
Automated Testing and Verification Winter Semester 2012

Automated Testing and Verification

Project 3 – Test Case Generation

Deadline: 31.01.2013

The task of this project is to write a random test case generator. You will find all resources needed
for this project in https://www.st.cs.uni-saarland.de/edu/automatedtestingverification12/

projects/project3.tar.gz. This archive file contains:

The project description (this document).
The source-code for the TestGenerator.
A maven project file pom.xml.
A set of 25 public test cases.

1. Overview

The TestGenerator produces a test by creating objects and invoking methods using the Reflection
API and in parallel it also generates Java statements that can reproduce the test.

2. Test Generation

The class TestGenerator receives a class name for which it should generate one JUnit 4 test. This is
done by generating instances of the class to test and invoking methods on them. Obtaining parameters
for a method often involves recursively generating new objects. In order to get information about the
methods and constructors of a class, you can use the Java Reflection API. There are several tutorials
on the net for using reflection, e.g. http://www.ibm.com/developerworks/library/j-dyn0603/

Among others, the following properties get passed to the TestGenerator :

test.dir The directory the generated test is written to. This is only the base directory. Depending
on the package name of the test the actual directory of the test has to be a subdirectory.
test.name The name of the test. The resulting class should have this name, and the name of
the produced file is this name with “.java” appended.
test.package The package name of the test.

2.1. Generating Objects

Instances of objects can be obtained by either invoking the constructor, a static method, or non-
static methods of other classes, or obtaining a reference from a static field. Primitive parameters and
Strings can be generated directly using a random generator. All other objects have to be generated
recursively.

2.2. Object Pool

The implementation should reuse created objects with a given probability. Therefore, an object
pool is used. All objects that are created by the test generator are passed to the object pool. When
objects are needed the object pool can be queried for existing objects. The system property object.reuse
gives the probability for reusing objects. It ranges from 100 for always trying to reuse an object from
the pool to 0 for never reusing an object. When there is no object of the needed type in the pool, it
of course has to be created first. On the other hand when there is no way to create a new object, an
object from the pool should be used (even when reuse is set to 0). If no object can be generated for a
class that is needed as an argument, null can be used.

Page 1 of 3

https://www.st.cs.uni-saarland.de/edu/automatedtestingverification12/projects/project3.tar.gz
https://www.st.cs.uni-saarland.de/edu/automatedtestingverification12/projects/project3.tar.gz
http://www.ibm.com/developerworks/library/j-dyn0603/


Automated Testing and Verification Winter Semester 2012

2.3. Handling Interfaces

One challenge is to create instances for abstract classes and interfaces. In Java there is no easy
way to get all implementors of a class or interface. Therefore, this information has to be computed
in advance. The test generator should thus check which interfaces the classes under test and the
return values of their methods implement. Furthermore, the system property classes.file gives the
location of a text file that contains a list of classes that should also be considered as implementations
of their interfaces and super classes. The file format is one fully classified class name per line, see
src/main/resources/classes-list.txt for an example. For example if an object of type Map is needed,
the test generator should generate a HashMap if this class is in the text file.
Note: When generating objects all classes in the classes.file, and all classes to test, and the super-classes
of both should be considered as sources for objects.

2.4. Excluded Methods

Some methods of an object should not be considered for testing. These are the following methods:

Methods that are defined in java.lang.Object and are not overwritten.
Methods and constructors with the synthetic modifier.
The valueOf -method of an enum.

2.5. When to stop

The test should end if a given number (specified by the system property test.limit) of method
and constructor calls to the class under test is reached. Within this limit all public methods and
constructors of the class under test should be called at least once with non null arguments if possible.
The second stopping criterion is defined Exceptions and is described in more detail below.

2.6. Exceptions

If an Exception is thrown by invoking a method or a constructor, the behavior of the test generator
depends on the type and location of the Exception. Either a Exception is considered as a bug in a
unit under test, or as a wrong call produced by the test generator. If the Exception is considered to
be a bug, then the statement that caused the Exception is added to the test and the test generation
finishes. If the Exception is considered to be caused by a wrong call, then the statement is not added
to the test and the test generation continues.

The different types of Exceptions are categorized as follows:

Error Exceptions that are a subclass of Error are considered as a wrong call. (Details on the
different types of Exceptions can be found in chapter 11 of the Java Language Specification.)
Checked Exceptions Checked Exceptions are considered as a wrong call.
Unchecked Exceptions 1 If the Exception is of type ArrayIndexOutOfBoundsException, Ne-
gativeArraySizeException, ArrayStoreException, ClassCastException, or ArithmeticException
and is thrown in a method of the class under test, this is considered to be a bug.
Unchecked Exceptions 2 If the Exception is of type IllegalArgumentException, IllegalSta-
teException, NullPointerException, and is thrown by a public method that is (transitively)
called from a method of the class under test, this is considered to be a bug.

Note: A stack trace of an Exception gives only the name of the method, and not its signature. In
the presence of multiple methods with the same name, it thus cannot be decided which method
produced the Exception without accessing the source code. Therefore, we consider a method in
the stack trace to be public, if there exists at least one public method with the same name in
the class.

This heuristic is taken from the paper JCrasher: an automatic robustness tester for Java.

Page 2 of 3



Automated Testing and Verification Winter Semester 2012

2.7. Resulting JUnit Test

The test case produced by TestGenerator should be a JUnit 4 test class and should contain exactly
one test method. Exceptions that might be thrown by the test should not be wrapped in try-catch
blocks. Instead, the test method should declare that it throws an Exception. The location of the test
is specified by the system properties test.name and test.dir, the directory inside the test.dir should
reflect the package name as specified by test.package.

3. Hints

The public tests for this project come as JUnit 4 tests. These tests are in the src/test directory.
The class org.apache.commons.lang.RandomStringUtils can be used to produce random Strings.
The method escapeJava() in org.apache.commons.lang.StringEscapeUtils escapes the characters
in a String using Java String rules.
In order to programmatically compile Java files, you can use the Compiler API (see ja-
vax.tools.JavaCompiler).
To load a class that is not on the classpath, you can create your own class loader (e.g. ja-
va.net.URLClassLoader) for loading the class.

Grading

A total of 100 points will be assigned using the following rules:

3 point for each one of the 25 public test cases (3 × 25 = 75)
5 point for each of the 5 private test cases (5 × 5 = 25)

Handout format

This project should be delivered before or during the handout date written at the very beginning
of this document.

An email should be sent to the staff email (atv12@st.cs.uni-saarland.de) with the following
material:

1. A file src.zip with the project source code. Code must be fully commented.

2. A file readme.txt with instructions on how to execute the delivered project.

3. A file report.pdf with a description of the resolution of all exercises, including a brief discussion
on the most important design decision taken during the project.

4. A file id.txt containing the full names and matriculation numbers of all group members.

The e-mail subject should be:

[ATV-project3] name1 (matriculation1) / name2 (matriculation2)

where name1 and name2 should be lexically ordered. No printed material will be accepted.

Page 3 of 3

atv12@st.cs.uni-saarland.de

	Overview
	Test Generation
	Generating Objects
	Object Pool
	Handling Interfaces
	Excluded Methods
	When to stop
	Exceptions
	Resulting JUnit Test

	Hints

