
J.P. Galeotti - Alessandra Gorla
Automated testing and

verification

Combinatorial Testing

Wednesday, November 28, 12

(c) 2007 Mauro Pezzè & Michal Young

Combinatorial testing: Basic idea

• Identify distinct attributes that can be varied

• In the data, environment, or configuration

• Example: browser could be “IE” or “Firefox”, operating system could be “Vista”,
“XP”, or “OSX”

• Systematically generate combinations to be tested

• Example: IE on Vista, IE on XP, Firefox on Vista, Firefox on OSX, ...

• Rationale: Test cases should be varied and include possible “corner cases”

Wednesday, November 28, 12

(c) 2007 Mauro Pezzè & Michal Young

Key ideas in combinatorial approaches

• Category-partition testing

• separate (manual) identification of values that characterize the input space
from (automatic) generation of combinations for test cases

• Pairwise testing

• systematically test interactions among attributes of the program input space
with a relatively small number of test cases

• Catalog-based testing

• aggregate and synthesize the experience of test designers in a particular
organization or application domain, to aid in identifying attribute values

Wednesday, November 28, 12

(c) 2007 Mauro Pezzè & Michal Young

Category partition (manual steps)

1. Decompose the specification into independently testable features

– for each feature identify

• parameters

• environment elements

– for each parameter and environment element identify elementary characteristics (categories)

2. Identify relevant values

– for each characteristic (category) identify (classes of) values

• normal values

• boundary values

• special values

• error values

3. Introduce constraints

Wednesday, November 28, 12

(c) 2007 Mauro Pezzè & Michal Young

An informal specification: check configuration

Check Configuration

• Check the validity of a computer configuration

• The parameters of check-configuration are:

• Model

• Set of components

Wednesday, November 28, 12

(c) 2007 Mauro Pezzè & Michal Young

An informal specification: parameter model

Model

• A model identifies a specific product and determines a set of constraints on
available components. Models are characterized by logical slots for components,
which may or may not be implemented by physical slots on a bus. Slots may be
required or optional. Required slots must be assigned with a suitable component
to obtain a legal configuration, while optional slots may be left empty or filled
depending on the customers' needs

Example:

 The required “slots” of the Chipmunk C20 laptop computer include a screen, a
processor, a hard disk, memory, and an operating system. (Of these, only the
hard disk and memory are implemented using actual hardware slots on a bus.)
The optional slots include external storage devices such as a CD/DVD writer.

Wednesday, November 28, 12

(c) 2007 Mauro Pezzè & Michal Young

An informal specification of parameter set of
components

Set of Components

• A set of (slot, component) pairs, corresponding to the required and optional slots of the
model. A component is a choice that can be varied within a model, and which is not
designed to be replaced by the end user. Available components and a default for each slot
is determined by the model. The special value empty is allowed (and may be the default
selection) for optional slots. In addition to being compatible or incompatible with a particular
model and slot, individual components may be compatible or incompatible with each other.

Example:

 The default configuration of the Chipmunk C20 includes 100 gigabytes of hard disk; 200
and 500 gigabyte disks are also available. (Since the hard disk is a required slot, empty
is not an allowed choice.) The default operating system is RodentOS 3.2, personal
edition, but RodentOS 3.2 mobile server edition may also be selected. The mobile server
edition requires at least 200 gigabytes of hard disk.

Wednesday, November 28, 12

(c) 2007 Mauro Pezzè & Michal Young

Step1: Identify independently testable units and
categories

• Choosing categories

• no hard-and-fast rules for choosing categories

• not a trivial task!

