Automatic Verification&Testing

Programming with Contracts

Programming with Contracts

Contract

A (formal) agreement between

Method M (callee) Callers of M

Rights Responsabilities Rights Responsabilities
I

Contract

Compute square root of a real number

Caller

Method (callee): _
get-fibonaci-number

get-square-root

Invoke method
with non negative
| numbers

Expects non Return the square
negative numbers root

Obtain the square
root

Programming with Contracts

Contract: Agreement between parts

In this case: method and user method
The method pre & postconditions defines an
agreement between caller and callee.

The client (caller) must ensure the precondition and
assume the postcondition

The method (callee) may assume the precondition, but
it must ensure the postcondition

Caller Pre_Callee Post_Callee

Callee Post_Callee Pre_Callee

Specifying contracts in components

A component implements some entity or
important element for our solution

Component = set of classes
Class = set of methods

Contracts
At method level: Requires, Ensures
At class level: object/class invariants

At component level: ownerships + invariantes among
different objects

Weak vs. Strong specifications

Dataflow analysis and typestate checking are very effective
for dealing with “weak” specifications

Very simple correction properties
Null pointers, zero division, APl usage, etc.

They are inadequate for dealing with complex/complete
specifications (“strong” specifications)

This functions computes an invoice for a customer
The candidate declared as winner is the one who has more votes

Can we write several weak specifications to express a strong
specification?

The Verifying Compiler

The Verifying Compiler
automatically checks that a program conforms to its
specification

The correction can be specified using types, assertions
or any other redudant annotation to the program

The Verifying Compiler: A Grand Challenge for
Computing Research [Hoare, 2004]
First Proposal: 1969

The Verifying Compiler

Soundness:
If the formula is true, then
the program satisfies the S

specification

Translator

Automatic
Theorem Prover

o o

The Verifying Compiler

Programming
Language JAVA

Specification Language .. .

. . Weakest
Logical representation precondition

of the program (Dijsktra)
Automatic Decision “Mgier

Procedure

Translator

Logical

Formula

Automatic
Theorem Prover

> Verifier

oo

Desired properties of a Verifying Compiler

Soundness

If the verifier reports no failure, then the program does
not fail

Completeness
If the verifier reports a failure, then the program fails

Termination

Given any program P, the verifier finishes the analysis of
P (even with an unknown result)

The Specification Language

> JAVA

JML: Java Modeling Language

Formal specification language for Java

Obijective: Design a specification language easy to
use for most of the programmers

Origin: runtime assertion checking

Inspiration: Eiffel language (Design by Contract™)

For C#: Spec#, CodeContracts™

JML Annotations

Within comments in the Java code using [*@...@*/, or

after //@

Boolean Java expressions extended with some new
operators

(\old, \forall, \result,\sum...)

Several kinds of annotations
Modifiers: pure, non_null, nullable...
Method level: requires, ensures, signals,
Class level: invariant

JML: pre-, post-conditions (1)

[* (@ requires amount>=o0;
@ ensures balance ==\old(balance)-amount;
@ ensures \result == balance

@/
public int debit(int amount) {...}

\old(...) returns the value of the expression before
the execution of the method
\result refers to the return value of the method

JML: pre-, post-conditions (2)

[* (@ requires amount>=0;
@ ensures \result == balance
@~/
public int debit(int amount) {...}

JML specifications can be as weak (or strong) as we
want them to be.

This specification is stronger or weaker then the
previous one?

JML: exception handling

[*(@ requires amount>=0;
@ ensures true;
@ signals (BankException e)

@ amount > balance &&

@ balance==\old(balance) &&
@ e.getReason().equals(...)
@/

public int debit(int amount) throws BankException {...}

If the program signals an exception of type
BankException, then the predicate holds

JML: exceptions handling

All exceptions are allowed by default (ensures only
applies to normal termination).
To change this:

Forbid all exceptions

[*®@ normal_behaviour
@ requires ...
@ ensures ...

@/

JML: exceptions handling

All exceptions are allowed by default (ensures only
applies to normal termination).
To change this:

Forbid all exceptions
Forbid one exception type E

//@ signals (E) false;

JML: exceptions handling

All exceptions are allowed by default (ensures only
applies to normal termination).
To change this:

Forbid all exceptions
Forbid one exception type E
Allow only some exceptions types Ez,...,En

//@ signals_only Ez,...,En;

JML: exceptional behavior

//@ signals (Ex e) P(e);

This means: if an exception e of type Ex is thrown,
then P(e) holds

Can we say: if this precondition holds, then the
exception Ex is thrown?

JML: exceptional_behavior

[*®@ normal_behavior
@ requires amount<=this.balance;

@ also

@ exceptional_behavior
@ requires amount>this.balance;
@ signals (BankException e) e.getReason().equals(...);

@/
public int debit(int amount) throws BankException {...}

normal_behavior implicitly includes a clause:
signals (Exception ex) false;

JML: assert (1)

An assertion specifies a property that holds at a
glven program point

if (i<=0 | j<0) {

}elseif (j<5) {
//@ assert i>0 && 0<j && j<5;

5

JML: assert (2)

JML assertions have more expressive power since
we can include JML operators

for (n=0; n<a.length; n++) §
if (a[n]==null) break;
//@ assert (\forall int i; o<=i && i<n; a[i]'=null);

5

Like JML assertions, but we restrict ourselves to
traces where the condition is true

/@ assume b!=null && b.length>0;
blo]=2;

Useful during development
We can document assumptions
They “help” the automatic theorem prover

JML: frame conditions

A frame conditions constraints the side-effects of a
given method

[* (@ requires amount>o;
@ assignable this.balance
@ ensures this.balance==\old(this.balance) —amount;

@*/
public int debit(int amount) {...}
Can we constraint side-effects by adding

postconditions?

