
Andreas Zeller

Simplifying Problems

ZELLER

FAILA Guide to Systematic Debugging

A N D R E A S Z E L L E R
W

HY PROGRAM
S FAIL

A Guide to Systematic Debugging

WHY
PROGRAMS

H e i d e l b e rg , G e r m a n y
w w w . d p u n k t . d e

WHY PROGRAMS FAIL
A G u i d e t o S y s t e m a t i c D e b u g g i n g

A N D R E A S Z E L L E R
James Madison wrote: ‘If men were angels, no government would be necessary.’
If he lived today, Madison might have written: ‘If software developers were angels,
debugging would be unnecessary.’ Most of us, however, make mistakes, and many of
us even make errors while designing and writing software. Our mistakes need to be
found and fixed, an activity called debugging that originated with the first computer
programs. Today every computer program written is also debugged, but debugging is
not a widely studied or taught skill. Few books, beyond this one, present a systematic
approach to finding and fixing programming errors.

—from the foreword by James Larus, Microsoft Research

Why Programs Fail is about bugs in computer programs, how to find them, how
to reproduce them, and how to fix them in such a way that they do not occur any-
more. This is the first comprehensive book on systematic debugging and covers a
wide range of tools and techniques ranging from hands-on observation to fully automated diagnoses,
and includes instructions for building automated debuggers. This discussion is built upon a solid theory
of how failures occur, rather than relying on seat-of-the-pants techniques, which are of little help with
large software systems or to those learning to program. The author, Andreas Zeller, is well known in the
programming community for creating the GNU Data Display Debugger (DDD), a tool that visualizes the
data structures of a program while it is running.

Features
• Suitable for any programming language and all levels of programming experience
• Describes how to fix the program in the best possible way, and shows how to create

your own automated debugging tools
• Includes exercises and extensive references for further study, and a companion website

with source code for all examples and additional debugging resources

About the Author
Andreas Zeller is a professor of computer science at Saarland University, Germany, where his
research centers on programmer productivity. Among Linux and Unix programmers he is best
known as the developer of GNU DDD, and among academics and advanced professionals he is
best known for delta debugging, a technique that automatically isolates failure causes for
computer programs.

Programming, Software Engineering

Zeller_mech 8/30/05 11:06 AM Page 1

“The definitive book on debugging”
– WALTER F. TICHY

TU Karlsruhe

ZELLER

FAILA Guide to Systematic Debugging

A N D R E A S Z E L L E R

W
HY PROGRAM

S FAIL
A Guide to Systematic Debugging

WHY
PROGRAMS

H e i d e l b e rg , G e r m a n y
w w w . d p u n k t . d e

WHY PROGRAMS FAIL
A G u i d e t o S y s t e m a t i c D e b u g g i n g

A N D R E A S Z E L L E R
James Madison wrote: ‘If men were angels, no government would be necessary.’
If he lived today, Madison might have written: ‘If software developers were angels,
debugging would be unnecessary.’ Most of us, however, make mistakes, and many of
us even make errors while designing and writing software. Our mistakes need to be
found and fixed, an activity called debugging that originated with the first computer
programs. Today every computer program written is also debugged, but debugging is
not a widely studied or taught skill. Few books, beyond this one, present a systematic
approach to finding and fixing programming errors.

—from the foreword by James Larus, Microsoft Research

Why Programs Fail is about bugs in computer programs, how to find them, how
to reproduce them, and how to fix them in such a way that they do not occur any-
more. This is the first comprehensive book on systematic debugging and covers a
wide range of tools and techniques ranging from hands-on observation to fully automated diagnoses,
and includes instructions for building automated debuggers. This discussion is built upon a solid theory
of how failures occur, rather than relying on seat-of-the-pants techniques, which are of little help with
large software systems or to those learning to program. The author, Andreas Zeller, is well known in the
programming community for creating the GNU Data Display Debugger (DDD), a tool that visualizes the
data structures of a program while it is running.

