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<abstract>
How do you know your test suite is 
"good enough"?  One of the best ways 
to tell is _mutation testing_.  Mutation 
testing seeds artificial defects 
(mutations) into a program and checks 
whether your test suite finds them.  If it 
does not, this means your test suite is 
not adequate yet.

Despite its effectiveness, mutation 
testing has two issues.  First, it requires 
large computing resources to re-run the 
test suite again and again.  Second, and 
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Hans-Peter is moving into this building 
– actually, he built it, too.  Heʼs worried 
that everything might be okay.  But heʼs 
not that worried.
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We built it!

If youʼre building not a building, but a 
piece of software, you have many more 
reasons to be worried.

4

Itʼs not like this is the ultimate horror…
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…but still, this question causes fear, 
uncertainty and doubt in managers

6



Testing

• You want your program to be well tested

• How do we measure “well tested”?

Test Quality

216 Structural Testing

!" #$%&!'()*&!+!(,#-.(./

#$%&!'.)*&!+!.(#-.(./

0,*!-1!+!2/

#$%&!#/

#!+!'()*&/

03!4#!++!5657!"!!

'.)*&!+!5!5/

8!

9$0:(!4'()*&7!"

;&<(

'.)*&!+!5=25/

&(*<&,!-1/

8

>%:?(

;&<(

0,*!.0@0*A$0@$!+!B(CAD%:<(?E'466()*&7F/

0,*!.0@0*A:-9!+!B(CAD%:<(?E'466()*&7F/

03!4.0@0*A$0@$!++!GH!II!.0@0*A:-9!++!GH7!"

;&<(

-1!+!H/

8

;&<(

(:?(!"

'.)*&!+!HJ!'!.0@0*A$0@$!6!.0@0*A:-9/

8

>%:?(

66.)*&/

66()*&/

8

>%:?(

>%:?(

!(:?(03!4#!++!5K57!"

(:?(

'.)*&!+!'()*&/

8

0,*!#@0A.(#-.(4#$%&!'(,#-.(.L!#$%&!'.(#-.(.7

!

"

#

$ %

& '

( )

*

+

Figure 12.2: The control flow graph of function cgi decode from Figure 12.1
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While the Programm is executed, one 
statement (or basic block) after the other 
is covered – i.e., executed at least once 
– but not all of them.  Here, the input is 
“test”; checkmarks indicate executed 
blocks.
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Weʼd like to test every statement, so we 
come up mit more test cases.
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Weʼd like to test every statement, so we 
come up mit more test cases.
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This is an interesting boundary test 
case, as it may cause non-deterministic 
behavior.  Can you see why?
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Coverage 
Criteria

Statement testing

Branch testing

Basic
condition testing

MC/DC testing

Compound
condition testing

Path testing

Loop boundary
testing

Branch and
condition testingLCSAJ testing

Boundary
interior testing
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Weyuker’s Hypothesis

The adequacy of a coverage criterion
can only be intuitively defined.

Mutation Testing
DeMillo, Lipton, Sayward 1978

Program

And this is the summary of structural 
testing techniques.
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Established by a number of studies 
done by E. Weyuker at AT&T.  “Any 
explicit relationship between coverage 
and error detection would mean that we 
have a fixed distribution of errors over 
all statements and paths, which is 
clearly not the case”.
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A Mutation

class Checker {
    public int compareTo(Object other)
    {
        return 0;
    }
}

1;

not found by AspectJ test suite

Mutation Operators
320 Fault-Based Testing

id operator description constraint

Operand Modifications
crp constant for constant replacement replace constant C1 with constant C2 C1 != C2
scr scalar for constant replacement replace constant C with scalar variable X C != X
acr array for constant replacement replace constant C with array reference A[I] C != A[I]
scr struct for constant replacement replace constant C with struct field S C != S
svr scalar variable replacement replace scalar variable X with a scalar variable Y X != Y
csr constant for scalar variable replacement replace scalar variable X with a constant C X != C
asr array for scalar variable replacement replace scalar variable X with an array reference A[I] X != A[I]
ssr struct for scalar replacement replace scalar variable X with struct field S X != S
vie scalar variable initialization elimination remove initialization of a scalar variable
car constant for array replacement replace array reference A[I] with constant C A[I] != C
sar scalar for array replacement replace array reference A[I] with scalar variable X A[I] != X
cnr comparable array replacement replace array reference with a comparable array reference
sar struct for array reference replacement replace array reference A[I] with a struct field S A[I] != S

Expression Modifications
abs absolute value insertion replace e by abs(e) e < 0
aor arithmetic operator replacement replace arithmetic operator ψ with arithmetic operator φ e1ψe2 != e1φe2
lcr logical connector replacement replace logical connector ψ with logical connector φ e1ψe2 != e1φe2
ror relational operator replacement replace relational operator ψ with relational operator φ e1ψe2 != e1φe2
uoi unary operator insertion insert unary operator
cpr constant for predicate replacement replace predicate with a constant value

Statement Modifications
sdl statement deletion delete a statement
sca switch case replacement replace the label of one case with another
ses end block shift move } one statement earlier and later

Figure 16.2: A sample set of mutation operators for the C language, with associated constraints to select test cases that distinguish
generated mutants from the original program.

Draft version produced August 1, 2006

Pezzé and Young, Software Testing and Analysis

Does it work?

