Simplifying Problems

Andreas Zeller

“The definitive book on debugging”
ZELLER —WALTER F. TICHY

WHY ,
PROGRAMS

Buifingag 1ypwaysAs oy aping y

A Guide to'Systematic Debugging

ANDREAS ZELLER

Simplifying

® Once one has tracked and reproduced a
problem, one must find out what’s relevant:

® Does the problem really depend on
10,000 lines of input?

® Does the failure really require this exact
schedule?

® Do we need this sequence of calls?

And if you need
such a toolbox,
| have written all
these
techniques
down in a
textbook.

http://

Why simplify? www.concordesst.c
om/accident/

accidentindex.html

Simplifying

® For every circumstance of the problem,
check whether it is relevant for the
problem to occur.

® If it is not, remove it from the problem
report or the test case in question.

Circumstances

® Any aspect that may influence a problem is
a circumstance:

® Aspects of the problem environment

® Individual steps of the problem history

Experimentation

® By experimentation, one finds out whether a
circumstance is relevant or not:

® Omit the circumstance and try to
reproduce the problem.

® The circumstance is relevant iff the
problem no longer occurs.

Mozilla Bug #24735

Ok the following operations cause mozilla to crash
consistently on my machine

-> Start mozilla

-> Go to bugzilla.mozilla.org

-> Select search for bug

-> Print to file setting the bottom and right margins to .50
(T use the file /var/tmp/netscape.ps)

-> Once it's done printing do the exact same thing again on
the same file (/var/tmp/netscape.ps)

-> This causes the browser to crash with a segfault

bugzilla.mozilla.org

vvhats relevantiin here?

Why simplify?

A simplified test
case is easier to communicate.

Smaller test cases result
in smaller states and shorter executions.

° Simplified test cases
subsume several duplicates.

The Gecko BugAThon

Download the Web page to your machine.

Using a text editor; start removing HTML
from the page. Every few minutes, make
sure it still reproduces the bug.

Code not required to reproduce the bug
can be safely removed.

When you'’ve cut away as much as you can,
you’re done.

Rewards

5 bugs - invitation to the Gecko launch party

10 bugs - the invitation, plus an attractive Gecko
stuffed animal

12 bugs - the invitation, plus an attractive Gecko
stuffed animal autographed by Rick Gessner, the
Father of Gecko

15 bugs - the invitation, plus a Gecko T-shirt

20 bugs - the invitation, plus a Gecko T-shirt signed by
the whole raptor tfeam

Binary Search

® Proceed by binary search. Throw away half
the input and see if the output is still wrong.

® If not, go back to the previous state and
discard the other half of the input.

HTML input

vV

Simplified Input

® Simplified from 896 lines to one single line

® Required |2 tests only

Benefits

[] All one needs is
“Printing <SELECT> crashes”.

° We can directly focus on
the piece of code that prints <SELECT>.

o Check other test cases
whether they’re <SELECT>-related, too.

Why automate?

® Manual simplification is tedious.
® Manual simplification is boring.

® We have machines for tedious and boring
tasks.

Basic Idea

® We set up an automated test that checks
whether the failure occurs or not
(= Moizilla crashes when printing or not)

® We implement a strategy that realizes the
binary search.

Automated Test

. Launch Mozilla

2. Replay (previously recorded) steps from
problem report

3. Wait to see whether
® Mozilla crashes (= the test fails)
® Motzilla still runs (= the test passes)

4. If neither happens, the test is unresolved

Binary Search

What do we do if both halves pass?

Configuration

Circumstance

All circumstances
C=1{01,02,...}

Configuration ¢ < C
¢ =1{61,02,...0n}

Tests

Testing function

test(c) € {v, X,?}

Failure-inducing configuration
test(c.) =

Relevant configuration ¢’ < c
Vé; ec’ -test(c' \ {6;}) #

Binary Strategy

Split input
g —cilio
If removing first half fails...
testlcaliai=—sica
If removing second half fails. ..

test(c, \c2) =X = ¢, ' =c, \ ¢
Otherwise, increase granularity:
Cx = C1 UcCr U3 Uy

C =C1UcCc2UC3UC4UCsUCgUC7UCY

General Strategy

Split input into n parts (initially 2)
C:ClUCZU"'UCn

If some removal fails...
c/=e \ @

1 if .)=
i e dily nlitest(cedic) = W —max(n-1,2)

