Automated Testing&Verification

Verification Conditions

Course Grading

30% projects (10% each)
At least 5o% threshold for exam admittance
Groups of 2

70% final exam (see course schedule)
Closed-book

Allowed: one A4 page (both sides!)

Verifying Programs

JML

> Translator
Logical
Formula

Automatic
Theorem Prover

oo

> Verifier

Translating a program to a formula

Both program and its contract must be translated into
the same formalism

In order to do this, we need some way of encoding the
program behavior in the logic we are using.

Formal semantics for the programming language is
needed:

Several approaches:

Operational: Simulation of the program execution in a “virtual”
machine.

Denotational: Program is seen as mathematical function
Axiomatic: Program is seen as set of axioms and inference rules.

Axiomatic Semantics

Hoare Triples

Rule system aimed at the verification of imperative
programs

Partial Correctness: {A} program {B}if
Program starts in a state that satisfies A
In case exection finishes, B holds in final state.

A simple imperative language

Atomic statements
Skip: skip
Assigment: x:= E

Control-flow statements
Sequential: S1; S2
Conditional: if (cond) {S1l} else {S2}
Iteration: while (cond) {S}

Hoare Rules

{P} skip P}

{A}s1 {C} {C}s2 {B}
{A} s1;s2 {B}

A && cond} s1 {B! {A && !cond! s2 {B}
{A} if (cond) {sl} else {s2} {B}

{A && cond} body {A} (A && lcond)=>B
{A} while (cond) {body} {B}

Hoare rules: assignment

Forward rule:
{A} x:= E {dX|A[Xx2>X] && x==E[x=2>X]}

Intuition: x’ is the previous value of x. (\old(x))
Example:
{x>=3 } x:= x+2 {IX|(x>=3)[x=2X] && X == (X+2)[x=2>X]}

{x>=3}x:= x+2 {IX|xX>=3 && x == x’+2}

{x>=3 } x:= x+2 {IX|x>=3 && x-2== X}

{x>=3 } x:= x+2 {x-2>=3}
{x>=3 } x:= x+2 {x>=5}

Hoare rules: assignment

Backward rule:
{ B[X%E] } Xx:= E {B}
Intuition: Given B(x), then B(E) should hold if x:=E

=Example:

{7l x:= x+2 {x>=c}
IXx>=g[x2>x+2]} x : =x+2{x>=5}
X+2>=0} X :=x+2 {xX>=0}
X>=3} x:=x+2 {x>=0}

Verifying program behaviour

Verification condition (VC)

A logical formula such that its validity means some
aspect of program correctness

Given the following Hoare triple:

{ X>= 4 && y<-2}
X 1= X +1
{ X>=5 && y<0}

Program states

{ x>= 4 && y<-2}
X=X +1
{ x>=5 && y<0}

WP

X:=X+1
X=g
Y=-1
X:=X+1 — =
X=12
NS X:=X+1 . X=5 L Y=3
| | — : ,
X>=4, && y<-2 | R £

M/ ool

X>=5 && y<o0

Proving correctness

{Weakest precondition (WP)}
X:=X+1
{ Xx>=5 && y<0}

Since states(x>=4 && y<-2) \subsetof states(WP),
then we have that
X>=4 && y<-2}
X:=X+1
{x>=5 && y<0}

Calculating the Weakest Precondition

WP(skip, B) =4.¢B

WP(x:=E, B) =4, B[x2E]
WP(sl;s2,B)=4.WP(s1, WP(s2, B))
WP(1f(E) {sl}else{s2},B) =g

E=>\WP(s1,B) &&
IE =>\WP(s2,B)

Verification Condition

Given the following Hoare triple
{Pre}
Program
$Post}

The following formula is a Verification Condition (VC)
for the triple:

Pre => WP(Program, Post)

We call this a “backward” VC (in constrast with
“forward” VC)

Example

WP(skip, B) =4 B WP(sl;s2,B)=4sWP(s1, WP(s2, B))
WP(1f (E) {sl}else{s2},B) =4
WP(x :=E, B) =4.¢ BIX2E] E=>WP(s1,B) &&
IE =>WP(s2,B)
bool P (bool a, bool b) WP(if (a) " c==a||b) —
requires true
ensures c==a || b a=>\WP(c=true, C==a”b) &&
{
=t
e - (a => true==a||b) && (la => b== a||b)
c=b
J Verification Condition:

true =>WP(P, c==al|b)
true =>(a=>true==a||b) && (!a => b==a||b)

Problems with WP computation?