• Categories reflect test designer's judgment

• regarding which classes of values may be treated differently by an implementation

• Choosing categories well requires experience and knowledge

• of the application domain and product architecture. The test designer must look
under the surface of the specification and identify hidden characteristics

Wednesday, November 28, 12

(c) 2007 Mauro Pezzè & Michal Young

Step 1: Identify parameters and environment
Parameter Model

• Model number

• Number of required slots for selected model (#SMRS)

• Number of optional slots for selected model (#SMOS)

Parameter Components

• Correspondence of selection with model slots

• Number of required components with selection ≠ empty

• Required component selection

• Number of optional components with selection ≠ empty

• Optional component selection

Environment element: Product database

• Number of models in database (#DBM)

• Number of components in database (#DBC)

Wednesday, November 28, 12

(c) 2007 Mauro Pezzè & Michal Young

Step 2: Identify relevant values

• Identify (list) representative classes of values for each of the categories

• Ignore interactions among values for different categories (considered in the next step)

• Representative values may be identified by applying

• Boundary value testing

• select extreme values within a class

• select values outside but as close as possible to the class

• select interior (non-extreme) values of the class

• Erroneous condition testing

• select values outside the normal domain of the program

Wednesday, November 28, 12

(c) 2007 Mauro Pezzè & Michal Young

Step 2: Identify relevant values: Model

Model number

Malformed

Not in database

Valid

Number of required slots for selected model (#SMRS)

0

1

Many

Number of optional slots for selected model (#SMOS)

0

1

Many

Wednesday, November 28, 12

(c) 2007 Mauro Pezzè & Michal Young

Step 2: Identify relevant values: Component
Correspondence of selection with model slots

Omitted slots

Extra slots

Mismatched slots

Complete correspondence

Number of required components with non empty selection

0

< #SMRS

= #SMRS

Required component selection

Some defaults

All valid

≥ 1 incompatible with slots

≥ 1 incompatible with another selection

≥ 1 incompatible with model

≥ 1 not in database

Number of optional components
with non empty selection
0
< #SMOS
= #SMOS

Optional component selection
Some defaults
All valid
≥ 1 incompatible with slots
≥ 1 incompatible with another

selection
≥ 1 incompatible with model
≥ 1 not in database

Wednesday, November 28, 12

(c) 2007 Mauro Pezzè & Michal Young

Step 2: Identify relevant values: Database

Number of models in database (#DBM)

0	

1	

Many

Number of components in database (#DBC)

0	

1	

Many

Note 0 and 1 are unusual (special) values. They might cause unanticipated behavior alone or in combination
with particular values of other parameters.

Wednesday, November 28, 12

(c) 2007 Mauro Pezzè & Michal Young

Step 3: Introduce constraints

• A combination of values for each category corresponds to a test case specification

• in the example we have 314.928 test cases

• most of which are impossible!

• example
zero slots and at least one incompatible slot

• Introduce constraints to

• rule out impossible combinations

• reduce the size of the test suite if too large

Wednesday, November 28, 12

(c) 2007 Mauro Pezzè & Michal Young

Step 3: error constraint

[error] indicates a value class that

• corresponds to a erroneous values

• need be tried only once

Example

	 Model number: Malformed and Not in database

error value classes

• No need to test all possible combinations of errors

• One test is enough (we assume that handling an error case bypasses other program logic)

Wednesday, November 28, 12

(c) 2007 Mauro Pezzè & Michal Young

Example - Step 3: error constraint
Model number

Malformed	 	 	 [error]

Not in database	 	 [error]

Valid

Correspondence of selection with model slots
	 Omitted slots	 	 	 [error]

	 Extra slots	 	 	 [error]

	 Mismatched slots	 	 [error]

	 Complete correspondence

Number of required comp. with non empty selection
	 0	 	 	 	 [error]

	 < number of required slots	 [error]

Required comp. selection
 ≥ 1 not in database [error]

Number of models in database (#DBM)
	 0	 	 	 	 [error]

Number of components in database (#DBC)
	 0	 	 	 	 [error]

Error constraints
reduce test suite
from 314.928 to
2.711 test cases

Wednesday, November 28, 12

(c) 2007 Mauro Pezzè & Michal Young

Step 3: property constraints

constraint [property] [if-property] rule out invalid combinations of values

[property] groups values of a single parameter to identify subsets of values with
common properties