By default: //@ modifies \everything

JML: frame conditions

A method with no side-effects is called “pure”.

Public /*@ pure @*/ int getBalance() {...}

The pure annotation is equivalent to

//@ assignable \nothing;

Only pure methods can be used in specifications

//@ requires this.getBalance()>o;

JML: frame conditions (3)

Problem: dealing with assignable annotations can
be VERY ANNOYING.

public class Timer{

int time_hrs, time_mins, time_secs;
int alarm_hrs, alarm_mins, alarm_secs;

//@ assignable time_hrs, time_mins, time_secs;
public void tick() {...}

//@ assignable alarm_hrs, alarm_mins, alarm_secs;
public void setAlarm(int hrs, int mins, int secs){...}

JML: DataGroup

DataGroups: allow us to specify a recurrent subset
of assignable locations

public class Timer{

JMLDataGroup time, alarm;

int time_hrs, time_mins, time_secs; //@ in time;

int alarm_hrs, alarm_mins, alarm_secs; //@ in alarm;

//@ assignable time;
public void tick() {...}

//@ assignable alarm;
public void setAlarm(int hrs, int mins, int secs){...}

JML: class invariants

Class invariants are properties that must be preserved
by all methods

public class Wallet §
public static final short MAX_BAL = 1000;
private short balance;
[*@ invariant o<=this.balance &&
@ this.balance<=MAX_BAL;

@/
They are implicitly included in all methods

They must be preserved even in case of abnormal
termination

JML spec_public

public class ArrayOps {

private /*Q@ spec public @*/ Object[] a;
//@ public invariant 0.< a.length;

/*Q@ requires 0 < arr.length;

@ ensures this.a == arr;

@*/

public void init (Object[] arr) {

this.a = arr;

}

JML: non null

This modifier allows us to specify if a given field,
argument or variable can be null

By default: all fields (1), arguments, return types
and quantified variables (\forall, \exists) have an
implicit non_null modifier.

The opposite annotation of non_null is nullable
Example:

[*@ nullable @*/ Integer j;

[*@ non_null @*/Object o;

A predicate describing how the program state
changed by executing the loop.

Part of the reasoning we do (our subconscious?) while
writing a loop
Formal description:
What we assume before loop execution
How the program state evolved at the end of the iteration

For verification purposes they are foundamental
(unless we have a loop free program)

Loop invariants

int sumX (x: Int) {
//@ requires x >= 0;

//@ ensures \result == \sum(i:

int sumX (int x) {

int s = 0,

i=20;

while (i < x) {

i
S

}

return s;

i
n .
<+

int; 0<=i<=x; 1i)

i@s1 | s@s1 | iI@s2 | s@s2
0 0 1 1
1 1 2 3
2 3 3 g
3 6 4 10

Loop invariants

s==\sum(j: int; 0<=j<=i; j)
&& o<=i<=x

JML: loop annotations

JML allows us to annotate a loop invariant and a
variant function:

//@ loop_invariant product==m*i && i>=0 && i<=n && n>o;
//@ decreases n-i;
while (i<n){...}

loop_invariant: the loop invariant
decreases: variant function

Why do we need a variant function for?

JML: ghost fields

A ghost field is a reqular field, except for the fact that we
can only refer to it from the specification

Example: [/@ ghost Object F;

JML provides the special statements set for updating
the value of a ghost field

Instead of assigning a new value, the update is captured by
using a condition.

Example: //@ set F==null;

JML: ghost fields

Class Zoo {

1 Animal
class Ani { volid add(Animal a) {

//Q@ ghost Zoo owner; .
//@ set a.owner==this;

}

//@ requires a.owner==this;
vold feed(Animal a) {...}

J

Reachability in JML: \reach(...)

Returns the set of “reachable” objects

\reach captures the reflexive-transitive closure of a
binary relation

R*=3URU(R;R)U (R;R;R) U (R;R;R;R) U ...

The expression value is a JIMLObjectSet (empty if
only null is reachable)

Some \reach(...) flavours

\reach(this.f)

All objects that are reachable by using any field in the
reachable objects starting from this.f

\reach(this.f, T, f2)

All objects that are reachable starting from this.f BUT
Only traversing field 2
Objects of type T

Exercise

class List { Node header; }
class Node { Node next; Object data; }

Write an invariant for class List such that all
reachable nodes form an acyclic list.

[*@
@ invariant (\forall Node n;
@ (\reach(this.header, Node, next)).has(n) ;

@ !(\reach(n.next, Node, next)).has(n));
@/

The invariant in detail

[*@
@ invariant (\forall Node n;
@ (\reach(this.header, Node, next)).has(n) ;

@ !(\reach(n.next, Node, next)).has(n));
@/

header
next next

next

header
next next

What is wrong in this class?

public class Counter {

private /*Q@ spec public @*/ int val;
//@ modifies val;
//@ ensures val == \old(val + y.val);
//@ ensures y.val == \old(y.val);
public void addInto (Counter y) {

val += y.val; }
}

What is wrong with this class?

public class Counter {
private /*Q@ spec public @*/ int val;
//@ modifies val;
//@ requires y'!=this;
//@ ensures val == \old(val + vy.val);
//Q@ ensures y.val == \old(y.val):;
public void addInto (Counter vy) {
val += y.val; }
}