Loop iterations!
WP_k(while (E) {S},B)
WP_0(...) =4 'E => B
WP_1(...) =4 'E => B && E => WP (S,B)
=WP_o(...) && E =>WP(S,B)
WP_2(...) =gt WP_1(...) && E=>WP(S, WP_a(...))

WP_i+1(...) =4of WP_i && E=>WP(S,WP_i(...))

Problems with WP computation?

WP_k(while (E) {S},B)==
glbfWP_k(...) | for all k>=0)
glb means “greatest lower bound”

Compute a precise WP might be impossible in
some cases

An extremely expensive in other cases

Dealing with loops

Solutions:
Unroll loops: Verify a fixed set of execution traces

Add loop invariants to programs

Hoare Rules for loops

{cond && A} body {A}
(A && !lcond)=>B
{A} while (cond) {body} {B}

Hoare Rules for loop invariants

{cond && Inv} body {Inv}
A=>Inv
(A && !lcond)=>B
{A} while (cond) {body} {B}

Handling Loops

We extend our programming language with these
new sentences

Assume E
Assert E

Havoc x (assign any non-deterministic value to x)

While_(1,T) E do S endwhile
Where:

lis the loop invariant
T is the set of modified locations, variables

Handling Loops

We extend our WP definition for the new language
constructs:

WP (havoc x, B) == \forall x. B

WP (assume E, B) == E=>B

WP (assertE, B) ==E && B

Verifying Loops

We transform loop code following this rule:

While_(I,T) E do S endwhile ==
assert | Check Invariant hold at loop entry
havoc T
assume |
if (E) then
S
assert |

assume false
endif

Check loop body preservers
Invariant

Exercise!

Complete the following Hoare Triple with the
weakest precondition:

2771

While_(x>=0,x) x>0 do
X:=x-1
EndWhile

{x=0}

Procedure calls

Options:
Inlining the procedure call
Replace procedure call with callee contract

Given a Procedure “Proc” with precondition pre, postcondition post and a
set of touched locations M, the statement Call Proc(x) is modelled as:

Assert pre
Havoc M
Assume post

Axiomatic semantics using Hoare rules

Computing a formula that captures the weakest
precondition for a pair <program,postcondition>.

Using WP for checking Hoare triples correctness

How to use loop invariants for checking correctness

Tools! Tools! Tools!

ESC/Java2: the formula is built using Dijsktra’s
Weakes precondition. Automatic theorem prover:
Simplify SMT Solver.

http://kindsoftware.com/products/opensource/ESCJava2/

ESC/Java2

Programming language

Specification Language

ESC/Java? Translator

Logical representation of
correctness

Weakest Logical
Precondition Formula > Verifier
: .. (Dijsktra)
Automatic decision

pI’OCGd U re SMT-Solver Automatic

Theorem Prover
(Simplify)

o o

Demo ESC/Java2

class Bag §
Int[] a;
Int n;
Int extractMin() §{
int mindex=o0;
int m=a[mindex];
Int i=1;
for (i=1;i<n;i++) §
if (a[i]l<m) §
mindex=i;
m = a[i];
}
}
n--;
a[mindex]=a[n];
return m;

JML annotations for extractMin

//@ requires n>o;
//@ ensures (\forall int j; 0<=j && j<n ; \result<=a[j])
int extractMin() {
int mindex=0;
int m=a[mindex];
inti=1;
//@ loop_invariant i>=1;
//@ loop_invariant i<=n;
//@ loop_invariant mindex>=o;
//@ loop_invariant mindex<i;
/@ loop_invariant m==a[mindex];

//@ loop_invariant (\forall int j; 0<=j && j<i; m<=a[j]);
for (i=1;i<n;i++) {

if (a[il<m) {
mindex=i;
m = a[i];
}
3
n--;
a[mindex]=a[n];
return m;

Lab Session on Thursday

Bring your computer!
Groups of 2

Please install:
A Java IDE
At least JDK 1.6

CV(C3 (http://www.cs.nyu.edu/acsys/cvcs/
download.html)