[if-property] bounds the choices of values for a category that can be combined with
a particular value selected for a different category

Example

combine

Number of required comp. with non empty selection = number required slots [if RSMANY]

only with

Number of required slots for selected model (#SMRS) = Many [RSMANY]

Wednesday, November 28, 12

(c) 2007 Mauro Pezzè & Michal Young

Example - Step 3: property constraints
Number of required slots for selected model (#SMRS)

	 1	 	 	 	 [property RSNE]

	 Many	 	 	 [property RSNE] [property RSMANY]

Number of optional slots for selected model (#SMOS)

	 1	 	 	 	 [property OSNE]

	 Many	 	 	 [property OSNE] [property OSMANY]

Number of required comp. with non empty selection

	 0	 	 	 	 [if RSNE] [error]

	 < number required slots	 	 [if RSNE] [error]

	 = number required slots	 	 [if RSMANY]

Number of optional comp. with non empty selection

	 < number required slots	 	 [if OSNE]

	 = number required slots	 	 [if OSMANY]

from 2.711 to 908
test cases

Wednesday, November 28, 12

(c) 2007 Mauro Pezzè & Michal Young

Step 3 (cont): single constraints

[single] indicates a value class that test designers choose to test only once to reduce
the number of test cases

Example

 value some default for required component selection and
optional component selection may be tested only once
despite not being an erroneous condition

note -

 single and error have the same effect but differ in
rationale. Keeping them distinct is important for
documentation and regression testing

Wednesday, November 28, 12

(c) 2007 Mauro Pezzè & Michal Young

from 908 to 69
test cases

Example - Step 3: single constraints

Number of required slots for selected model (#SMRS)

0	 	 	 	 [single]

1	 	 	 	 [property RSNE] [single]

Number of optional slots for selected model (#SMOS)

0	 	 	 	 [single]

1	 	 	 	 [single] [property OSNE]

Required component selection

Some default	 	 [single]

Optional component selection

Some default	 	 [single]

Number of models in database (#DBM)

1	 	 	 	 [single]

Number of components in database (#DBC)

1	 	 	 	 [single]

Wednesday, November 28, 12

(c) 2007 Mauro Pezzè & Michal Young

Check configuration – Summary
Parameter Model

• Model number
• Malformed [error]

• Not in database [error]

• Valid

• Number of required slots for selected model (#SMRS)
• 0 [single]

• 1 [property RSNE] [single]

• Many [property RSNE] [property RSMANY]

• Number of optional slots for selected model (#SMOS)
• 0 [single]

• 1 [property OSNE] [single]

• Many [property OSNE] [property OSMANY]

Environment Product data base

• Number of models in database (#DBM)
• 0 [error]

• 1 [single]

• Many

• Number of components in database (#DBC)
• 0 [error]

• 1 [single]

• Many

Parameter Component
• Correspondence of selection with model slots

– Omitted slots [error]
– Extra slots [error]
– Mismatched slots [error]
– Complete correspondence

• # of required components (selection ≠ empty)
– 0 [if RSNE] [error]
– < number required slots [if RSNE] [error]
– = number required slots [if RSMANY]

• Required component selection
– Some defaults [single]
– All valid
– ≥ 1 incompatible with slots
– ≥ 1 incompatible with another selection
– ≥ 1 incompatible with model
– ≥ 1 not in database [error]

• # of optional components (selection ≠ empty)
– 0
– < #SMOS [if OSNE]
– = #SMOS [if OSMANY]

• Optional component selection
– Some defaults [single]
– All valid
– ≥ 1 incompatible with slots
– ≥ 1 incompatible with another selection
– ≥ 1 incompatible with model
– ≥ 1 not in database [error]

Wednesday, November 28, 12

(c) 2007 Mauro Pezzè & Michal Young

Next ...

