
Andreas Zeller

Tracking Problems

2

What’s a problem?

• A problem is a questionable property of a
program run

• It becomes a failure if it’s incorrect…

• …a request for enhancement if missing…

• …and a feature if normal behavior.

It’s not a bug, it’s a feature!

3

Problem Life Cycle

• The user informs the vendor about some problem.

• The vendor

1. reproduces the problem

2. isolates the circumstances

3. locates and fixes the defect

4. delivers the fix to the user.

1

2

3

4

Vendor Challenges

• How do I organize the life cycle?

• Which problems are currently open?

• Which are the most severe problems?

• Did similar problems occur in the past?

5

User Challenges

Solve my problem!

6

Problem Report

• A problem comes to life with a problem
report.

• A problem report includes all the
information the vendor needs to fix the
problem.

• Also known as change request or bug report.

4

5

6

7

Problem report #1

From: me@dot.com

To: zeller@gnu.org

Subject: Crash

Your program crashed. (core dumped)

8

Problem report #2

From: me@dot.com

To: zeller@gnu.org

Subject: Re: Crash

Sorry, here’s the core - cu

<core, 14MB>

9

Problem report #3

From: me@dot.com

To: zeller@gnu.org

Subject: Re: Crash

You may need that, too (just in case)

<drive_c.zip, 148GB>

7

8

9

10

What to report

• The product release

• The operating environment

• The problem history

• Expected and experienced behavior

• A one-line summary

11

Product Release

• Typically, some version number or
otherwise unique identifier

• Required to reproduce the exact version:

Perfect Publishing Program 1.1 (Build 7E47)

• Generalize: Does the problem occur only in
this release?

12

Operating
Environment

• Typically, version information about the
operating system

• Can be simple (”Windows 98 SE”) or
complex (”Debian Linux ‘Sarge’ with the
following packages…”)

• Generalize: In which environments does the
problem occur?

10

11

12

13

Problem History

• Steps needed to reproduce the problem:

1. Create “bug.ppp”

2. Print on the default printer…

• If the problem cannot be reproduced, it is
unlikely to be fixed

• Simplify: Which steps are relevant?

14

Expected Behavior

• What should have happened according to
the user:

The program should have printed the
document.

• Reality check: What’s the understanding of
the user?

15

Observed Behavior

• The symptoms of the problem — in
contrast to the expected behavior

The program crashed with the following information

*** STACK DUMP OF CRASH (LemonyOS)

 Back chain ISA Caller

 00000000 SPC 0BA8E574

 03EADF80 SPC 0B742428

 03EADF30 SPC 0B50FDDC PrintThePage+072FC

SnicketPC unmapped memory exception at

 0B512BD0 PrintThePage+05F50

13

14

15

16

A one-line summary

• Captures the essential of the problem

PPP 1.1 crashes when printing

17

Things to avoid

• Humor

PPP (oops, gotta go to the restroom :-) …

• Sarcasm

Here’s yet another “never-to-be-fixed” bug

• Attacks

If you weren’t too incompetent to grasp…

18

Talk back

16

17

18

19

Talk Back + Privacy

• Be sure what to collect and include in an
automated report:

• Pages visited

• Text entered

• Images viewed…

• Privacy is an important issue here!

20

All these Problems
001 It's too big and too slow. [This one will never get fixed]

003 (Motif 1.1) The command window is scrolled whenever obscured.

021 (DBX) Using SunOS DBX, attempting to dereference a `(nil)' pointer

 results in an error message and no new display. However, the

 expression is entered as an ordinary display.

026 (DBX) Using SunOS DBX with PASCAL or Modula-2, selected array

 elements are not counted from the starting index of the array.

041 Starting a multi-window DDD iconified under vtwm and fvwm causes

 trouble with group iconification.

272 (LessTif) The `select' font selection method works only once.

281 In auto deiconify mode, the Debugger Console uniconifies even if

 other DDD windows are already there.

286 (Motif) Changing Cut/Copy/Paste accelerators at runtime does not work.

21

Managing Problems

• Alternative #1: A Problem File

• Only one person at a time can work on it

• History of earlier (fixed) problems is lost

• Does not scale

• Alternative #2: A Problem Database

19

20

21

22

Bugzilla

23

Classifying Problems

• Severity

• Priority

• Identifier

• Comments

• Notification

24

Severity

Enhancement. A desired feature.

Trivial. Cosmetic problem.

Minor. Problem with easy workaround.

Normal. “Standard” problem.

Major. Major loss of function.

Critical. Crashes, loss of data or memory

Showstopper. Blocks development.

22

23

24

25

Priority

• Every new problem gets a priority

• The higher the priority, the sooner the
problem will be addressed

• Priority is independent from severity

• Prioritizing problems is the main tool to
control development and problem solving

26

Identity

• Every new problem gets an identifier
(also known as PR number or bug number)

• The identifier is used in all documents
during the debugging process:

Subject: PR #3427 is fixed?

27

Comments

• Every developer can attach comments to a
problem:

I have a patch for this. It's just an

unititialized variable but I still

need a review.

• Comments may also include files,
documents, etc.

25

26

27

28

Notification

• Developers can attach an e-mail address to
a problem report; they will be notified
every time the report changes.

• Users can do so, too.