Features
• Suitable for any programming language and all levels of programming experience
• Describes how to fix the program in the best possible way, and shows how to create

your own automated debugging tools
• Includes exercises and extensive references for further study, and a companion website

with source code for all examples and additional debugging resources

About the Author
Andreas Zeller is a professor of computer science at Saarland University, Germany, where his
research centers on programmer productivity. Among Linux and Unix programmers he is best
known as the developer of GNU DDD, and among academics and advanced professionals he is
best known for delta debugging, a technique that automatically isolates failure causes for
computer programs.

Programming, Software Engineering

Zeller_mech 8/30/05 11:06 AM Page 1

ZELLER

FAILA Guide to Systematic Debugging

A N D R E A S Z E L L E R
W

HY PROGRAM
S FAIL

A Guide to Systematic Debugging

WHY
PROGRAMS

ZELLER

FAILA Guide to Systematic Debugging

A N D R E A S Z E L L E R

W
HY PROGRAM

S FAIL
A Guide to Systematic Debugging

WHY
PROGRAMS

ZELLER

FAILA Guide to Systematic Debugging

A N D R E A S Z E L L E R

W
HY PROGRAM

S FAIL
A Guide to Systematic Debugging

WHY
PROGRAMS

ZELLER

FAILA Guide to Systematic Debugging

A N D R E A S Z E L L E R

W
HY PROGRAM

S FAIL
A Guide to Systematic Debugging

WHY
PROGRAMS

ZELLER

FAILA Guide to Systematic Debugging

A N D R E A S Z E L L E R

W
HY PROGRAM

S FAIL
A Guide to Systematic Debugging

WHY
PROGRAMS

ZELLER

FAILA Guide to Systematic Debugging

A N D R E A S Z E L L E R

W
HY PROGRAM

S FAIL
A Guide to Systematic Debugging

WHY
PROGRAMS

ZELLER

FAILA Guide to Systematic Debugging

A N D R E A S Z E L L E R

W
HY PROGRAM

S FAIL
A Guide to Systematic Debugging

WHY
PROGRAMS

ZELLER

FAILA Guide to Systematic Debugging

A N D R E A S Z E L L E R

W
HY PROGRAM

S FAIL
A Guide to Systematic Debugging

WHY
PROGRAMS

ZELLER

FAILA Guide to Systematic Debugging

A N D R E A S Z E L L E R

W
HY PROGRAM

S FAIL
A Guide to Systematic Debugging

WHY
PROGRAMS

ZELLER

FAILA Guide to Systematic Debugging

A N D R E A S Z E L L E R

W
HY PROGRAM

S FAIL
A Guide to Systematic Debugging

WHY
PROGRAMS

3

Simplifying

• Once one has tracked and reproduced a
problem, one must find out what’s relevant:

• Does the problem really depend on
10,000 lines of input?

• Does the failure really require this exact
schedule?

• Do we need this sequence of calls?

1

And if you need
such a toolbox,
I have written all
these
techniques
down in a
textbook.

2

3

4

Why simplify?

5

Simplifying

• For every circumstance of the problem,
check whether it is relevant for the
problem to occur.

• If it is not, remove it from the problem
report or the test case in question.

6

Circumstances

• Any aspect that may influence a problem is
a circumstance:

• Aspects of the problem environment

• Individual steps of the problem history

http://
www.concordesst.c
om/accident/
accidentindex.html

4

5

6

7

Experimentation

• By experimentation, one finds out whether a
circumstance is relevant or not:

• Omit the circumstance and try to
reproduce the problem.

• The circumstance is relevant iff the
problem no longer occurs.

