}
```

Handling Loops

- We extend our programming language with these new sentences
 - Assume E
 - Assert E
 - Havoc x (assign any non-deterministic value to x)
 - While_(I,T) E do S endwhile
 - Where:
 - I is the loop invariant
 - T is the set of modified locations, variables

Handling Loops

- We extend our WP definition for the new language constructs:
 - WP (havoc x, B) == \forall x. B
 - WP (assume E, B) == E=>B
 - WP (assert E, B) == E && B

Verifying Loops

We transform loop code following this rule:

```
While_(I,T) E do S endwhile ==
     assert l
                          Check Invariant hold at loop entry
     havoc T
     assume l
     if (E) then
                               Check loop body preservers
           assert
                               Invariant
           assume false
     endif
```

Exercise!

Complete the following Hoare Triple with the weakest precondition:

```
{???}
While_(x>=o,x) x>o do
    X:=x-1
    EndWhile
{x=o}
```

Procedure calls

- Options:
 - Inlining the procedure call
 - Replace procedure call with callee contract
- Given a Procedure "Proc" with precondition pre, postcondition post and a set of touched locations M, the statement Call Proc(x) is modelled as:
 - Assert pre
 - Havoc M
 - Assume post

Recap

- Axiomatic semantics using Hoare rules
- Computing a formula that captures the weakest precondition for a pair program,postcondition>.
- Using WP for checking Hoare triples correctness
- How to use loop invariants for checking correctness

Tools! Tools! Tools!

 ESC/Java2: the formula is built using Dijsktra's Weakes precondition. Automatic theorem prover: Simplify SMT Solver.

http://kindsoftware.com/products/opensource/ESCJava2/

ESC/Java2

- Programming language
- Specification Language
- Logical representation of correctness
- Automatic decision procedure

Demo ESC/Java2

```
class Bag {
       int[] a;
       int n;
       int extractMin() {
               int mindex=o;
               int m=a[mindex];
               int i=1;
               for (i=1;i<n;i++) {
                       if (a[i]<m) {
                                mindex=i;
                                m = a[i];
               a[mindex]=a[n];
               return m;
```

JML annotations for extractMin

```
//@ requires n>o;
//(\hat{a}) ensures (\forall int j; o<=j && j<n; \result<=a[j])
int extractMin() {
          int mindex=o;
          int m=a[mindex];
          int i=1;
          //@ loop_invariant i>=1;
          //@ loop_invariant i<=n;
          //@ loop_invariant mindex>=o;
          //@ loop_invariant mindex<i;
          //@ loop_invariant m==a[mindex];
          //@ loop_invariant (\forall int j; o<=j && j<i; m<=a[j]);
          for (i=1;i<n;i++) {
                     if (a[i]<m) {
                                mindex=i;
                                m = a[i];
                     }
          a[mindex]=a[n];
          return m;
```

Lab Session on Thursday

- Bring your computer!
- Groups of 2
- Please install:
 - A Java IDE
 - At least JDK 1.6
 - CVC₃ (http://www.cs.nyu.edu/acsys/cvc₃/ download.html)