<title>
Seeding Bugs to Find Bugs: Mutation
Tosting Revisited

e

<abstract>
How do you know your test suite is

to tell is _mutation testing_. Mutation
Andreas Zeller testing seeds artificial defects

Saarland University (mutations) into a program and checks
hetl e finds therm1f
I hi -

not adequate yet.

ge ing Bugs to Find Bugi

Despite Its eftectiveness, mutation

1 larae computing resources to re-run the

with David Schuler and Valentin Dallmeier

Saarbrucken

Hans-Peter is moving into this building
— actually, he built it, too. He’s worried
i hi ioht be okav. But he’
not that worried.

If you’re building not a building, but a
piece of software, you have many more
reasons to be worried.

It’s not like this is the ultimate horror...

...but still, this question causes fear,
uncertainty and doubt in managers

Test Quality

® You want your program to be well tested

® How do we measure “well tested’?

s While the Programm is executed, one
x statement (or basic block) after the other

char *dptr = decoded;

intok = 0; . .

TRCTIV “test”; checkmarks indicate executed
blocks.

charc;
c = *eptr;
if (¢ =="+){

by - int digit_high = Hex_Values[*(++eptr)];
)dp“ ="eptr; int digit_low = Hex_Values[*(++eptr)];

if (digit_high == -1 | digit_low == -1) {

fFalse—'ngeﬁv

else {
*dptr = 16 * digit_high + digit_low;
}

*dptr ="\0",
return ok;

}

“dptr = \0;
return ok;

}

int cgi_decode(char *encoded, char *decoded) We,d Iike to teSt every Statement’ So We
I come up mit more test cases.

/
{ char *eptr = encoded; ((/
char *dptr = decoded;
int ok = 0;

if (digit_high == -1 || digit_low == -1) {

else int digi = * :
by . X / int digit_high = Hex_Values[*(++eptr)];
dptr = *eptr; <:-/> ﬁl digit_low = Hex_Values[*(++eptr)];

vﬁFalse—)gTrueﬁv

else {
*dptr = 16 * digit_high + digit_low;
}

We’d like to test every statement, so we

int cgi_decode(char *encoded, char *decoded)
i come up mit more test cases.
e— 'Fm_ o

hFals

“dptr = "eptr; int digit_low = Hex_Values[*(++eptr)];

else int digit_high = Hex_Values[*(++eptr)];
if (digit_high == -1 || digit_low == -1) {

vﬁFalse—)gTrueﬁv

else { w
*dptr = 16 * digit_high + digit_low,
}

This is an interesting boundary test
' case, as it may cause non-deterministic

{ char *eptr = encoded; \ <
char *dptr = decoded; . .

int digit_low = Hex_Values[*(++eptr)];

int digit_high = Hex_Values[*(++eptr)];
if (digit_high == -1 || digit_low == -1) {

fFalse—'ngeﬁv

*dptr = 16 * digit_high + digilﬁlt‘.&.\ y
}

B ————
subsumes

Coverage
Criteria Boundary Compaind

interior testing condition testing

Branch and
condition testing

Statement testing

Weyuker’s Hypothesis

The adequacy of a coverage criterion
can only be intuitively defined.

Mutation Testing

DeMillo, Lipton, Sayward 1978

And this is the summary of structural
testing techniques.

Established by a number of studies
done by E. Weyuker at AT&T. “Any

licit relationshio |
and error detection would mean that we-
have a fixed distribution of errors over
all statements and paths, which is
clearly not the case”.

A Mutation

class Checker {
public int compareTo(Object other)

{
r tur'n

}

not found by Aspect] test suite

Mutation Operators

id operator description constraint

Operand Modifications
crp constant for constant replacement replace constant C1 with constant C2 Cl#C2
ser scalar for constant replacement replace constant C with scalar variable X C#X
acr array for constant replacement replace constant C with array reference A[/] C#A[Il
ser struct for constant replacement replace constant C with struct field § C#S
svr scalar variable replacement replace scalar variable X with a scalar variable ¥ X#Y
csr constant for scalar variable replacement replace scalar variable X with a constant C X#C
asr array for scalar variable replacement replace scalar variable X with an array reference A[f] X #A[l
ssr struct for scalar replacement replace scalar variable X with struct field § X#S
vie scalar variable initializati inati remove initiali. of a scalar variable

car constant for array replacement replace array reference A[/] with constant C Alll#C
sar scalar for array replacement replace array reference A[I] with scalar variable X Al #£X
enr comparable array replacement replace array reference with a comparable array reference

sar struct for array reference replacement replace array reference A[/] with a struct field § Al #S