8

Mozilla Bug #24735
Ok the following operations cause mozilla to crash
consistently on my machine

-> Start mozilla
-> Go to bugzilla.mozilla.org
-> Select search for bug
-> Print to file setting the bottom and right margins to .50
 (I use the file /var/tmp/netscape.ps)
-> Once it's done printing do the exact same thing again on
 the same file (/var/tmp/netscape.ps)
-> This causes the browser to crash with a segfault

9

<td align=left valign=top>
<SELECT NAME="op_sys" MULTIPLE SIZE=7>
<OPTION VALUE="All">All<OPTION VALUE="Windows 3.1">Windows 3.1<OPTION
VALUE="Windows 95">Windows 95<OPTION VALUE="Windows 98">Windows
98<OPTION VALUE="Windows ME">Windows ME<OPTION VALUE="Windows
2000">Windows 2000<OPTION VALUE="Windows NT">Windows NT<OPTION
VALUE="Mac System 7">Mac System 7<OPTION VALUE="Mac System 7.5">Mac
System 7.5<OPTION VALUE="Mac System 7.6.1">Mac System 7.6.1<OPTION
VALUE="Mac System 8.0">Mac System 8.0<OPTION VALUE="Mac System
8.5">Mac System 8.5<OPTION VALUE="Mac System 8.6">Mac System
8.6<OPTION VALUE="Mac System 9.x">Mac System 9.x<OPTION VALUE="MacOS
X">MacOS X<OPTION VALUE="Linux">Linux<OPTION VALUE="BSDI">BSDI<OPTION
VALUE="FreeBSD">FreeBSD<OPTION VALUE="NetBSD">NetBSD<OPTION
VALUE="OpenBSD">OpenBSD<OPTION VALUE="AIX">AIX<OPTION
VALUE="BeOS">BeOS<OPTION VALUE="HP-UX">HP-UX<OPTION
VALUE="IRIX">IRIX<OPTION VALUE="Neutrino">Neutrino<OPTION
VALUE="OpenVMS">OpenVMS<OPTION VALUE="OS/2">OS/2<OPTION VALUE="OSF/
1">OSF/1<OPTION VALUE="Solaris">Solaris<OPTION
VALUE="SunOS">SunOS<OPTION VALUE="other">other</SELECT>

</td>
<td align=left valign=top>
<SELECT NAME="priority" MULTIPLE SIZE=7>
<OPTION VALUE="--">--<OPTION VALUE="P1">P1<OPTION VALUE="P2">P2<OPTION
VALUE="P3">P3<OPTION VALUE="P4">P4<OPTION VALUE="P5">P5</SELECT>

bugzilla.mozilla.org

What’s relevant in here?

7

8

9

10

Why simplify?

• Ease of communication. A simplified test
case is easier to communicate.

• Easier debugging. Smaller test cases result
in smaller states and shorter executions.

• Identify duplicates. Simplified test cases
subsume several duplicates.

11

The Gecko BugAThon

• Download the Web page to your machine.

• Using a text editor, start removing HTML
from the page. Every few minutes, make
sure it still reproduces the bug.

• Code not required to reproduce the bug
can be safely removed.

• When you’ve cut away as much as you can,
you’re done.

12

Rewards
5 bugs - invitation to the Gecko launch party
10 bugs - the invitation, plus an attractive Gecko
stuffed animal
12 bugs - the invitation, plus an attractive Gecko
stuffed animal autographed by Rick Gessner, the
Father of Gecko
15 bugs - the invitation, plus a Gecko T-shirt
20 bugs - the invitation, plus a Gecko T-shirt signed by
the whole raptor team

10

11

12

13

• Proceed by binary search. Throw away half
the input and see if the output is still wrong.

• If not, go back to the previous state and
discard the other half of the input.

Binary Search

HTML input

✘✔✘✘✘✔

14

Simplified Input

• Simplified from 896 lines to one single line

• Required 12 tests only

<SELECT NAME="priority" MULTIPLE SIZE=7>

15

Benefits

• Ease of communication. All one needs is
“Printing <SELECT> crashes”.

• Easier debugging. We can directly focus on
the piece of code that prints <SELECT>.

• Identify duplicates. Check other test cases
whether they’re <SELECT>-related, too.

13

14

15

16

Why automate?

• Manual simplification is tedious.

• Manual simplification is boring.

• We have machines for tedious and boring
tasks.

17

Basic Idea

• We set up an automated test that checks
whether the failure occurs or not
(= Mozilla crashes when printing or not)

• We implement a strategy that realizes the
binary search.