• Category partition testing gave us

• Systematic approach: Identify characteristics and values (the creative step), generate
combinations (the mechanical step)

• But ...

• Test suite size grows very rapidly with number of categories. Can we use a non-
exhaustive approach?

• Pairwise (and n-way) combinatorial testing do

• Combine values systematically but not exhaustively

• Rationale: Most unplanned interactions are among just two or a few parameters or
parameter characteristics

Wednesday, November 28, 12

(c) 2007 Mauro Pezzè & Michal Young

Pairwise combinatorial testing
• Category partition works well when intuitive constraints reduce the number of

combinations to a small amount of test cases

• Without many constraints, the number of combinations may be unmanageable

• Pairwise combination (instead of exhaustive)

• Generate combinations that efficiently cover all pairs (triples,…) of classes

• Rationale: most failures are triggered by single values or combinations of a few
values. Covering pairs (triples,…) reduces the number of test cases, but reveals
most faults

Wednesday, November 28, 12

(c) 2007 Mauro Pezzè & Michal Young

Example: Display Control

Display Mode Language Fonts Color Screen size

full-graphics English Minimal Monochrome Hand-held

text-only French Standard Color-map Laptop

limited-
bandwidth Spanish Document-

loaded 16-bit Full-size

Portuguese True-color

No constraints reduce the total number of combinations
432 (3x4x3x4x3) test cases
if we consider all combinations

Wednesday, November 28, 12

(c) 2007 Mauro Pezzè & Michal Young

Pairwise combinations: 16 test cases
Language Color Display Mode Fonts Screen Size

English Monochrome Full-graphics Minimal Hand-held

English Color-map Text-only Standard Full-size

English 16-bit Limited-bandwidth - Full-size

English True-color Text-only Document-loaded Laptop

French Monochrome Limited-bandwidth Standard Laptop

French Color-map Full-graphics Document-loaded Full-size

French 16-bit Text-only Minimal -

French True-color - - Hand-held

Spanish Monochrome - Document-loaded Full-size

Spanish Color-map Limited-bandwidth Minimal Hand-held

Spanish 16-bit Full-graphics Standard Laptop

Spanish True-color Text-only - Hand-held

Portuguese - - Monochrome Text-only

Portuguese Color-map - Minimal Laptop

Portuguese 16-bit Limited-bandwidth Document-loaded Hand-held

Portuguese True-color Full-graphics Minimal Full-size

Wednesday, November 28, 12

(c) 2007 Mauro Pezzè & Michal Young

Adding constraints

• Simple constraints

	 example: color monochrome not compatible with screen laptop and full size

	 can be handled by considering the case in separate tables

Wednesday, November 28, 12

(c) 2007 Mauro Pezzè & Michal Young

Example: Monochrome only with hand-held

Display Mode Language Fonts Color Screen size
full-graphics English Minimal

text-only French Standard Color-map Laptop
limited-

bandwidth Spanish Document-
loaded 16-bit Full-size

Portuguese True-color

Display Mode Language Fonts Color Screen size
full-graphics English Minimal Monochrome Hand-held

text-only French Standard Color-map
limited-

bandwidth Spanish Document-
loaded 16-bit

Portuguese True-color

Wednesday, November 28, 12

(c) 2007 Mauro Pezzè & Michal Young

Next ...

• Category-partition approach gives us ...

• Separation between (manual) identification of parameter characteristics and
values and (automatic) generation of test cases that combine them

• Constraints to reduce the number of combinations

• Pairwise (or n-way) testing gives us ...

• Much smaller test suites, even without constraints

• (but we can still use constraints)

• We still need ...

