
J.P. Galeotti - Alessandra Gorla
Automated testing and

verification

Test case selection and
adequacy criteria

Wednesday, November 21, 12

(c) 2007 Mauro Pezzè & Michal Young

Adequacy: We can’t get what we want

• What we would like:

• A real way of measuring effective testing
If the system passes an adequate suite of test cases, then it must be correct (or
dependable)

• But that’s impossible!

• Adequacy of test suites, in the sense above, is provably undecidable.

• So we’ll have to settle on weaker proxies for adequacy

• Design rules to highlight inadequacy of test suites

Wednesday, November 21, 12

(c) 2007 Mauro Pezzè & Michal Young

Adequacy Criteria as Design Rules

• Many design disciplines employ design rules

• E.g.: “traces (on a chip, on a circuit board) must be at least ___ wide and separated by
at least ___”

• “The roof must have a pitch of at least ____ to shed snow”

• “Interstate highways must not have a grade greater than 6% without special review and
approval”

• Design rules do not guarantee good designs

• Good design depends on talented, creative, disciplined designers; design rules help
them avoid or spot flaws

• Test design is no different

Wednesday, November 21, 12

(c) 2007 Mauro Pezzè & Michal Young

Practical (in)Adequacy Criteria
• Criteria that identify inadequacies in test suites.

• Examples

– if the specification describes different treatment in two cases, but the test suite does
not check that the two cases are in fact treated differently, we may conclude that the
test suite is inadequate to guard against faults in the program logic.

– If no test in the test suite executes a particular program statement, the test suite is
inadequate to guard against faults in that statement.

• If a test suite fails to satisfy some criterion, the obligation that has not been
satisfied may provide some useful information about improving the test suite.

• If a test suite satisfies all the obligations by all the criteria, we do not know
definitively that it is an effective test suite, but we have some evidence of its
thoroughness.

Wednesday, November 21, 12

(c) 2007 Mauro Pezzè & Michal Young

Analogy: Building Codes

• Building codes are sets of design rules

• Maximum span between beams in ceiling, floor, and walls; acceptable materials;
wiring insulation; ...

• Minimum standards, subject to judgment of building inspector who interprets the
code

• You wouldn’t buy a house just because it’s “up to code”

• It could be ugly, badly designed, inadequate for your needs

• But you might avoid a house because it isn’t

• Building codes are adequacy criteria, like practical test “adequacy” criteria

Wednesday, November 21, 12

(c) 2007 Mauro Pezzè & Michal Young

Some useful terminology
• Test case: a set of inputs, execution conditions, and a pass/fail criterion.

• Test case specification: a requirement to be satisfied by one or more test
cases.

• Test obligation: a partial test case specification, requiring some property
deemed important to thorough testing.

• Test suite: a set of test cases.

• Test or test execution: the activity of executing test cases and evaluating
their results.

• Adequacy criterion: a predicate that is true (satisfied) or false (not satisfied)
of a 〈program, test suite〉 pair.

Wednesday, November 21, 12

(c) 2007 Mauro Pezzè & Michal Young

Where do test obligations come from?

• Functional (black box, specification-based): from software specifications

• Example: If spec requires robust recovery from power failure, test obligations should
include simulated power failure

• Structural (white or glass box): from code

• Example: Traverse each program loop one or more times.

• Model-based: from model of system

• Models used in specification or design, or derived from code

• Example: Exercise all transitions in communication protocol model

• Fault-based: from hypothesized faults (common bugs)

• Example: Check for buffer overflow handling (common vulnerability) by testing on very
large inputs

Wednesday, November 21, 12

(c) 2007 Mauro Pezzè & Michal Young

Adequacy criteria

• Adequacy criterion = set of test obligations

• A test suite satisfies an adequacy criterion if

• all the tests succeed (pass)

• every test obligation in the criterion is satisfied by at least one of the test cases
in the test suite.

• Example:

 the statement coverage adequacy criterion is satisfied by test suite S
for program P if each executable statement in P is executed by at least
one test case in S, and the outcome of each test execution was “pass”.

Wednesday, November 21, 12

(c) 2007 Mauro Pezzè & Michal Young

Satisfiability

• Sometimes no test suite can satisfy a criterion for a given program

• Example: Defensive programming style includes “can’t happen” sanity checks

if (z < 0) {
 throw new LogicError(
! “z must be positive here!”)
}

No test suite can satisfy statement coverage for this program (if it’s correct)

Wednesday, November 21, 12

(c) 2007 Mauro Pezzè & Michal Young

Coping with Unsatisfiability

• Approach A: exclude any unsatisfiable obligation from the criterion.