18

Automated Test
1. Launch Mozilla

2. Replay (previously recorded) steps from
problem report

3. Wait to see whether

• Mozilla crashes (= the test fails)

• Mozilla still runs (= the test passes)

4. If neither happens, the test is unresolved

16

17

18

19

Binary Search

✔
✘<SELECT NAME="priority" MULTIPLE SIZE=7>

<SELECT NAME="priority" MULTIPLE SIZE=7>

<SELECT NAME="priority" MULTIPLE SIZE=7>

✔
What do we do if both halves pass?

<SELECT NAME="priority" MULTIPLE SIZE=7> ✔
✘

✔
✘

<SELECT NAME="priority" MULTIPLE SIZE=7>

<SELECT NAME="priority" MULTIPLE SIZE=7>

<SELECT NAME="priority" MULTIPLE SIZE=7>

20

Configuration

All circumstances
C = {δ1,δ2, . . . }

Configuration

c = {δ1,δ2, . . .δn}

c ⊆ C

Circumstance
δ

21

Tests

test(c) ∈ {✔,✘, ?}

Testing function

test(c✘) = ✘

Failure-inducing configuration

Relevant configuration

∀δi ∈ c
′
✘ · test

(

c′✘ \ {δi}
)

≠ ✘

c
′

✘ ⊆ c✘

19

20

21

22

Binary Strategy

If removing first half fails…

test(c✘ \ c1) = ✘ =⇒ c✘
′ = c✘ \ c1

If removing second half fails…
test(c✘ \ c2) = ✘ =⇒ c✘

′ = c✘ \ c2

Otherwise, increase granularity:
c✘ = c1 ∪ c2 ∪ c3 ∪ c4

c✘ = c1 ∪ c2 ∪ c3 ∪ c4 ∪ c5 ∪ c6 ∪ c7 ∪ c8

c✘ = c1 ∪ c2

Split input

23

General Strategy
Split input into n parts (initially 2)

c✘ = c1 ∪ c2 ∪ · · ·∪ cn

If some removal fails…

∃i ∈ {1, . . . , n} · test(c✘ \ ci) = ✘ =⇒
c✘
′ = c✘ \ ci

n′ = max(n− 1,2)

Otherwise, increase granularity

c✘
′
= c✘ n

′
= 2n

24

ddmin in a Nutshell

ddmin(c✘) = ddmin
′(c′✘,2)

c′✘ = ddmin(c✘) is a relevant configuration



































c′✘ if |c′✘| = 1

ddmin
′(c′✘ \ ci,max(n− 1,2)

)

else if ∃i ∈ {1..n} · test(c′✘ \ ci) = ✘

(“some removal fails”)

ddmin
′(c′✘,min(2n,

∣

∣c′✘
∣

∣)
)

else if n <
∣

∣c′✘
∣

∣ (“increase granularity”)

c′✘ otherwise

ddmin
′(c′✘, n) =with

c
′

✘ = c1 ∪ c2 ∪ · · ·∪ cn

∀ci, cj · ci ∩ cj =∅∧| ci| ≈| cj|

where

22

23

24

25

 def _ddmin(circumstances, n):
 while len(circumstances) >= 2:
 subsets = split(circumstances, n)

 some_complement_is_failing = 0
 for subset in subsets:
 complement = listminus(circumstances, subset)
 if test(complement) == FAIL:
 circumstances = complement
 n = max(n - 1, 2)
 some_complement_is_failing = 1
 break

 if not some_complement_is_failing:
 if n == len(circumstances):
 break
 n = min(n * 2, len(circumstances))

 return circumstances

26

1

Input: <SELECT NAME="priority" MULTIPLE SIZE=7> 〈40 characters〉 ✘
<SELECT NAME="priority" MULTIPLE SIZE=7> 〈0 characters〉 ✔