Otherwise, increase granularity

n =2n

ddmin in a Nutshell

c. = ddmin(c,) is a relevant configuration

ddmin(c.) = ddmin’ (c’,2) with ddmin’ (c/,n) =

c i |l = 1
J'ddmin'(c’ \ ¢i,max(n —1,2)) elseif 3i € {1..n} - test(c’ \ ¢;) =
(“some removal fails”)
{ddmin'(C’,min(Zn, le”) else if n < |c’| (“increase granularity”)
otherwise

where ¢’ =ciucaU---U ¢y
Vei,cj-cincg =0 Al cil = ¢l

def _ddmin(circumstances, n):
while len(circumstances) >= 2:
subsets = split(circumstances, n)

some_complement_is_failing = @
for subset in subsets:
complement = listminus(circumstances, subset)
if test(complement) == FAIL:
circumstances = complement
n = max(h - 1, 2)
some_complement_is_failing = 1
break

ot some_complement_is_faili
if n len(circumstances):
break
minCn * 2, len(C

return circumstances

ddmin at Work

Input: <SELECT NAME="priority" MULTIPLE SIZE=7> (40 characters) X
(0 characters) v/

" MULTIPLE SIZE=7>

" MULTIPLE
SELECT NA " MULTIPLE S
" MULTIPLE S
SELECT NA LE
LE
<SELECT
CT NA LE S
<SELE LE S
<SELECT

CSUXCCAXCRRNVRIXLRRExIA xR

8 <SELECT

Result: <SELECT>

Complexity

® The maximal humber of ddmin tests is

(Ie.1? + 7lc.1)
2

Worst Case Details

First phase: every test is unresolved

E=—2+4+8+---+2]c,
:9|C|+|C|+M+M+
2 4

Second phase: testing last set always fails
ce e =D e =
—] 2+ 3t (e =19

sdallcsaliuslcliailcl
2 2

Binary Search

If

® there is only one failure-inducing
circumstance, and

® all configurations that include this
circumstance fail,

the number of tests is t <log,(|c |)

More Simplification

Simplified failure-inducing fuzz input:

® FLEX crashes on 2,121 or more non-
newline characters

® NROFF crashes on “\D?AJ%0F” or “\302\n”
® CRTPLOT crashes on “t”

Minimal Interaction

Ok the following operations cause mozilla to crash
consistently on my machine

-> Start mozilla

-> 6o to bugzilla.mozilla.org

-> Select search for bug

-> Print to file setting the bottom and right margins to .50
(T use the file /var/tmp/netscape.ps)

-> Once it's done printing do the exact same thing again on
the same file (/var/tmp/netscape.ps)

-> This causes the browser to crash with a segfault

Minimal Interaction

Basic idea:
Apply ddmin to recorded user interaction

® To reproduce the Mozilla printing crash:
® Press P while holding Alt
® Press mouse button |

® Release mouse button |

Optimization

Caching
Stop Early
Syntactic Simplification

Isolate Differences, not Circumstances

Caching

® Basic idea: store the results of earlier test()

® Saves 8 out of 48 tests in <SELECT>
example

Stop Early

One may stop simplification when
® a certain granularity has been reached
® no progress has been made

® a certain amount of time has elapsed

Syntactic Simplification

(1]

SELECT

e B

Differences

The extra “<” is failure-inducing!

N
vA

More Circumstances

Randomness Operating System

N
Communication\ j" «— Schedules

User Interaction/ \Physics

Data Debugging Tools

More Automation

Failure-Inducing Input
Failure-Inducing Code Changes
Failure-Inducing Schedules
Failure-Inducing Program States

Failure-Inducing Method Calls

http:ffcolirmbasourceforg et

Failure Cause

Now, the idea is
Failure Cause that we can
easily automate
the whole

Ui e, guleitit acicd process.

Problem:

IS cumbersome.

Isolating Relevant Calls

Step |:Record

Vector()

remove()
remove()

remove()

Isolating Relevant Calls

Step 2: Replay

Vector()
addQ)
add(O)

remove()

remove()

remove()

Isolating Relevant Calls
Step 3: Simplify
Vector()
add(Q)
add(O)
remove()
remove()

remove()

Isolating Relevant Calls

Step 4: Create Unit Test

testVector()
{

Vector v = new Vector();
v.remove(obj);

Columba ContactModel

ContactModel ()
setSortString()
—)

setFormattedNameg)

setNickName()
—)

setFamilyName()
setGivenName()

and 18732 more...

Columba ContactModel

ContactModel ()
—
getPreferredEmail()

Unit Test

testContactModel ()

{
ContactModel ¢ = new ContactModel();

String s = c.getPreferredEmail();

getPreferredEmail

public String getPreferredEmail() {
Iterator it = getEmailIlterator();

// get first item

IEmailModel model = (IEmailModel) 1';

// backwards compatiblity
// -> its not possible anymore to create a
// contact model without email address
if (model == null)
return null;

return model.getAddress();

Concepts

* The aim of simplification is to create a
simple test case from a problem report.

* Simplified test cases...
® are easier to communicate
® facilitate debugging

® identify duplicate problem reports

Concepts (2)

* To simplify a test case, remove all irrelevant
circumstances.

* A circumstance is irrelevant if the problem
occurs regardless of whether the
circumstance is present or not.

Concepts (3)

* To automate simplification, set up
® an automated test

® a strategy to determine the relevant
circumstances

* One such strategy is the ddmin delta
debugging algorithm