Expression Modifications

abs absolute value insertion replace e by abs (e) e<0

aor arithmetic operator replacement replace arithmetic operator y with arithmetic operator ¢ ejyer #ejdey
ler logical connector replacement replace logical connector y with logical connector ¢ eryer #ejgey
ror relational operator replacement replace relational operator y with relational operator ¢ e Wes # e pes
uoi unary operator insertion insert unary operator

cpr constant for predicate replacement replace predicate with a constant value

Statement Modifications

sdl statement deletion delete a statement

sca switch case replacement replace the label of one case with another
ses end block shift move } one statement earlier and later

Pezzé and Young, Software Testing and Analysis

Does it work!?

® Generated mutants are similar to real faults
Andrews, Briand, Labiche, ICSE 2005

® Mutation testing is more powerful than

statement or branch coverage
Walsh, PhD thesis, State University of NY at Binghampton, 1985

® Mutation testing is superior to data flow

coverage criteria
Frankl,Weiss, Hu, Journal of Systems and Software, 1997

from Pezze + Young, “Software Testing
and Analysis”, Chapter 16

Bugs in Aspect|

Efficiency Inspection

® Test suite must be
re-run for every
single mutation

® Expensive

Efficiency

Manipulate byte code directly
rather than recompiling every single mutant

Focus on few mutation operators

* replace numerical constant C by C+1,0r 0

* negate branch condition

* replace arithmetic operator (+ by —, * by /, etc.)

Use mutant schemata
individual mutants are guarded by run-time conditions

Use coverage data
only run those tests that actually execute mutated code

— and since we know it’s not executed,
we don’t even apply this mutation.

A Mutation

class Checker {

public int compareTo(Object other)

{
return

}

not found by Aspect] test suite

because it is not executed

Efficiency Inspection

Inspection

® A mutation may leave

program semantics ‘ ' 0}

unchanged -

® These equivalent

mutants must be

determined manually

® This task is tedious.

To check this, we need to look at 50+
places!

An Equivalent Mutant

public int compareTo(Object other) {

if (!Cother instanceof BcelAdvice))
return 0;

BcelAdvice o = (BcelAdvice)other;

if (kind.getPrecedence() !'= o.kind.getPrecedence()) {

if (kind.getPrecedence() > o.kind.getPrecedence())
return b

else
return -1;

}

// More comparisons...

I

no impact on Aspect]

Frankl’s Observation

WVe also observed that [...]
mutation testing was costly.

Even for these small subject programs,

the human effort needed to check a large

number of mutants for equivalence

was almost prohibitive.

P. G. Frankl, S. N.Weiss, and C. Hu.
All-uses versus mutation testing:

An experimental comparison of effectiveness.
Journal of Systems and Software, 38:235-253, 1997.

Inspection

J L
OW dO werdetErmine

Juivalent mutants¢

Aiming for Impact

Measuring Impact

® How do we characterize “impact” on
program execution?

® |dea: Look for changes in
pre- and postconditions

® Use dynamic invariants to learn these

Dynamic Invariants

pioneered by Mike Ernst’s Daikon

Invariant H Property

At f(), x is odd Atf(),x =2

Example

public int ex1511(Cint[] b, int n)

{ 2e(h
int s - 0; i
i a0 13
while (i !=n) { 7

s =s + b[i];
i el)

b[] = orig(b[1)

i return == sum(b)

return s;

® Run with 100 randomly generated arrays
of length 7—13

Obtaining Invariants

get trace
Trace

filter mvarlants

\ report results
b[] = orig(b[1)
return == sum(b)

Impact on Invariants

public ResultHolder signatureToStringInternal(String signature) {
switch(signature.charAt(@)) {

case 'L': { // Full class name
// Look for closing ;'
int index = signature.index0f(';"');
// Jump to the correct ';'
if (index != && signature.length() > index + 1 &&
signature.charAt(index + 1) == '>")
index = index + 2;

return new ResultHolder (signature.substring(l, index));
I
3

Impact on Invariants

e
gnatureToStringInternal)
mutated method
UnitDeclaration.resolve()
post: target field is now zero