1 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈20〉 ✔

2 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈20〉 ✔

3 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈30〉 ✔

4 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈30〉 ✘

5 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈20〉 ✔

6 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈20〉 ✘

7 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈10〉 ✔

8 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈10〉 ✔

9 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈15〉 ✔

10 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈15〉 ✔

11 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈15〉 ✘

12 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈10〉 ✔

13 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈10〉 ✔

14 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈10〉 ✔

15 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈12〉 ✔

16 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈13〉 ✔

17 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈12〉 ✔

18 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈13〉 ✘

19 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈10〉 ✔

20 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈10〉 ✔

21 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈11〉 ✔

22 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈10〉 ✘

23 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈7〉 ✔

24 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈8〉 ✔

25 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈7〉 ✔

26 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈8〉 ✔

27 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈9〉 ✔

28 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈9〉 ✔

29 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈9〉 ✔

30 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈9〉 ✔

31 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈8〉 ✔

32 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈9〉 ✔

33 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈8〉 ✘

34 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈7〉 ✔

35 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈7〉 ✔

36 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈7〉 ✔

37 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈7〉 ✔

38 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈7〉 ✔

39 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈6〉 ✔

40 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈7〉 ✔

41 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈7〉 ✔

42 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈7〉 ✔

43 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈7〉 ✔

44 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈7〉 ✔

45 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈7〉 ✔

46 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈7〉 ✔

47 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈7〉 ✔

48 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈7〉 ✔

Result: <SELECT>

ddmin at Work

27

Complexity

• The maximal number of ddmin tests is

(

|c✘|
2 + 7|c✘|

)

2

25

26

27

28

Worst Case Details

= 2|c✘| + |c✘| +
|c✘|

2
+
|c✘|

4
+ · · · = 4|c✘|

First phase: every test is unresolved

Second phase: testing last set always fails

t = 2+ 4+ 8+ · · · + 2|c✘|

t′ = (|c✘|− 1)+ (|c✘|− 2)+ · · · + 1

= 1+ 2+ 3+ · · · + (|c✘|− 1)

=
|c✘|(|c✘|− 1)

2
=
|c✘|

2 − |c✘|

2

29

Binary Search

If

• there is only one failure-inducing
circumstance, and

• all configurations that include this
circumstance fail,

the number of tests is t ≤ log2(|c✘|)

30

More Simplification

Simplified failure-inducing fuzz input:

• FLEX crashes on 2,121 or more non-
newline characters

• NROFF crashes on “\D^J%0F” or “\302\n”

• CRTPLOT crashes on “t”

28

29

30

31

Minimal Interaction
Ok the following operations cause mozilla to crash
consistently on my machine

-> Start mozilla
-> Go to bugzilla.mozilla.org
-> Select search for bug
-> Print to file setting the bottom and right margins to .50
 (I use the file /var/tmp/netscape.ps)
-> Once it's done printing do the exact same thing again on
 the same file (/var/tmp/netscape.ps)
-> This causes the browser to crash with a segfault

32

Minimal Interaction

Basic idea:
Apply ddmin to recorded user interaction

• To reproduce the Mozilla printing crash:

• Press P while holding Alt

• Press mouse button 1

• Release mouse button 1

33

Optimization

• Caching

• Stop Early

• Syntactic Simplification

• Isolate Differences, not Circumstances

31

32

33

34

Caching

• Basic idea: store the results of earlier test()

• Saves 8 out of 48 tests in <SELECT>
example

35

Stop Early

One may stop simplification when

• a certain granularity has been reached

• no progress has been made

• a certain amount of time has elapsed

36

Syntactic Simplification

0

SELECT

NAME

"priority"

1

1.1

MULTIPLE

2

SIZE

3

7

3.1

<SELECT NAME="priority" MULTIPLE SIZE=7>

34

35

36

37

Differences

<SELECT NAME="priority" MULTIPLE SIZE=7>

<SELECT NAME="priority" MULTIPLE SIZE=7>

The extra “<” is failure-inducing!