• Help to make the manual step more systematic

Wednesday, November 28, 12

(c) 2007 Mauro Pezzè & Michal Young

Catalog based testing
• Deriving value classes requires human judgment

• Gathering experience in a systematic collection can:

• speed up the test design process

• routinize many decisions, better focusing human effort

• accelerate training and reduce human error

• Catalogs capture the experience of test designers by listing important cases for each possible
type of variable

– Example: if the computation uses an integer variable a catalog might indicate the following relevant
cases

• The element immediately preceding the lower bound

• The lower bound of the interval

• A non-boundary element within the interval

• The upper bound of the interval

• The element immediately following the upper bound

Wednesday, November 28, 12

(c) 2007 Mauro Pezzè & Michal Young

Catalog based testing process

Step1:
Analyze the initial specification to identify simple elements:

• Pre-conditions

• Post-conditions

• Definitions

• Variables

• Operations

Step 2:
Derive a first set of test case specifications from pre-conditions, post-conditions and definitions

Step 3:
Complete the set of test case specifications using test catalogs

Wednesday, November 28, 12

(c) 2007 Mauro Pezzè & Michal Young

An informal specification: cgi_decode

	 Function cgi_decode translates a cgi-encoded string to a
plain ASCII string, reversing the encoding applied by the
common gateway interface (CGI) of most web servers

	 CGI translates spaces to +, and translates most other
non-alphanumeric characters to hexadecimal escape
sequences

	 cgi_decode maps + to spaces, %xy (where x and y are
hexadecimal digits) to the corresponding ASCII character,
and other alphanumeric characters to themselves

Wednesday, November 28, 12

(c) 2007 Mauro Pezzè & Michal Young

An informal specification: input/output

[INPUT] encoded: string of characters (the input CGI sequence)

	 can contain:

• alphanumeric characters

• the character +

• the substring %xy, where x and y are hexadecimal digits

is terminated by a null character

[OUTPUT] decoded: string of characters (the plain ASCII characters corresponding to the input CGI sequence)

• alphanumeric characters copied into output (in corresponding positions)

• blank for each + character in the input

• single ASCII character with value xy for each substring %xy

[OUTPUT] return value cgi_decode returns

• 0 for success

• 1 if the input is malformed

Wednesday, November 28, 12

(c) 2007 Mauro Pezzè & Michal Young

Step 1: Identify simple elements

Pre-conditions: conditions on inputs that must be true before the execution

• validated preconditions: checked by the system

• assumed preconditions: assumed by the system

Post-conditions: results of the execution

Variables: elements used for the computation

Operations: main operations on variables and inputs

Definitions: abbreviations

Wednesday, November 28, 12

(c) 2007 Mauro Pezzè & Michal Young

Step 1: cgi_decode (pre and post)

PRE 1 (Assumed) input string encoded null-terminated string of chars

PRE 2 (Validated) input string encoded sequence of CGI items

POST 1 if encoded contains alphanumeric characters, they are copied to the output string

POST 2 if encoded contains characters +, they are replaced in the output string by ASCII SPACE
characters

POST 3 if encoded contains CGI hexadecimals, they are replaced by the corresponding ASCII characters

POST 4 if encoded is processed correctly, it returns 0

POST 5 if encoded contains a wrong CGI hexadecimal (a substring xy, where either x or y are absent or
are not hexadecimal digits, cgi_decode returns 1

POST 6 if encoded contains any illegal character, it returns 1

Wednesday, November 28, 12

(c) 2007 Mauro Pezzè & Michal Young

Step 1: cgi_decode (var, def, op.)

