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Tracking Problems
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What’s a problem?

• A problem is a questionable property of a 
program run

• It becomes a failure if it’s incorrect…

• …a request for enhancement if missing…

• …and a feature if normal behavior.

It’s not a bug, it’s a feature!
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Problem Life Cycle

• The user informs the vendor about some problem.

• The vendor

1. reproduces the problem

2. isolates the circumstances

3. locates and fixes the defect

4. delivers the fix to the user.
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Vendor Challenges

• How do I organize the life cycle?

• Which problems are currently open?

• Which are the most severe problems?

• Did similar problems occur in the past?
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User Challenges

Solve my problem!
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Problem Report

• A problem comes to life with a problem 
report.

• A problem report includes all the 
information the vendor needs to fix the 
problem.

• Also known as change request or bug report.
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Problem report #1

From: me@dot.com

To: zeller@gnu.org

Subject: Crash

Your program crashed.  (core dumped)
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Problem report #2

From: me@dot.com

To: zeller@gnu.org

Subject: Re: Crash

Sorry, here’s the core - cu

<core, 14MB>
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Problem report #3

From: me@dot.com

To: zeller@gnu.org

Subject: Re: Crash

You may need that, too (just in case)

<drive_c.zip, 148GB>
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What to report

• The product release

• The operating environment

• The problem history

• Expected and experienced behavior

• A one-line summary
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Product Release

• Typically, some version number or
otherwise unique identifier

• Required to reproduce the exact version:

Perfect Publishing Program 1.1 (Build 7E47)

• Generalize: Does the problem occur only in 
this release?
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Operating 
Environment

• Typically, version information about the 
operating system

• Can be simple (”Windows 98 SE”) or 
complex (”Debian Linux ‘Sarge’ with the 
following packages…”)

• Generalize: In which environments does the 
problem occur?
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Problem History

• Steps needed to reproduce the problem:

1. Create “bug.ppp”

2. Print on the default printer…

• If the problem cannot be reproduced, it is 
unlikely to be fixed

• Simplify: Which steps are relevant?
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Expected Behavior

• What should have happened according to 
the user:

The program should have printed the 
document.

• Reality check: What’s the understanding of 
the user?
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Observed Behavior

• The symptoms of the problem — in 
contrast to the expected behavior

The program crashed with the following information

*** STACK DUMP OF CRASH (LemonyOS)

 Back chain  ISA  Caller

 00000000    SPC  0BA8E574

 03EADF80    SPC  0B742428

 03EADF30    SPC  0B50FDDC  PrintThePage+072FC

SnicketPC unmapped memory exception at

        0B512BD0 PrintThePage+05F50
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A one-line summary

• Captures the essential of the problem

PPP 1.1 crashes when printing
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Things to avoid

• Humor

PPP (oops, gotta go to the restroom :-) …

• Sarcasm

Here’s yet another “never-to-be-fixed” bug

• Attacks

If you weren’t too incompetent to grasp…
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Talk back
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Talk Back + Privacy

• Be sure what to collect and include in an 
automated report:

• Pages visited

• Text entered

• Images viewed…

• Privacy is an important issue here!
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All these Problems
001 It's too big and too slow.  [This one will never get fixed]

003 (Motif 1.1) The command window is scrolled whenever obscured.

021 (DBX) Using SunOS DBX, attempting to dereference a `(nil)' pointer

    results in an error message and no new display.  However, the

    expression is entered as an ordinary display.

026 (DBX) Using SunOS DBX with PASCAL or Modula-2, selected array

    elements are not counted from the starting index of the array.

041 Starting a multi-window DDD iconified under vtwm and fvwm causes

    trouble with group iconification.

272 (LessTif) The `select' font selection method works only once.

281 In auto deiconify mode, the Debugger Console uniconifies even if

    other DDD windows are already there.

286 (Motif) Changing Cut/Copy/Paste accelerators at runtime does not work.
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Managing Problems

• Alternative #1: A Problem File

• Only one person at a time can work on it

• History of earlier (fixed) problems is lost

• Does not scale

• Alternative #2: A Problem Database
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Bugzilla
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Classifying Problems

• Severity

• Priority

• Identifier

• Comments

• Notification
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Severity

Enhancement.  A desired feature.

Trivial.  Cosmetic problem.

Minor.  Problem with easy workaround.

Normal.  “Standard” problem.

Major.  Major loss of function.

Critical.  Crashes, loss of data or memory

Showstopper.  Blocks development.
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Priority

• Every new problem gets a priority

• The higher the priority, the sooner the 
problem will be addressed

• Priority is independent from severity

• Prioritizing problems is the main tool to 
control development and problem solving

26

Identity

• Every new problem gets an identifier
(also known as PR number or bug number)

• The identifier is used in all documents 
during the debugging process:

Subject: PR #3427 is fixed?
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Comments

• Every developer can attach comments to a 
problem:

I have a patch for this.  It's just an 

unititialized variable but I still 

need a review.

• Comments may also include files, 
documents, etc.
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Notification

• Developers can attach an e-mail address to 
a problem report; they will be notified 
every time the report changes.