• Example: modify statement coverage to require execution only of statements that
can be executed.

• But we can’t know for sure which are executable!

• Approach B: measure the extent to which a test suite approaches an adequacy
criterion.

• Example: if a test suite satisfies 85 of 100 obligations, we have reached 85%
coverage.

• Terms: An adequacy criterion is satisfied or not, a coverage measure is the
fraction of satisfied obligations

Wednesday, November 21, 12

(c) 2007 Mauro Pezzè & Michal Young

Coverage: Useful or Harmful?

• Measuring coverage (% of satisfied test obligations) can be a useful indicator ...

• Of progress toward a thorough test suite, of trouble spots requiring more
attention

• ... or a dangerous seduction

• Coverage is only a proxy for thoroughness or adequacy

• It’s easy to improve coverage without improving a test suite (much easier than
designing good test cases)

• The only measure that really matters is (cost-)effectiveness

Wednesday, November 21, 12

(c) 2007 Mauro Pezzè & Michal Young

Comparing Criteria

• Can we distinguish stronger from weaker adequacy criteria?

• Empirical approach: Study the effectiveness of different approaches to
testing in industrial practice

• What we really care about, but ...

• Depends on the setting; may not generalize from one organization or project to another

• Analytical approach: Describe conditions under which one adequacy
criterion is provably stronger than another

• Stronger = gives stronger guarantees

• One piece of the overall “effectiveness” question

Wednesday, November 21, 12

(c) 2007 Mauro Pezzè & Michal Young

The subsumes relation

Test adequacy criterion A subsumes test adequacy criterion B iff, for every program
P, every test suite satisfying A with respect to P also satisfies B with respect to P.

• Example:

	 Exercising all program branches (branch coverage) subsumes exercising all
program statements

• A common analytical comparison of closely related criteria

• Useful for working from easier to harder levels of coverage, but not a direct
indication of quality

Wednesday, November 21, 12

(c) 2007 Mauro Pezzè & Michal Young

Uses of Adequacy Criteria

• Test selection approaches

• Guidance in devising a thorough test suite

• Example: A specification-based criterion may suggest test cases covering
representative combinations of values

• Revealing missing tests

• Post hoc analysis: What might I have missed with this test suite?

• Often in combination

• Example: Design test suite from specifications, then use structural criterion (e.g.,
coverage of all branches) to highlight missed logic

Wednesday, November 21, 12

(c) 2007 Mauro Pezzè & Michal Young

Summary

• Adequacy criteria provide a way to define a notion of “thoroughness” in a test suite

• But they don’t offer guarantees; more like design rules to highlight inadequacy

• Defined in terms of “covering” some information

• Derived from many sources: Specs, code, models, ...

• May be used for selection as well as measurement

• With caution! An aid to thoughtful test design, not a substitute

Wednesday, November 21, 12

J.P. Galeotti - Alessandra Gorla
Automated testing and

verification

Functional Testing

Wednesday, November 21, 12

(c) 2007 Mauro Pezzè & Michal Young

Functional testing

• Functional testing: Deriving test cases from program specifications

• Functional refers to the source of information used in test case design, not to
what is tested

• Also known as:

– specification-based testing (from specifications)

– black-box testing (no view of the code)

• Functional specification = description of intended program behavior

• either formal or informal

Wednesday, November 21, 12

(c) 2007 Mauro Pezzè & Michal Young

Systematic vs Random Testing

• Random (uniform):

• Pick possible inputs uniformly

• Avoids designer bias

• A real problem: The test designer can make the same logical mistakes and bad
assumptions as the program designer (especially if they are the same person)

• But treats all inputs as equally valuable

• Systematic (non-uniform):

• Try to select inputs that are especially valuable

• Usually by choosing representatives of classes that are supposed to fail often or not at all

• Functional testing is systematic testing

Wednesday, November 21, 12

(c) 2007 Mauro Pezzè & Michal Young

Why Not Random?

• Non-uniform distribution of faults

• Example: Java class “roots” applies quadratic equation

Incomplete implementation logic: Program does not properly handle the case in
which b2 - 4ac =0 and a=0

Failing values are sparse in the input space — needles in a very big haystack.
Random sampling is unlikely to choose a=0.0 and b=0.0

Wednesday, November 21, 12

(c) 2007 Mauro Pezzè & Michal Young

Consider the purpose of testing ...