VAR 1 encoded: a string of ASCII characters

VAR 2 decoded: a string of ASCII characters

VAR 3 return value: a boolean

DEF 1 hexadecimal characters, in range ['0' .. '9', 'A' .. 'F', 'a' .. 'f']

DEF 2 sequences %xy, where x and y are hexadecimal characters

DEF 3 CGI items as alphanumeric character, or '+', or CGI hexadecimal

OP 1 Scan encoded

Wednesday, November 28, 12

(c) 2007 Mauro Pezzè & Michal Young

Step 2: Derive initial set of test case specs
• Validated preconditions:

• simple precondition (expression without operators)

• 2 classes of inputs:

• inputs that satisfy the precondition

• inputs that do not satisfy the precondition

• compound precondition (with AND or OR):

• apply modified condition/decision (MC/DC) criterion

• Assumed precondition:

• apply MC/DC only to “OR preconditions”

• Postconditions and Definitions :

• if given as conditional expressions, consider conditions as if they were validated preconditions

Wednesday, November 28, 12

(c) 2007 Mauro Pezzè & Michal Young

Step 2: cgi_decode (tests from Pre)
PRE 2 (Validated) the input string encoded is a sequence of CGI items

– TC-PRE2-1: encoded is a sequence of CGI items

– TC-PRE2-2: encoded is not a sequence of CGI items

POST 1 if encoded contains alphanumeric characters, they are copied in the output string in the
corresponding position

– TC-POST1-1: encoded contains alphanumeric characters

– TC-POST1-2: encoded does not contain alphanumeric characters

POST 2 if encoded contains characters +, they are replaced in the output string by ASCII SPACE characters

– TC-POST2-1: encoded contains character +

– TC-POST2-2: encoded does not contain character +

Wednesday, November 28, 12

(c) 2007 Mauro Pezzè & Michal Young

Step 2: cgi_decode (tests from Post)

POST 3 if encoded contains CGI hexadecimals, they are replaced by the corresponding ASCII
characters

– TC-POST3-1 Encoded: contains CGI hexadecimals

– TC-POST3-2 Encoded: does not contain a CGI hexadecimal

POST 4 if encoded is processed correctly, it returns 0

POST 5 if encoded contains a wrong CGI hexadecimal (a substring xy, where either x or y are
absent or are not hexadecimal digits, cgi_decode returns 1

– TC-POST5-1 Encoded: contains erroneous CGI hexadecimals

POST 6 if encoded contains any illegal character, it returns 1

– TC-POST6-1 Encoded: contains illegal characters

Wednesday, November 28, 12

(c) 2007 Mauro Pezzè & Michal Young

Step 2: cgi_decode (tests from Var)

VAR 1 encoded: a string of ASCII characters

VAR 2 decoded: a string of ASCII characters

VAR 3 return value: a boolean

DEF 1 hexadecimal characters, in range ['0' .. '9', 'A' .. 'F', 'a' .. 'f']

DEF 2 sequences %xy, where x and y are hexadecimal characters

DEF 3 CGI items as alphanumeric character, or '+', or CGI hexadecimal

OP 1 Scan encoded

Wednesday, November 28, 12

(c) 2007 Mauro Pezzè & Michal Young

Step 3: Apply the catalog

• Scan the catalog sequentially

• For each element of the catalog

• scan the specifications

• apply the catalog entry

• Delete redundant test cases

• Catalog:

• List of kinds of elements that can occur in a specification

• Each catalog entry is associated with a list of generic test case specifications

Example:

catalog entry Boolean

two test case specifications: true, false

Label in/out indicate if applicable only to input, output, both

Wednesday, November 28, 12

(c) 2007 Mauro Pezzè & Michal Young

A simple catalog (part I)
• Boolean

• True		 	 	 	 in/out

• False	 	 	 	 	 in/out

• Enumeration

• Each enumerated value	 	 	 in/out

• Some value outside the enumerated set	 	 in

• Range L ... U

• L-1	 	 	 	 	 in

• L	 	 	 	 	 	 in/out

• A value between L and U	 	 	 in/out

• U	 	 	 	 	 	 in/out

• U+1 		 	 	 	 in

• Numeric Constant C

• C	 	 	 	 	 	 in/out

• C –1 in

• C+1		 	 	 	 in

• Any other constant compatible with C	 	 in

Wednesday, November 28, 12

(c) 2007 Mauro Pezzè & Michal Young

A simple catalog (part II)
• Non-Numeric Constant C

– C 	 	 	 	 	 in/out

• Any other constant compatible with C	 	 in

• Some other compatible value	 	 	 in

• Sequence

• Empty	 	 	 	 	 in/out

• A single element	 	 	 	 in/out

• More than one element	 	 	 in/out

• Maximum length (if bounded) or very long	 	 in/out

• Longer than maximum length (if bounded)	 in

• Incorrectly terminated	 	 	 in

• Scan with action on elements P

– P occurs at beginning of sequence		 in

– P occurs in interior of sequence	 	 	 in

– P occurs at end of sequence	 	 	 in

– PP occurs contiguously	 	 	 in

– P does not occur in sequence	 	 	 in

– pP where p is a proper prefix of P	 	 in

• Proper prefix p occurs at end of sequence	 	 in

Wednesday, November 28, 12

(c) 2007 Mauro Pezzè & Michal Young

Example - Step 3: Catalog entry boolean

• Boolean

• True	 	 	 in/out

• False	 	 	 in/out

 applies to return value
generates 2 test cases already covered by
TC-PRE2-1 and TC-PRE2-2

Wednesday, November 28, 12

(c) 2007 Mauro Pezzè & Michal Young

Example - Step 3: entry enumeration

• Enumeration

• Each enumerated value	 	 	 in/out

• Some value outside the enumerated set	 in

applies to

–CGI item (DEF 3)

	 included in TC-POST1-1, TC-POST1-2, TC-
POST2-1, TC-POST2-2, TC-POST3-1, TC-POST3-2

Wednesday, November 28, 12

(c) 2007 Mauro Pezzè & Michal Young

Example - Step 3: entry enumeration

applies also to improper CGI hexadecimals

• New test case specifications

– TC-POST5-2 encoded terminated with %x, where x is a hexadecimal digit

– TC-POST5-3 encoded contains %ky, where k is not a hexadecimal digit and y is a
hexadecimal digit

– TC-POST5-4 encoded contains %xk, where x is a hexadecimal digit and k is not

• Old test case specifications can be eliminated if they are less specific than the
newly generated cases

– TC-POST3-1 encoded contains CGI hexadecimals

– TC-POST5-1 encoded contains erroneous CGI hexadecimals

Wednesday, November 28, 12

(c) 2007 Mauro Pezzè & Michal Young

Example - Step 3: entry range

Applies to variables defined on a finite range

• hexadecimal digit

• characters / and :
(before 0 and after 9 in the ASCII table)

• values 0 and 9 (bounds),

• one value between 0 and 9

• @, G, A, F, one value between A and F

• }, g, a, f, one value between a and f

– 30 new test cases (15 for each character)

• Alphanumeric char (DEF 3):

– 5 new test cases

Wednesday, November 28, 12

(c) 2007 Mauro Pezzè & Michal Young

Example - Step 3: entries
numeric and non-numeric constant

Numeric Constant does not apply

Non-Numeric Constant applies to
+ and %, in DEF 3 and DEF 2:

– 6 new Test Cases (all redundant)

Wednesday, November 28, 12

(c) 2007 Mauro Pezzè & Michal Young

Step 3: entry sequence
apply to

encoded (VAR 1), decoded (VAR 2), and cgi-item (DEF 2)

• 6 new Test Cases for each variable

• Only 6 are non-redundant:

– encoded

• empty sequence

• sequence of length one

• long sequence

– cgi-item

• % terminated sequence (subsequence with one char)

• % initiated sequence

• sequence including %xyz, with x, y, and z hexadecimals

Wednesday, November 28, 12

(c) 2007 Mauro Pezzè & Michal Young

Step 3: entry scan

applies to Scan encoded (OP 1) and generates 17 test cases:

• only 10 are non-redundant

Wednesday, November 28, 12

(c) 2007 Mauro Pezzè & Michal Young

summary of generated test cases (i/ii)
TC-POST2-1: encoded contains +

TC-POST2-2: encoded does not contain +

TC-POST3-2: encoded does not contain a CGI-hexadecimal

TC-POST5-2: encoded terminated with %x

TC-VAR1-1: encoded is the empty sequence

TC-VAR1-2: encoded a sequence containing a single character

TC-VAR1-3: encoded is a very long sequence

TC-DEF2-1: encoded contains %/y

TC-DEF2-2: encoded contains %0y

TC-DEF2-3: encoded contains '%xy' (x in [1..8])

TC-DEF2-4: encoded contains '%9y'

TC-DEF2-5: encoded contains '%:y'

TC-DEF2-6: encoded contains '%@y‘

TC-DEF2-7: encoded contains '%Ay'

TC-DEF2-8: encoded contains '%xy' (x in [B..E])

TC-DEF2-9: encoded contains '%Fy'

TC-DEF2-10: encoded contains '%Gy'

TC-DEF2-11: encoded contains %`y'
TC-DEF2-12: encoded contains %ay
TC-DEF2-13: encoded contains %xy (x in [b..e])
TC-DEF2-14: encoded contains %fy'
TC-DEF2-15: encoded contains %gy
TC-DEF2-16: encoded contains %x/
TC-DEF2-17: encoded contains %x0
TC-DEF2-18: encoded contains %xy (y in [1..8])
TC-DEF2-19: encoded contains %x9
TC-DEF2-20: encoded contains %x:
TC-DEF2-21: encoded contains %x@
TC-DEF2-22: encoded contains %xA
TC-DEF2-23: encoded contains %xy(y in [B..E])
TC-DEF2-24: encoded contains %xF
TC-DEF2-25: encoded contains %xG
TC-DEF2-26: encoded contains %x`
TC-DEF2-27: encoded contains %xa
TC-DEF2-28: encoded contains %xy (y in [b..e])
TC-DEF2-29: encoded contains %xf

Wednesday, November 28, 12

(c) 2007 Mauro Pezzè & Michal Young

Summary of generated test cases (ii/ii)
TC-DEF2-30: encoded contains %xg

TC-DEF2-31: encoded terminates with %

TC-DEF2-32: encoded contains %xyz

TC-DEF3-1: encoded contains /

TC-DEF3-2: encoded contains 0

TC-DEF3-3: encoded contains c in [1..8]

TC-DEF3-4: encoded contains 9

TC-DEF3-5: encoded contains :

TC-DEF3-6: encoded contains @

TC-DEF3-7: encoded contains A

TC-DEF3-8: encoded contains c in[B..Y]

TC-DEF3-9: encoded contains Z

TC-DEF3-10: encoded contains [

TC-DEF3-11: encoded contains`

TC-DEF3-12: encoded contains a

TC-DEF3-13: encoded contains c in [b..y]

TC-DEF3-14: encoded contains z

TC-DEF3-15: encoded contains {

TC-OP1-1: encoded starts with an
alphanumeric character

TC-OP1-2: encoded starts with +
TC-OP1-3: encoded starts with %xy
TC-OP1-4: encoded terminates with an

alphanumeric character
TC-OP1-5: encoded terminates with +
TC-OP1-6: encoded terminated with %xy
TC-OP1-7: encoded contains two

consecutive alphanumeric characters
TC-OP1-8: encoded contains ++
TC-OP1-9: encoded contains %xy%zw
TC-OP1-10: encoded contains %x%yz

Wednesday, November 28, 12

(c) 2007 Mauro Pezzè & Michal Young

What have we got?

• From category partition testing:

• Division into a (manual) step of identifying categories and values, with
constraints, and an (automated) step of generating combinations

• From catalog based testing:

• Improving the manual step by recording and using standard patterns for
identifying significant values

• From pairwise testing:

• Systematic generation of smaller test suites

• These ideas can be combined

Wednesday, November 28, 12

