Automatic Testing & Verification

Introduction

About Us...

Juan Pablo Galeotti
Alessandra Gorla

http://www.st.cs.uni-saarland.de
Computer Science — Saarland University

Research on:
Mining software archives
Automated Debugging
Mutation Testing
Mining Models

Bachelor and Master students
Always welcome!

Motivation

Automated analysis is rapidly gaining ground on all software
development activities.

Industry: Tools are more often used to enhance more
traditional QA methodologies.

More results are obtained at a lower cost.

Impact on Industry

"Static Analysis can reduce defects by up to a factor of six!”

(Capers Jones, Software Productivity Group)

Microsoft
Code is automatically analyzed using automatic verifiers (PREfix, PREfast)
Visual Studio + Code Contracts: Static Analysis + Test Case Generation
Kit for verifying drivers is delivered to third-parties vendors.

library.c

more_code.c

driver.c

Impact on Industry

Java FindBugs: > 1,5 million downloads @\
Actively used in Google, Sun, Ebay, etc.

It finds "mechanical” errors, error patterns
Experience in Google:
>£000 problems in deployed code!

More than 8o infinite loops!

Motivation

Automatic program analysis is increasily used in software
engineering activities

Industry: Tools are more often used to enhance traditional QA
methodologies

Concrete results are obtained at lower cost.

Academia: A lot of activity

Program analysis topics gain presence in more important conferences in
software engineering, programming and systems

Hybrid approachs (static analysis + testing) .

Bug detection, Multicore (data races, automatic parallelization).
More precision, usability, scalability (no longer a bottleneck)

Security

Some disasters

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have be
corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then
L r it
" again
L]

Due to a bug, a radio therapy machine
applied 100 times the radiation dose on
patients

A race condition did not allow the machine
to detect a change in the operation mode

ArianeV Flight 5oa:

An arithmetic overflow in inertial
computation

Exception badly handled
Reused code from Ariane 4

http://en.wikipedia.org/wiki/
List of software bugs

Any mini-disaster at home?

Why is so hard to build quality

programs?
In other fields, In software...
Many failures, but Systems fail everyday
unfrequent

It is very complex to

A building, a bridge, or a car / _
v % determine quality and

do not need weekly

patches... predict problems.
Well-defined techniques Building a failure-tolerant
for quality assurance system is more complex
Quality can be measured than “concrete”
and predicted engineering

Replicate components can

Relatively simple parts, lead to new problems...

composition can be
done.

Software Complexity

A lot of functionality!

Size:
Code millions lines length
Each line might be important!

State-explosion:
A single 32bits variable has 2”32 potential values!!!

Complexities:
Arithmetic, concurrency, dynamic heap memory
Complex hardware, heterogenous
etc.

Program analysis

“"Program analysis is the systematic examination of a software
«artifact» to discover its properties”

Examination:
Automatic vs. manual

Systematic:

Coverage in testing, inspection checklist, exhaustive model checking,
etc...

Artifact:

Program, execution trace, test case, design, requirements document.

Properties:
Functional: correction

Non-functional: memory consumption, performance, availability,
security

Program Analysis

Analyze (infer/prove properties over) programs

Dynamic Analysis:
Program analysis using the execution of the program
Characterizes some executions
Precise: it knows all concrete states

Static Analysis:
The program is analysed without executing code.
Characterizes all possible executions
Conservative: it approximates concrete states

Verification, Validation, Synthesis, Inference

Verification Inference
Against a specification Discover some
It might be an implicit Interesting properties
specification about the program
Validation Synthesis
Does the system do Create a new program:
what the user wants? optimize (compiler),
Failures in specifications control (scheduler)

We will focus on verification and inference

A problem has been detected and windows has been shut down to prevent damage
TO your computer.

UNEXPECTED_KERNEL_MODE_TRAP

If this is the first time you've seen this Stop error screen,
restart your computer. If this screen appears again, follow
these steps:

Check to make sure that any new hardware or software is properly installed.
If this is a new installation, ask your hardware or software manufacturer
for any windows updates you might need.

If problems continue, disable or remove any newly installed hardware
or software. Disable BIOS memory options such as caching or shadowing.
If you need to use Safe Mode to remove or disable components, restart
your computer, press F8 to select Advanced Startup options, and then
select safe Mode.

Technical information:

wuw STOP: 0x0000007F (Ox00000000, 0xBYFCSES4, 0x00000008, OxCO0000000)

Wk Beep.SYS - Address BO9FCBE84 base at BO9FC7000, DateStamp 36B04Cl6

Find the bug!