• To estimate the proportion of needles to hay, sample randomly

• Reliability estimation requires unbiased samples for valid statistics. But that’s
not our goal!

• To find needles and remove them from hay, look systematically (non-uniformly) for
needles

• Unless there are a lot of needles in the haystack, a random sample will not be
effective at finding them

• We need to use everything we know about needles, e.g., are they heavier than
hay? Do they sift to the bottom?

Wednesday, November 21, 12

(c) 2007 Mauro Pezzè & Michal Young

Systematic Partition Testing

Failure (valuable test case)
No failure

Failures are sparse in
the space of possible

inputs ...

... but dense in some
parts of the space

If we systematically test some cases
from each part, we will include the

dense parts
Functional testing is one way
of drawing pink lines to isolate

regions with likely failures

Th
e

sp
ac

e
of

 p
os

sib
le

inp
ut

 v
alu

es
(th

e
ha

ys
ta

ck
)

Wednesday, November 21, 12

(c) 2007 Mauro Pezzè & Michal Young

The partition principle

• Exploit some knowledge to choose samples that are more likely to include “special” or
trouble-prone regions of the input space

• Failures are sparse in the whole input space ...

• ... but we may find regions in which they are dense

• (Quasi*-)Partition testing: separates the input space into classes whose union is the entire
space

• *Quasi because: The classes may overlap

• Desirable case: Each fault leads to failures that are dense (easy to find) in some class of
inputs

• sampling each class in the quasi-partition selects at least one input that leads to a failure, revealing the
fault

• seldom guaranteed; we depend on experience-based heuristics

Wednesday, November 21, 12

(c) 2007 Mauro Pezzè & Michal Young

Functional testing: exploiting the specification

• Functional testing uses the specification (formal or informal) to partition the input
space

• E.g., specification of “roots” program suggests division between cases with zero,
one, and two real roots

• Test each category, and boundaries between categories

• No guarantees, but experience suggests failures often lie at the boundaries (as in
the “roots” program)

Wednesday, November 21, 12

(c) 2007 Mauro Pezzè & Michal Young

Why functional testing?

• The base-line technique for designing test cases

• Timely

• Often useful in refining specifications and assessing testability before code is written

• Effective

• finds some classes of fault (e.g., missing logic) that can elude other approaches

• Widely applicable

• to any description of program behavior serving as spec

• at any level of granularity from module to system testing.

• Economical

• typically less expensive to design and execute than structural (code-based) test cases

Wednesday, November 21, 12

(c) 2007 Mauro Pezzè & Michal Young

Early functional test design

• Program code is not necessary

• Only a description of intended behavior is needed

• Even incomplete and informal specifications can be used

• Although precise, complete specifications lead to better test suites

• Early functional test design has side benefits

• Often reveals ambiguities and inconsistency in spec

• Useful for assessing testability

• And improving test schedule and budget by improving spec

• Useful explanation of specification

• or in the extreme case (as in XP), test cases are the spec

Wednesday, November 21, 12

(c) 2007 Mauro Pezzè & Michal Young

Functional versus Structural: Classes of faults

• Different testing strategies (functional, structural, fault-based, model-based) are
most effective for different classes of faults

• Functional testing is best for missing logic faults

• A common problem: Some program logic was simply forgotten

• Structural (code-based) testing will never focus on code that isn’t there!

Wednesday, November 21, 12

(c) 2007 Mauro Pezzè & Michal Young

Functional vs structural test: granularity levels

• Functional test applies at all granularity levels:

• Unit 	 	 (from module interface spec)

• Integration	(from API or subsystem spec)

• System	 	 (from system requirements spec)

• Regression	(from system requirements + bug history)

• Structural (code-based) test design applies to relatively small parts of a system:

• Unit	 	 	

• Integration

Wednesday, November 21, 12

(c) 2007 Mauro Pezzè & Michal Young

Steps: From specification to test cases

• 1. Decompose the specification

• If the specification is large, break it into independently testable features to be
considered in testing

• 2. Select representatives

• Representative values of each input, or

• Representative behaviors of a model

• Often simple input/output transformations don’t describe a system. We use models
in program specification, in program design, and in test design

• 3. Form test specifications

• Typically: combinations of input values, or model behaviors

• 4. Produce and execute actual tests

Wednesday, November 21, 12

(c) 2007 Mauro Pezzè & Michal Young

From specification to test cases

Functional
Specifications

Independently
Testable
Feature

ModelRepresentative
Values

Test
Case

Specifications

Test
Cases

Wednesday, November 21, 12

(c) 2007 Mauro Pezzè & Michal Young

Simple example: Postal code lookup

• Input: ZIP code (5-digit US Postal
code)

• Output: List of cities

• What are some representative
values (or classes of value) to
test?