38

More Circumstances

Program

Data

User Interaction

Communication

Randomness Operating System

Schedules

Physics

Debugging Tools

39

More Automation

• Failure-Inducing Input

• Failure-Inducing Code Changes

• Failure-Inducing Schedules

• Failure-Inducing Program States

• Failure-Inducing Method Calls

37

38

39

Lenhof, Hans-Peter,, +49 681 302-64701, lenhof@cs.uni-sb.de
Lindig, Christian, +49 681 9378406, +49 681 302 7790, lindig@cs.uni-sb.de
Mehlmann, Martin,,, mehlmann@st.cs.uni-sb.de
Meyer zu Tittingdorf, Friederike, +49 6894 890037, +49 681 302-78099,
meyer@cs.uni-sb.de
Mileva, Yana,, +49 681 302-64020, mileva@cs.uni-sb.de
Müller-Perich, Elisabeth,, +49 681 302-7070, sekr.techfak@rz.uni-sb.de
Nir-Bleimling, Naomi,, +49 68130264011, naomi@wjpserver.cs.uni-sb.de
Offergeld, Thilo,, +49 681 302-6794, t.offergeld@univw.uni-sb.de
PC, CC 2006,,, cc2006pc@st.cs.uni-sb.de
Paul, Wolfgang, +4968171827, +49 6813022436, wjp@cs.uni-sb.de
Premraj, Rahul, +44 7796973711, +49 681 302-64013, premraj@cs.uni-sb.de
Reindel, Erich, +49 6371 912842, +49 681 302-78091, reindel@cs.uni-sb.de
Schuler, David,, +49 681 302-64026, schuler@st.cs.uni-sb.de
Schuler, Erika,, +49 6813027069, schuler@tf.uni-sb.de
Schäfer, Christa, +49 6897 71167, +49 68130264011,
Security, AG,,, security@st.cs.uni-sb.de
Seidel, Raimund, +49 6894 383698, +49 681 302-4713, rseidel@cs.uni-sb.de
Sekretariat, Sekretariat,, +49 681 302-64011, office@st.cs.uni-sb.de
Sliwerski, Jacek, +491741333208,, sliwers@st.cs.uni-sb.de
Slusallek, Philipp, +49 6826 1 88 71 32, +49 681 302-3830, slusallek@cs.uni-sb.de
Slusallek USA, Philipp, +1 670 391 9186, +1 408 486 2788, slusallek@cs.uni-sb.de
Smolka, Gert, +49 681 782770, +49 681 302-7311, smolka@ps.uni-sb.de
Software-Evolution, AG,,, softevo@st.cs.uni-sb.de
Thiel, Frank,,, hausmeister@cs.uni-sb.de
Weiß, Cathrin,,, weiss@st.cs.uni-sb.de
Wilhelm, Reinhard,, +49 681 302-4399, wilhelm@cs.uni-sb.de
Zeller, Andreas,,, zeller@cs.uni-sb.de
Zeller, Andreas, +49 681 3710467, +49 681 302-64011, zeller@cs.uni-sb.de
Zimmermann, Tom, +49 871 71742 (Eltern), +1 403 210 9470, zimmerth@cs.uni-sb.de