X = 8;
y = X,

Division by zero!
z := 0;

while y > -1 do

Find the bug!

X = 8;
y = X,

Division by zero!
z := 0;

while y > f(x,y,z) do

The BIG program

Remove bugs from our programs.
As soon as possible (before deployment).

Classic techniques

Remove bugs from our programs.
As soon as possible (mainly before deployment).

Testing: Direct execution of a program in a controlled
environment

Identify and localize faults: it does not guarantee absence
It may be too expensive

"Program testing can be used to show the presence of bugs, but never
to show their absence!" -- Edsger Dijkstra

Classic Techniques

Remove bugs from our programes.
As soon as possible (mainly before deployment).

Dynamic Analysis: Tools for mining information from
program executions

Find failures (memory)
Invariants
Precise but under approximates.

Inspections: Human evaluation of artifacts.
Specifications, Designs, Code.

Important human effort: error prone,
it can not be exhaustive due to scale of artifacts

Sometimes failures are “subtle”, they happen after a non-
trivial sequence of events.

Static Analysis

The program is analyzed without being executed.

It is the systematic examination of an abstraction of the program
states

Systematic

We examine all program paths within one procedure
What about loops?

The exploration is exhaustive

Abstraction

Keep only relevant information with regard to the property to infer
Variable sign (-,0,+)
Set of variables to be read in the future
Etc...

More known techniques

Deductive verification methods Dataflow / Abs. Interpretation
Formal proofs of correction against “Mechanical” Errors (difficult to
specifications. exhibit through Testing or
Tool support : inspections):

Compilers+ theorem provers Memory usage (null dereference,

Type check L

ypernestern non initialized date).

Semi automatic orlncomplete, often N e ock
too costly. Resource "Leaks” (memory, locks,

. : files).
They require annotations (types or es)
contracts). Vulnerabilities (buffers overruns,

non validated data).

Non handled exceptions,
concurrency (race conditions),

Model checking

_ etc.
A formal model of a system is
analyzed .
Good for analyzing event interaction Bug ﬁndmg
(protocols, concurrency, etc) Search for common patterns

Expensive Good practice enforcement

Static Analysis: typical usage

To optimize code
Detect unused variables;
Remove dead code

Detect more frequently used
expressions.

Purity analysis.
Null dereference.

Verification
Implicit or explicit contracts
Functional properties
“*Mechanical” Errors

Program Understanding
Type inference
Pre/post computation
Invariants
Memory requirements

Reverse engineering

Call graph of a OO program

Behavioral Models
Architectural view

Improve code quality/
readability
It might check if a program

satisfies established “good
practices” patterns

Static Analyzer Glossary

Concepts that appear recurrently:

Abstraction

Approximation
May vs Must

Correction vs
Completeness

False positives
False negatives

Inference vs. Sensibility
CheCking FlOW'
Verification vs. sensitive
Bug Finding Path-sensitive
Context-
sensitive
Intra vs.

Interprocedural

Abstraction

Focus on property to analyze

Which aspects of the problem are interesting?

Control aspects
e.g: event sequences, instruction sequences, concurrency, etc.

Data
Division by zero
Memory comsuption

Security

Functionality

To what degree of precision?

Abstraction: example

| want to know about :

potential null dereferences intlc 5 0,[s

float avg List(List L)

= Q¢

Iterator itL

=| L.lterator () ;

o: Var 2 {null, notNull, 08 (| oL I JREleERE (UTF)
val = (Value)itL.next();
mayBeNull} sttval Jvalue () ;
c++|;
L] n n }
Division by Zero]
] return|s/c;
o::Var 2{indef, Z, NZ, QZ})

Can | free memory used by
the iterator on method exit?
O: : points-to graph
Check reachability

next cur

Abstraction requires approximation

Abstraction => handle an incomplete picture

We do not handle “concrete”/"real” information
Examples: Positive integers

3—3=0 MZ

Abs(3) = NZ

What is NZ = NZ? Z NZ

AnswerZo NZ=>MZ 0 1,23..

MAY vs MUST Analysis

We need to approximate and be conservative

We require to approximate from “above” (MAY) or
from “below” (MUST)

_ _ Available expressions (e.g.: remove
Points-to analysis (e.g.: call graph) redundant computation)
class B extends A {};

... int ¢ = b*b;
Object a;

{b*b }

[2a -> null] int d=c¢ + 1;
1 £ (y<10
L ;Y: n’ew{A(). {b*b, c+1}

[a -> A]) int a = b*b;
} {b*b, c+1}
else { c = 4;

a = new B() { b*b }

[a -> B] if(b < ¢c) b = 2;
} else a = b*4;
[a -> A 6 B] {}

a.foo () return d;

Soundness vs Completeness

False positives vs. False negatives.