Wednesday, November 21, 12

(c) 2007 Mauro Pezzè & Michal Young

Example: Representative values

• Correct zip code

• With 0, 1, or many cities

• Malformed zip code

• Empty; 1-4 characters; 6 characters; very long

• Non-digit characters

• Non-character data

Simple example with
one input, one output

Note prevalence of boundary
values (0 cities, 6 characters) and

error cases

Wednesday, November 21, 12

(c) 2007 Mauro Pezzè & Michal Young

Summary

• Functional testing, i.e., generation of test cases from specifications is a valuable and
flexible approach to software testing

• Applicable from very early system specs right through module specifications

• (quasi-)Partition testing suggests dividing the input space into (quasi-)equivalent
classes

• Systematic testing is intentionally non-uniform to address special cases, error
conditions, and other small places

• Dividing a big haystack into small, hopefully uniform piles where the needles
might be concentrated

Wednesday, November 21, 12

J.P. Galeotti - Alessandra Gorla
Automated testing and

verification

Combinatorial Testing

Wednesday, November 21, 12

(c) 2007 Mauro Pezzè & Michal Young

Combinatorial testing: Basic idea

• Identify distinct attributes that can be varied

• In the data, environment, or configuration

• Example: browser could be “IE” or “Firefox”, operating system could be “Vista”,
“XP”, or “OSX”

• Systematically generate combinations to be tested

• Example: IE on Vista, IE on XP, Firefox on Vista, Firefox on OSX, ...

• Rationale: Test cases should be varied and include possible “corner cases”

Wednesday, November 21, 12

(c) 2007 Mauro Pezzè & Michal Young

Key ideas in combinatorial approaches

• Category-partition testing

• separate (manual) identification of values that characterize the input space
from (automatic) generation of combinations for test cases

• Pairwise testing

• systematically test interactions among attributes of the program input space
with a relatively small number of test cases

• Catalog-based testing

• aggregate and synthesize the experience of test designers in a particular
organization or application domain, to aid in identifying attribute values

Wednesday, November 21, 12

(c) 2007 Mauro Pezzè & Michal Young

Category partition (manual steps)

1. Decompose the specification into independently testable features

– for each feature identify

• parameters

• environment elements

– for each parameter and environment element identify elementary characteristics (categories)

2. Identify relevant values

– for each characteristic (category) identify (classes of) values

• normal values

• boundary values

• special values

• error values

3. Introduce constraints

Wednesday, November 21, 12

(c) 2007 Mauro Pezzè & Michal Young

An informal specification: check configuration

Check Configuration

• Check the validity of a computer configuration

• The parameters of check-configuration are:

• Model

• Set of components

Wednesday, November 21, 12

(c) 2007 Mauro Pezzè & Michal Young

An informal specification: parameter model

Model

• A model identifies a specific product and determines a set of constraints on
available components. Models are characterized by logical slots for components,
which may or may not be implemented by physical slots on a bus. Slots may be
required or optional. Required slots must be assigned with a suitable component
to obtain a legal configuration, while optional slots may be left empty or filled
depending on the customers' needs

Example:

 The required “slots” of the Chipmunk C20 laptop computer include a screen, a
processor, a hard disk, memory, and an operating system. (Of these, only the
hard disk and memory are implemented using actual hardware slots on a bus.)
The optional slots include external storage devices such as a CD/DVD writer.

Wednesday, November 21, 12

(c) 2007 Mauro Pezzè & Michal Young

An informal specification of parameter set of
components

Set of Components

• A set of (slot, component) pairs, corresponding to the required and optional slots of the
model. A component is a choice that can be varied within a model, and which is not
designed to be replaced by the end user. Available components and a default for each slot
is determined by the model. The special value empty is allowed (and may be the default
selection) for optional slots. In addition to being compatible or incompatible with a particular
model and slot, individual components may be compatible or incompatible with each other.

Example:

 The default configuration of the Chipmunk C20 includes 100 gigabytes of hard disk; 200
and 500 gigabyte disks are also available. (Since the hard disk is a required slot, empty
is not an allowed choice.) The default operating system is RodentOS 3.2, personal
edition, but RodentOS 3.2 mobile server edition may also be selected. The mobile server
edition requires at least 200 gigabytes of hard disk.