Failure Cause

Lenhof, Hans-Peter,, +49 681 302-64701, lenhof@cs.uni-sb.de
Lindig, Christian, +49 681 9378406, +49 681 302 7790, lindig@cs.uni-sb.de
Mehlmann, Martin,,, mehlmann@st.cs.uni-sb.de
Meyer zu Tittingdorf, Friederike, +49 6894 890037, +49 681 302-78099,
meyer@cs.uni-sb.de
Mileva, Yana,, +49 681 302-64020, mileva@cs.uni-sb.de
Müller-Perich, Elisabeth,, +49 681 302-7070, sekr.techfak@rz.uni-sb.de
Nir-Bleimling, Naomi,, +49 68130264011, naomi@wjpserver.cs.uni-sb.de
Offergeld, Thilo,, +49 681 302-6794, t.offergeld@univw.uni-sb.de
PC, CC 2006,,, cc2006pc@st.cs.uni-sb.de
Paul, Wolfgang, +4968171827, +49 6813022436, wjp@cs.uni-sb.de
Premraj, Rahul, +44 7796973711, +49 681 302-64013, premraj@cs.uni-sb.de
Reindel, Erich, +49 6371 912842, +49 681 302-78091, reindel@cs.uni-sb.de
Schuler, David,, +49 681 302-64026, schuler@st.cs.uni-sb.de
Schuler, Erika,, +49 6813027069, schuler@tf.uni-sb.de
Schäfer, Christa, +49 6897 71167, +49 68130264011,
Security, AG,,, security@st.cs.uni-sb.de
Seidel, Raimund, +49 6894 383698, +49 681 302-4713, rseidel@cs.uni-sb.de
Sekretariat, Sekretariat,, +49 681 302-64011, office@st.cs.uni-sb.de
Sliwerski, Jacek, +491741333208,, sliwers@st.cs.uni-sb.de
Slusallek, Philipp, +49 6826 1 88 71 32, +49 681 302-3830, slusallek@cs.uni-sb.de
Slusallek USA, Philipp, +1 670 391 9186, +1 408 486 2788, slusallek@cs.uni-sb.de
Smolka, Gert, +49 681 782770, +49 681 302-7311, smolka@ps.uni-sb.de
Software-Evolution, AG,,, softevo@st.cs.uni-sb.de
Thiel, Frank,,, hausmeister@cs.uni-sb.de
Weiß, Cathrin,,, weiss@st.cs.uni-sb.de
Wilhelm, Reinhard,, +49 681 302-4399, wilhelm@cs.uni-sb.de
Zeller, Andreas,,, zeller@cs.uni-sb.de
Zeller, Andreas, +49 681 3710467, +49 681 302-64011, zeller@cs.uni-sb.de
Zimmermann, Tom, +49 871 71742 (Eltern), +1 403 210 9470, zimmerth@cs.uni-sb.de

Failure Cause

40

41

Now, the idea is
that we can
easily automate
the whole
process.

42

Problem:
Simulating user interaction

is cumbersome.

v: Vector

Vector()

add()

remove()

remove() ↯
Isolating Relevant Calls

Step 1: Record

add()

remove()

Event log contains
32 interactions

JINSI

Event
Log

v: Vector

Isolating Relevant Calls
Step 2: Replay

Event log contains
32 interactions

JINSI

Event
Log

Vector()

add()

remove()

remove()

add()

remove() ↯

43

44

45

v: Vector

Isolating Relevant Calls
Step 3: Simplify

Event log contains
32 interactions

JINSI

Event
Log

Vector()

add()

remove()

remove()

add()

remove() ↯
Isolating Relevant Calls

Step 4: Create Unit Test

Event log contains
32 interactions

JINSI

↯Text
testVector()
{
 Vector v = new Vector();
 v.remove(obj);
}

Columba ContactModel

c: ContactModel

ContactModel()

setSortString()

setNickName()

setFamilyName()

setFormattedName()

setGivenName()

and 18732 more…

↯

46

47

48

ContactModel()

getPreferredEmail() c: ContactModel↯
Columba ContactModel

Unit Test

testContactModel()
{
 ContactModel c = new ContactModel();
 String s = c.getPreferredEmail();
}

getPreferredEmail
 public String getPreferredEmail() {
 Iterator it = getEmailIterator();

 // get first item
 IEmailModel model = (IEmailModel) it.next();

 // backwards compatiblity
 // -> its not possible anymore to create a
 // contact model without email address
 if (model == null)
 return null;

 return model.getAddress();
 }

49

50

51

52

Concepts

The aim of simplification is to create a
simple test case from a problem report.

Simplified test cases…

• are easier to communicate

• facilitate debugging

• identify duplicate problem reports

53

Concepts (2)

To simplify a test case, remove all irrelevant
circumstances.

A circumstance is irrelevant if the problem
occurs regardless of whether the
circumstance is present or not.

54

Concepts (3)

To automate simplification, set up

• an automated test

• a strategy to determine the relevant
circumstances

One such strategy is the ddmin delta
debugging algorithm

52

53

54

55

This work is licensed under the Creative Commons Attribution License. To view a copy of this license, visit

http://creativecommons.org/licenses/by/1.0

or send a letter to Creative Commons, 559 Abbott Way, Stanford, California 94305, USA.

55