Q = Real Bugs in the system
Q = Bugs detected by a ‘ = Bugs detected by a
“correct” analysis

“complete” analysis (eg:testing)

Soundness and Completeness

Given an analysis A that checks certain property Q on a program Pr:
Soundness
If program Pr satisfies Q, then analysis A can prove/find it

If analysis reports no null dereference => program has no null dereferences

Completness
If analysis A reports property Q on program Pr, then property Q exists in program Pr.
If analysis reports null dereference => program has null dereference

Ideal = Soundness+ Completeness

Inference vs Checking

Type-Checking:
Given a program and a set of annotations (property) check if the
annotations are correct

Inference:
Given a program infer annotations that exhibit a propety

Checking is easier than infering!

requires |al|>0;

int max (int[] a) { ensures Vj:[0,|al)| res>=aljl;
1: int i=0;
2: int m = al[0];
3: while (i < a.length) { 1: assert i == 0;
4+ if(a[i]> m) 2: assert m == a[0];
_ . 3: assert 0<=i<|al| && VJ:[0,1)| m>=al[]j];
5: m = ali]; , _ _ : .
0: i++; 4: assert 0<=i<|al| && VJ:[0,1)| m>=a[j] && al[il>m;
: ! 5: assert 0<=i<|al| && VJ:[0,1)] m>=alj] && m==al[i]
Ik } 6: assert 0O<i<=la| && Vj:[0,1]| m>=aljl;
8: return m; 7: assert i==la| && VJj:[0,1)| m>=alj];
} 8: assert i==la| && Vj:[0,1)| res>=alj];

Checking

Inference

Verification vs Bug Finding

Verification: prove that a program obeys a
specification

Specification could be implicit

Analysis is usually conservative

Bug finding
Focus in some classes of errors with “real” impact.
Misusage of equals,hash

Null pointers
Synchronization

Apply several techniques on these errors
Dataflow, syntactic, statistical, etc.

Practical: it may miss bugs

Sensibility

Sensibility: which code aspects will be
considered?

Statement order? Flow sensitive
Call Stack? Context sensitive
Conditional branches? Path sentivive

Type-checking Insensible
Dataflow Flow-sensitive
Model Checking Flow-sensitive and Path-sensitive

Points-to C :Flow-sensitive
Java: Context-sensitive

Static Analysis limitations

Why we need to approximate the static analysis?
Because of performance issues?
Because of shortage of resources?

Because of indecibility of the analysis!

In general there is no program capable of computing
precisly the properties of arbitrary.
This leads us to the Halting problem

“Has program P property X?” = "Program P can reach a state
where X holds?”

About this course

Obijetives

Present techniques for analyzing programs
Static and dynamic techniques

Learn their foundamentals:
In order to evaluate them, compare them
Pros & Cons.
Challenges

Promote using automatic tools for testing and program
analysis

Outline

* Design by contract
* Verification using automatic theorem provers

* Static verification, dynamic verification, bounded Tools, tools, tools, demos,
verification demos, tools, demos!
* Typestates

e nullness, inmutability analysis
e Intraprocedural / Interprocedural Dataflow
e Dynamic Symbolic Execution

e ——————
* Test case generation
e Structural and functional testing
* Search based testing
* Regression testing
* Mutation testing
* Model based testing
» Web applications testing
* GUI testing

Course Organization

3 lectures every 2 weeks
1 lab session every 2 weeks

3 student projects
Final written exam

Inferring properties

Dataflow analysis

1:x:=8
It is the most heavily used static analysis
technique. St

3:z:=0
Purpose: Infer automatically
interesting properties of a given ==
program 4iximx/y
Principle: Model the execution of a program as the S

solution of a set of equations. The equations describe
the flow of values through the programinstructions.