• Users can do so, too.
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The Problem Lifecycle

UNCONFIRMED NEW ASSIGNED

REOPENED

VERIFIED CLOSED

INVALID

DUPLICATE

INVALID

DUPLICATE

FIXED

WORKSFORME

WONTFIX

NEW

FIXED

Status

Resulting
Resolution

RESOLVED

if resolution is FIXED
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Unconfirmed Problem

UNCONFIRMED NEW ASSIGNED

REOPENED

VERIFIED CLOSED

INVALID

DUPLICATE

INVALID

DUPLICATE

FIXED

WORKSFORME

WONTFIX

NEW

FIXED

Status

Resulting
Resolution

RESOLVED

if resolution is FIXED

• The problem report has just been entered 
into the database
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New Problem

UNCONFIRMED NEW ASSIGNED

REOPENED

VERIFIED CLOSED

INVALID

DUPLICATE

INVALID

DUPLICATE

FIXED

WORKSFORME

WONTFIX

NEW

FIXED

Status

Resulting
Resolution

RESOLVED

if resolution is FIXED

• The report is valid and not a duplicate.
(If not, it becomes resolved.)
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Assigned Problem 

UNCONFIRMED NEW ASSIGNED

REOPENED

VERIFIED CLOSED

INVALID

DUPLICATE

INVALID

DUPLICATE

FIXED

WORKSFORME

WONTFIX

NEW

FIXED

Status

Resulting
Resolution

RESOLVED

if resolution is FIXED

• The problem is assigned to a developer
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Resolution

• FIXED: The problem is fixed.

• INVALID: The problem is not a problem.

• DUPLICATE: The problem already exists.

• WONTFIX:  Will never be fixed (for 
instance, because the problem is a feature)

• WORKSFORME: Could not be reproduced.
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Resolved Problem

UNCONFIRMED NEW ASSIGNED

REOPENED

VERIFIED CLOSED

INVALID

DUPLICATE

INVALID

DUPLICATE

FIXED

WORKSFORME

WONTFIX

NEW

FIXED

Status

Resulting
Resolution

RESOLVED

if resolution is FIXED

• The problem report has been processed.
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Verified Problem

UNCONFIRMED NEW ASSIGNED

REOPENED

VERIFIED CLOSED

INVALID

DUPLICATE

INVALID

DUPLICATE

FIXED

WORKSFORME

WONTFIX

NEW

FIXED

Status

Resulting
Resolution

RESOLVED

if resolution is FIXED

• The problem is fixed; the fix has been 
successful.
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Closed Problem

UNCONFIRMED NEW ASSIGNED

REOPENED

VERIFIED CLOSED

INVALID

DUPLICATE

INVALID

DUPLICATE

FIXED

WORKSFORME

WONTFIX

NEW

FIXED

Status

Resulting
Resolution

RESOLVED

if resolution is FIXED

• A new version with the fix has been 
released.
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Reopened Problem

UNCONFIRMED NEW ASSIGNED

REOPENED

VERIFIED CLOSED

INVALID

DUPLICATE

INVALID

DUPLICATE

FIXED

WORKSFORME

WONTFIX

NEW

FIXED

Status

Resulting
Resolution

RESOLVED

if resolution is FIXED

• Oops – there we go again :–(
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Management

• Who enters problem reports?

• Who classifies problem reports?

• Who sets priorities?

• Who takes care of the problem?

• Who closes issues?
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The SCCB

• At many organizations, a software change 
control board is in charge of these questions:

• Assess the impact of a problem

• Assign tasks to developers

• Close issues…
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Problem-driven 
Development

• The whole development can be organized 
around the problem database:

• Start with one single problem:
“The product isn’t there”

• Decompose into sub-problems

• Ship when all problems are fixed
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Managing Clutter

• Large problem databases contain garbage

• Get rid of duplicates by

• simplifying bug reports

• asking submitters to search first

• Get rid of obsolete problems by searching 
for old ones that rarely occurred
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Problems and Fixes

1.1 1.2 1.3

1.2.1.1 1.2.1.2

1.1

1.1.1.1

File A

File B

Release

1.0

Release

1.1

Use tag
in problem reports
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Problems and Tests

• Some test fails.  Should we enter the 
problem into the database?

• No, because test cases make problem 
reports obsolete.

• Once we can repeat a problem at will, 
there is no need for a database entry
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Concepts

Reports about problems encountered in 
the field are stored in a problem database.

A problem report must contain everything 
relevant to reproduce the problem.

It is helpful to set up a standard set of items 
that users must provide (product release, 
operating environment…)
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Concepts (2)

An effective problem report…

• is well-structured

• is reproducible

• has a descriptive one-line summary

• is as simple and general as possible

• is neutral and stays with the facts.
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Concepts (3)

A typical problem life cycle starts with an 
unconfirmed status

It ends with a closed status and a specific 
resolution (such as fixed or worksforme)

Typically, a software change control board 
organizes priorities and assignments
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Concepts (4)

Use version control to separate fixes and 
features during development.

Establish conventions to relate changes to 
problem reports and vice versa.

Make a problem report obsolete as soon as 
a test case exists.
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This work is licensed under the Creative Commons Attribution License.  To view a copy of this license, visit

http://creativecommons.org/licenses/by/1.0

or send a letter to Creative Commons, 559 Abbott Way, Stanford, California 94305, USA. 

46

47

48