29

The Problem Lifecycle

UNCONFIRMED NEW ASSIGNED

REOPENED

VERIFIED CLOSED

INVALID

DUPLICATE

INVALID

DUPLICATE

FIXED

WORKSFORME

WONTFIX

NEW

FIXED

Status

Resulting
Resolution

RESOLVED

if resolution is FIXED

30

Unconfirmed Problem

UNCONFIRMED NEW ASSIGNED

REOPENED

VERIFIED CLOSED

INVALID

DUPLICATE

INVALID

DUPLICATE

FIXED

WORKSFORME

WONTFIX

NEW

FIXED

Status

Resulting
Resolution

RESOLVED

if resolution is FIXED

• The problem report has just been entered
into the database

28

29

30

31

New Problem

UNCONFIRMED NEW ASSIGNED

REOPENED

VERIFIED CLOSED

INVALID

DUPLICATE

INVALID

DUPLICATE

FIXED

WORKSFORME

WONTFIX

NEW

FIXED

Status

Resulting
Resolution

RESOLVED

if resolution is FIXED

• The report is valid and not a duplicate.
(If not, it becomes resolved.)

32

Assigned Problem

UNCONFIRMED NEW ASSIGNED

REOPENED

VERIFIED CLOSED

INVALID

DUPLICATE

INVALID

DUPLICATE

FIXED

WORKSFORME

WONTFIX

NEW

FIXED

Status

Resulting
Resolution

RESOLVED

if resolution is FIXED

• The problem is assigned to a developer

33

Resolution

• FIXED: The problem is fixed.

• INVALID: The problem is not a problem.

• DUPLICATE: The problem already exists.

• WONTFIX: Will never be fixed (for
instance, because the problem is a feature)

• WORKSFORME: Could not be reproduced.

31

32

33

34

Resolved Problem

UNCONFIRMED NEW ASSIGNED

REOPENED

VERIFIED CLOSED

INVALID

DUPLICATE

INVALID

DUPLICATE

FIXED

WORKSFORME

WONTFIX

NEW

FIXED

Status

Resulting
Resolution

RESOLVED

if resolution is FIXED

• The problem report has been processed.

35

Verified Problem

UNCONFIRMED NEW ASSIGNED

REOPENED

VERIFIED CLOSED

INVALID

DUPLICATE

INVALID

DUPLICATE

FIXED

WORKSFORME

WONTFIX

NEW

FIXED

Status

Resulting
Resolution

RESOLVED

if resolution is FIXED

• The problem is fixed; the fix has been
successful.

36

Closed Problem

UNCONFIRMED NEW ASSIGNED

REOPENED

VERIFIED CLOSED

INVALID

DUPLICATE

INVALID

DUPLICATE

FIXED

WORKSFORME

WONTFIX

NEW

FIXED

Status

Resulting
Resolution

RESOLVED

if resolution is FIXED

• A new version with the fix has been
released.

34

35

36

37

Reopened Problem

UNCONFIRMED NEW ASSIGNED

REOPENED

VERIFIED CLOSED

INVALID

DUPLICATE

INVALID

DUPLICATE

FIXED

WORKSFORME

WONTFIX

NEW

FIXED

Status

Resulting
Resolution

RESOLVED

if resolution is FIXED

• Oops – there we go again :–(

38

Management

• Who enters problem reports?

• Who classifies problem reports?

• Who sets priorities?

• Who takes care of the problem?

• Who closes issues?

39

The SCCB

• At many organizations, a software change
control board is in charge of these questions:

• Assess the impact of a problem

• Assign tasks to developers

• Close issues…

37

38

39

40

Problem-driven
Development

• The whole development can be organized
around the problem database:

• Start with one single problem:
“The product isn’t there”

• Decompose into sub-problems

• Ship when all problems are fixed

41

Managing Clutter

• Large problem databases contain garbage

• Get rid of duplicates by

• simplifying bug reports

• asking submitters to search first

• Get rid of obsolete problems by searching
for old ones that rarely occurred

42

Problems and Fixes

1.1 1.2 1.3

1.2.1.1 1.2.1.2

1.1

1.1.1.1

File A

File B

Release

1.0

Release

1.1

Use tag
in problem reports

40

41

42

43

Problems and Tests

• Some test fails. Should we enter the
problem into the database?

• No, because test cases make problem
reports obsolete.

• Once we can repeat a problem at will,
there is no need for a database entry

44

Concepts

Reports about problems encountered in
the field are stored in a problem database.

A problem report must contain everything
relevant to reproduce the problem.

It is helpful to set up a standard set of items
that users must provide (product release,
operating environment…)

45

Concepts (2)

An effective problem report…

• is well-structured

• is reproducible

• has a descriptive one-line summary

• is as simple and general as possible

• is neutral and stays with the facts.

43

44

45

46

Concepts (3)

A typical problem life cycle starts with an
unconfirmed status

It ends with a closed status and a specific
resolution (such as fixed or worksforme)

Typically, a software change control board
organizes priorities and assignments

47

Concepts (4)

Use version control to separate fixes and
features during development.

Establish conventions to relate changes to
problem reports and vice versa.

Make a problem report obsolete as soon as
a test case exists.

48

This work is licensed under the Creative Commons Attribution License. To view a copy of this license, visit

http://creativecommons.org/licenses/by/1.0

or send a letter to Creative Commons, 559 Abbott Way, Stanford, California 94305, USA.

46

47

48