6:z:=5

An example

1:x:=8
[x=> NZ]
2:y:=x
x> NZ, y = NZ]
3:z:=0
[x=>» NZ,y = NZ, z => Z]
y> -1
x> NZ,y = MZ, z > MZ]
4:x:=x/y
[Xx=>» NZ,y =>» NZ, z => Z]
5:y:=y-2
[X=>» NZ,y=>» MZ, z=> Z]
6:z:=5

x> NZ,y > MZ, z > NZ]

An example

1:x:=8
[x=> NZ]
2:y:=x
x> NZ, y = NZ]
3:z:=0
[x=>» NZ,y = NZ, z => Z]
y> -1
x> NZ,y = MZ, z > MZ]
4:x:=x/y
x> NZ,y = MZ, z > MZ]
5:y:=y-2
x> NZ, y = MZ, z > MZ]
6:z:=5

x> NZ,y > MZ, z > NZ]

An Example: Using the results

=[x NZ] Warning

=[x NZ, y=» NZ]
= 0;
= [x=» NZ, y=» NZ, z=>» Z]
while y > -1 do
o =[x> NZ, y> MZ, 2> MZ]
X =X / V; <
o =[x NZ, y=> MZ, 2 MZ]
= y—z;
[x=>» NZ, y=>» MZ, z=> MZ]
= 5;
[x=>» NZ, y=>» MZ, z=» NZ]

y
O
y4
o

Contract Verification

Basic Idea: Translate the program (and also the contract) into a logical
formula.

Prove that the contract holds in the formula
We may use a automatic theorem prover (SMT or SAT solvers)

Example: Using Dijsktra Weakest Precondition
bool P (bool a, bool b) {

returns c .

. 1f (a)
requlres true g
ensures ¢ = a || b else

c:=b

WP(P, c=al|b) = a =>WP(c:=true,c=a||b) && !la => WP(c:=b,c=a||b) = (a=> true=a||b) && !a
=> b=al|b)
* Conjecture to prove: true=>(a=> true=a||b) && !a => b=al|b)

Modelling using type-states

class C {

D f;

if (bluemoon ()) { was f really initialized?

new D() ;

e |t depends on the
condition

void m() { 4 May field f be null?
f.q();

Modelling using type-states

class C {

. Field fis non null !
D! £;

C() |
1f (bluemoon ()) {

f = new D();

) Erros are now explicit
} ‘
1. There are executions which do not
¢ “?f) =) initialize f
} A 2. x can not be assigned to f because

they do not share the same type!

Automatic test case generation

Choose next path
Code to generate inputs for: Solve Execute&Monitor \

volid CoverMe (int[] a) _ _
] Constraints to solve | Data Observed constraints
:if (a == null) return; null | a==null
if (a.Length > 0) al=null &&
if (a[o] — 1234567890) al=null {} !(a.Length>O)

throw new Exoeption ("bg™) ;| 11y Negated condltlon &
a.Length>_ .

a—nul] al=null && {123.} | al!=null &&
E a.Length>0 && a.Length>0 &&
a[0]==123456/8%0 a[0]==123456/8%0
/ a.Length>0]\
Done: There is no path left.

J al[0]=123..
F \T

O

Bug finders

Apache Ant1.6.2

J2SE version 1.5 build 63 (released version),
org.apache.tools.ant.taskdefs.optional.metamata.MAudit > 3)

java.lang.annotation.AnnotationTypeMismatchException

if (out == null) § _ _
try { out.close(); } public String foundType() {
catch (IOException e) {} return this.foundType();
} }
Eclipse 3.0.1,
org.eclipse.jdt.internal.debug.ui.JDIModelPresentation Less harmful....
if (sig != null || sig.length() == 1) { String dateString = getHeaderField(name);
return sig; dateString.trim();
}

Specialized tools in finding Bugs

Search for recurrent patterns
Syntactically
Using dataflow analysis
Bug databases

Some tools

Contract verification

Automatic :

Spec#, ESC-Java, HAVOC: SMT
solvers

Code Contracs: Int Abs.

JForge, F-Soft, Siriam, TACO
Semi-automatic: Jahob, Krakatoa
Typestates: Plural, JSR, JavaRl

Bug finding
FindBugs, Jlint, PMD, Astree
Check’Crash, DSD
Inference
Daikon, DySy
JConsume

ModelCheckers:
JPF, Bandera,...

Abstract refinement
Blast, SLAM

Test Case generation
Pex, Randoop,...
Sage
Validation/ Understanding
Contractor
CodeCity: Metrics
Eclipse: Navegation

Bibliography

Principles of Program Analysis . Flemming Nielson, Hanne
Riis Nielson, Chris Hankin.

Compilers: Principles, Tecniques &Tools 2nd Edition: Aho,
Lam, Sethi, Ullman

Modern compiler implementation in Java. Andrew Appel.

2nd Edition.

Software Testing and Analysis. Process, Principles and
Technigues. Mauro Pezze and Michal Young.