Wednesday, November 21, 12

(c) 2007 Mauro Pezzè & Michal Young

Step1: Identify independently testable units and
categories

• Choosing categories

• no hard-and-fast rules for choosing categories

• not a trivial task!

• Categories reflect test designer's judgment

• regarding which classes of values may be treated differently by an implementation

• Choosing categories well requires experience and knowledge

• of the application domain and product architecture. The test designer must look
under the surface of the specification and identify hidden characteristics

Wednesday, November 21, 12

(c) 2007 Mauro Pezzè & Michal Young

Step 1: Identify parameters and environment
Parameter Model

• Model number

• Number of required slots for selected model (#SMRS)

• Number of optional slots for selected model (#SMOS)

Parameter Components

• Correspondence of selection with model slots

• Number of required components with selection ≠ empty

• Required component selection

• Number of optional components with selection ≠ empty

• Optional component selection

Environment element: Product database

• Number of models in database (#DBM)

• Number of components in database (#DBC)

Wednesday, November 21, 12

(c) 2007 Mauro Pezzè & Michal Young

Step 2: Identify relevant values

• Identify (list) representative classes of values for each of the categories

• Ignore interactions among values for different categories (considered in the next step)

• Representative values may be identified by applying

• Boundary value testing

• select extreme values within a class

• select values outside but as close as possible to the class

• select interior (non-extreme) values of the class

• Erroneous condition testing

• select values outside the normal domain of the program

Wednesday, November 21, 12

(c) 2007 Mauro Pezzè & Michal Young

Step 2: Identify relevant values: Model

Model number

Malformed

Not in database

Valid

Number of required slots for selected model (#SMRS)

0

1

Many

Number of optional slots for selected model (#SMOS)

0

1

Many

Wednesday, November 21, 12

(c) 2007 Mauro Pezzè & Michal Young

Step 2: Identify relevant values: Component
Correspondence of selection with model slots

Omitted slots

Extra slots

Mismatched slots

Complete correspondence

Number of required components with non empty selection

0

< #SMRS

= #SMRS

Required component selection

Some defaults

All valid

≥ 1 incompatible with slots

≥ 1 incompatible with another selection

≥ 1 incompatible with model

≥ 1 not in database

Number of optional components
with non empty selection
0
< #SMOS
= #SMOS

Optional component selection
Some defaults
All valid
≥ 1 incompatible with slots
≥ 1 incompatible with another

selection
≥ 1 incompatible with model
≥ 1 not in database

Wednesday, November 21, 12

(c) 2007 Mauro Pezzè & Michal Young

Step 2: Identify relevant values: Database

Number of models in database (#DBM)

0	

1	

Many

Number of components in database (#DBC)

0	

1	

Many

Note 0 and 1 are unusual (special) values. They might cause unanticipated behavior alone or in combination
with particular values of other parameters.

Wednesday, November 21, 12

(c) 2007 Mauro Pezzè & Michal Young

Step 3: Introduce constraints

• A combination of values for each category corresponds to a test case specification

• in the example we have 314.928 test cases

• most of which are impossible!

• example
zero slots and at least one incompatible slot

• Introduce constraints to

• rule out impossible combinations

• reduce the size of the test suite if too large

Wednesday, November 21, 12

(c) 2007 Mauro Pezzè & Michal Young

Step 3: error constraint

[error] indicates a value class that

• corresponds to a erroneous values

• need be tried only once

Example

	 Model number: Malformed and Not in database

error value classes

• No need to test all possible combinations of errors

• One test is enough (we assume that handling an error case bypasses other program logic)

Wednesday, November 21, 12

(c) 2007 Mauro Pezzè & Michal Young

Example - Step 3: error constraint
Model number

Malformed	 	 	 [error]

Not in database	 	 [error]

Valid

Correspondence of selection with model slots
	 Omitted slots	 	 	 [error]

	 Extra slots	 	 	 [error]

	 Mismatched slots	 	 [error]

	 Complete correspondence

Number of required comp. with non empty selection
	 0	 	 	 	 [error]

	 < number of required slots	 [error]

Required comp. selection

 ≥ 1 not in database

 [error]

Number of models in database (#DBM)
	 0	 	 	 	 [error]

Number of components in database (#DBC)
	 0	 	 	 	 [error]