DelegatingOutputStream.write()
pre: upper bound of argument changes

WeaverAdapter.addingTypeMunger()
pre: target field is now non-zero

ReferenceContext.resolve()
post: target field is now non-zero

Impact on Invariants

public ResultHolder signatureToStringInternal(String signature) {
switch(signature.charAt(0)) {

case 'L': { // Full class name
// Look for closing “;'
int index = signature.indexOf(';"');
// Jump to the correct ';'
if (index != && signature.length() > index + 1 &&
signature.charAt(index + 1) == '>')
index = index + 2;

return new ResultHolder (signature.substring(l, index));

impacts 40 invariants
but undetected by Aspect] unit tests

® Mutation Testing Framework for Java
12 man-months of implementation effort

Efficient Mutation Testing

Manipulate byte code directly * Focus on few mutation
operators * Use mutant schemata ¢ Use coverage data

Ranks Mutations by Impact
Checks impact on dynamic invariants * Uses efficient
invariant learner and checker

Mutation Testing

with Javalanche

Mutation Testing

with Javalanche

idRVariantsHEOmEEesty

3. Detect impact of mutations

4. Select mutations=wi e most
invariants violate
(= the highest i

Evaluation

|. Are mutations that violate

invariants useful?

2. Are mutations with the
highest impact most useful?

3. Are mutants that violate invariants

less likely to be equivalent?

Evaluation Subjects

Lines of Code

% detected means covered mutations

Mutations

INET S #Mutations %detected

Aspect] Core 47,146 53

Barbecue WAL

Performance

® |earning invariants is very expensive
22 CPU hours for Aspect] — one-time effort

® Creating checkers is somewhat expensive
10 CPU hours for Aspect] — one-time effort

® Mutation testing is feasible in practice
14 CPU hours for Aspect], 6 CPU hours for XStream

Evaluation

|. Are mutations that violate

What is a “useful” mutation?

Useful Mutations

A technique for generating mutants is useful if
most of the generated mutants are detected:

® |ess likely to be equivalent
because detectable mutants = non-equivalent mutants

® close to real defects
because the test suite is designed to catch real defects

Mutations we look for

not violating | violating
invariants invariants

not detected
by test suite

detected
by test suite

Are mutations that violate
invariants useful?

Non-violating mutants detected Il Violating mutants detected

Mutations that violate invariants are
more likely to be detected by actual
tests — and thus likely to be useful.

Aspect)] Barbecue Commons Jaxen Joda-Time JTopas XStream

All differences are statistically significant according to x* test

Are mutations with the
highest impact most useful?

Non-violating mutants detected [l Top 5% violating mutants detected

100 —

75 — Mutations that violate several invariants
i are most likely to be detected by actual
tests — and thus the most useful.

255l

H B B B B =

Aspect)] Barbecue Commons Jaxen Joda-Time |Topas XStream

All differences are statistically significant according to x* test

Detection Rates

100%:

‘| Barbecue | Commons

3
<
o
c
.0
f=)
(9]
(0]
]
(O]
@)

Z Aspect]

0% G v = ity 100%
Top n% mutants

o
0

Are mutants that violate invariants
less likely to be equivalent?

Randomly selected non-detected Jaxen
mutants — |2 violating, 12 non-violating

Manual inspection: Are mutations equivalent?

Mutation was proven non-equivalent
iff we could create a detecting test case

Assessment took 30 minutes per mutation

Are mutants that violate invariants
less likely to be equivalent?

@ Non-Equivalent
Equivalent

| Y | Ny

In our sample, mutants that violated
several invariants were significantly less
likely to be equivalent.

Violating mutants Non-violating mutants

Difference is statistically significant according to Fisher test
Mutations and tests made public to counter researcher bias

Evaluation

|. Are mutations that violate V
invariants useful?

2. Are mutations with the “
highest impact most useful?

3. Are mutants that violate invariants
less likely to be equivalent? V

Efficiency Inspection

Aspect]
~94,000 LOC

Future Work

How effective is mutation testing?
on a large scale — compared to traditional coverage

Predicting defects
How does test quality impact product quality?

Alternative impact measures
Coverage * Program spectra * Method sequences

Adaptive mutation testing
Evolve mutations to have the fittest survive

Factor 6,666 — plus full automation due
to lack of inspection

Mutation Testing

with Javalanche

Issues

. Learn invariants from test suite

. Insert invariant checkers into
code

. Detect impact of mutations

. Select mutations with the most
invariants violated
(= the highest impact)

Inspection

saarland.de/mutation/

Are mutations with the
highest impact most useful?

B Non-violating mutants decected Ml Top cants decected

Mutations that violate several invariants
are most likely to be detected by actual
tests — and thus the most useful.

Aspecy Barbecue Commons Jaxen Joda-Time JTopas XSweam

Al dflerences are statistically signifiant according o ¢ test