Error constraints
reduce test suite
from 314.928 to
2.711 test cases

Wednesday, November 21, 12

(c) 2007 Mauro Pezzè & Michal Young

Step 3: property constraints

constraint [property] [if-property] rule out invalid combinations of values

[property] groups values of a single parameter to identify subsets of values with
common properties

[if-property] bounds the choices of values for a category that can be combined with
a particular value selected for a different category

Example

combine

Number of required comp. with non empty selection = number required slots [if RSMANY]

only with

Number of required slots for selected model (#SMRS) = Many [RSMANY]

Wednesday, November 21, 12

(c) 2007 Mauro Pezzè & Michal Young

Example - Step 3: property constraints
Number of required slots for selected model (#SMRS)

	 1	 	 	 	 [property RSNE]

	 Many	 	 	 [property RSNE] [property RSMANY]

Number of optional slots for selected model (#SMOS)

	 1	 	 	 	 [property OSNE]

	 Many	 	 	 [property OSNE] [property OSMANY]

Number of required comp. with non empty selection

	 0	 	 	 	 [if RSNE] [error]

	 < number required slots	 	 [if RSNE] [error]

	 = number required slots	 	 [if RSMANY]

Number of optional comp. with non empty selection

	 < number required slots	 	 [if OSNE]

	 = number required slots	 	 [if OSMANY]

from 2.711 to 908
test cases

Wednesday, November 21, 12

(c) 2007 Mauro Pezzè & Michal Young

Step 3 (cont): single constraints

[single] indicates a value class that test designers choose to test only once to reduce
the number of test cases

Example

 value some default for required component selection and
optional component selection may be tested only once
despite not being an erroneous condition

note -

 single and error have the same effect but differ in
rationale. Keeping them distinct is important for
documentation and regression testing

Wednesday, November 21, 12

(c) 2007 Mauro Pezzè & Michal Young

from 908 to 69
test cases

Example - Step 3: single constraints

Number of required slots for selected model (#SMRS)

0	 	 	 	 [single]

1	 	 	 	 [property RSNE] [single]

Number of optional slots for selected model (#SMOS)

0	 	 	 	 [single]

1	 	 	 	 [single] [property OSNE]

Required component selection

Some default	 	 [single]

Optional component selection

Some default	 	 [single]

Number of models in database (#DBM)

1	 	 	 	 [single]

Number of components in database (#DBC)

1	 	 	 	 [single]

Wednesday, November 21, 12

(c) 2007 Mauro Pezzè & Michal Young

Check configuration – Summary
Parameter Model

• Model number
• Malformed [error]

• Not in database [error]

• Valid

• Number of required slots for selected model (#SMRS)
• 0 [single]

• 1 [property RSNE] [single]

• Many [property RSNE] [property RSMANY]

• Number of optional slots for selected model (#SMOS)
• 0 [single]

• 1 [property OSNE] [single]

• Many [property OSNE] [property OSMANY]

Environment Product data base

• Number of models in database (#DBM)
• 0 [error]

• 1 [single]

• Many

• Number of components in database (#DBC)
• 0 [error]

• 1 [single]

• Many

Parameter Component
• Correspondence of selection with model slots

– Omitted slots [error]
– Extra slots [error]
– Mismatched slots [error]
– Complete correspondence

• # of required components (selection ≠ empty)
– 0 [if RSNE] [error]
– < number required slots [if RSNE] [error]
– = number required slots [if RSMANY]

• Required component selection
– Some defaults [single]
– All valid
– ≥ 1 incompatible with slots
– ≥ 1 incompatible with another selection
– ≥ 1 incompatible with model
– ≥ 1 not in database [error]

• # of optional components (selection ≠ empty)
– 0
– < #SMOS [if OSNE]
– = #SMOS [if OSMANY]

• Optional component selection
– Some defaults [single]
– All valid
– ≥ 1 incompatible with slots
– ≥ 1 incompatible with another selection
– ≥ 1 incompatible with model
– ≥ 1 not in database [error]

Wednesday, November 21, 12

(c) 2007 Mauro Pezzè & Michal Young

Next ...

• Category partition testing gave us

• Systematic approach: Identify characteristics and values (the creative step), generate
combinations (the mechanical step)

• But ...

• Test suite size grows very rapidly with number of categories. Can we use a non-
exhaustive approach?

• Pairwise (and n-way) combinatorial testing do

• Combine values systematically but not exhaustively

• Rationale: Most unplanned interactions are among just two or a few parameters or
parameter characteristics

Wednesday, November 21, 12