• Generated mutants are similar to real faults
Andrews, Briand, Labiche, ICSE 2005

• Mutation testing is more powerful than 
statement or branch coverage
Walsh, PhD thesis, State University of NY at Binghampton, 1985

• Mutation testing is superior to data flow 
coverage criteria
Frankl, Weiss, Hu, Journal of Systems and Software, 1997
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from Pezze + Young, “Software Testing 
and Analysis”, Chapter 16
If one ever needed a proof that testing is 
a destructive process – here it is
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Bugs in AspectJ

Issues

Efficiency Inspection
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Efficiency

• Test suite must be
re-run for every 
single mutation

• Expensive

Efficiency

How do we make 
mutation testing 

efficient?

Efficiency

• Manipulate byte code directly
rather than recompiling every single mutant

• Focus on few mutation operators
• replace numerical constant C by C±1, or 0
• negate branch condition
• replace arithmetic operator (+ by –, * by /, etc.)

• Use mutant schemata
individual mutants are guarded by run-time conditions

• Use coverage data
only run those tests that actually execute mutated code
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A Mutation

class Checker {
    public int compareTo(Object other)
    {
        return 0;
    }
}

1;

not found by AspectJ test suite
because it is not executed

Efficiency Inspection

Inspection

• A mutation may leave 
program semantics 
unchanged

• These equivalent 
mutants must be 
determined manually

• This task is tedious.

– and since we know itʼs not executed, 
we donʼt even apply this mutation.
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An Equivalent Mutant
public int compareTo(Object other) {
  if (!(other instanceof BcelAdvice)) 
    return 0;
  BcelAdvice o = (BcelAdvice)other;
	 	
  if (kind.getPrecedence() != o.kind.getPrecedence()) {
    if (kind.getPrecedence() > o.kind.getPrecedence()) 
      return +1;
    else
      return -1;
  }
  // More comparisons...
}

+2;

no impact on AspectJ

Frankl’s Observation

We also observed that […]
mutation testing was costly.

 Even for these small subject programs,
 the human effort needed to check a large 

number of mutants for equivalence
 was almost prohibitive.

P. G. Frankl, S. N. Weiss, and C. Hu.
All-uses versus mutation testing: 

An experimental comparison of effectiveness.
 Journal of Systems and Software, 38:235–253, 1997.

Inspection

How do we determine 
equivalent mutants?

To check this, we need to look at 50+ 
places!
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Aiming for Impact

Measuring Impact

• How do we characterize “impact” on 
program execution?

• Idea: Look for changes in 
pre- and postconditions

• Use dynamic invariants to learn these

Dynamic Invariants
pioneered by Mike Ernst’s Daikon

Run

Run

RunRunRunRun
✔ ✘

At f(), x is odd At f(), x = 2

Invariant Property
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public int ex1511(int[] b, int n)
{
    int s = 0;
    int i = 0;
    while (i != n) {
        s = s + b[i];
        i = i + 1;
    }
    return s;
}

Postcondition
b[] = orig(b[])
return == sum(b)

Precondition
n == size(b[])
b != null
n <= 13
n >= 7

Example

• Run with 100 randomly generated arrays 
of length 7–13

Obtaining Invariants

RunRunRunRunRun

Trace

InvariantInvariantInvariantInvariant

✔

get trace

filter invariants

report resultsPostcondition
b[] = orig(b[])
return == sum(b)

Impact on Invariants
public ResultHolder signatureToStringInternal(String signature) {
  switch(signature.charAt(0)) {
  ...
  case 'L': { // Full class name
    // Look for closing `;'
    int index = signature.indexOf(';');
    // Jump to the correct ';'
    if (index != -1 && signature.length() > index + 1 &&
        signature.charAt(index + 1) == '>')
       index = index + 2;
    ...
    return new ResultHolder (signature.substring(1, index));
  }
}

0
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Impact on Invariants
signatureToStringInternal()
mutated method

UnitDeclaration.resolve()
post: target field is now zero

DelegatingOutputStream.write()
pre: upper bound of argument changes

WeaverAdapter.addingTypeMunger()
pre: target field is now non-zero

ReferenceContext.resolve()
post: target field is now non-zero

Impact on Invariants
public ResultHolder signatureToStringInternal(String signature) {
  switch(signature.charAt(0)) {
  ...
  case 'L': { // Full class name
    // Look for closing `;'
    int index = signature.indexOf(';');
    // Jump to the correct ';'
    if (index != -1 && signature.length() > index + 1 &&
        signature.charAt(index + 1) == '>')
       index = index + 2;
    ...
    return new ResultHolder (signature.substring(1, index));
  }
}

0

impacts 40 invariants
but undetected by AspectJ unit tests

Javalanche

• Mutation Testing Framework for Java
12 man-months of implementation effort

• Efficient Mutation Testing
Manipulate byte code directly • Focus on few mutation 
operators • Use mutant schemata • Use coverage data

• Ranks Mutations by Impact
Checks impact on dynamic invariants • Uses efficient 
invariant learner and checker
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Mutation Testing
with Javalanche

Program

Mutation Testing
with Javalanche

Program

1. Learn invariants from test suite

2. Insert invariant checkers into 
code

3. Detect impact of mutations

4. Select mutations with the most 
invariants violated
(= the highest impact)

But does it work?
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Evaluation

1. Are mutations that violate
invariants useful?

2. Are mutations with the
highest impact most useful?

3. Are mutants that violate invariants 
less likely to be equivalent?

Evaluation Subjects
Name Lines of Code #Tests

AspectJ Core
AOP extension to Java

94,902 321

Barbecue
Bar Code Reader

4,837 137

Commons
Helper Utilities

18,782 1,590

Jaxen
XPath Engine

12,449 680

Joda-Time
Date and Time Library

25,861 3,447

JTopas
Parser tools

2,031 128

XStream
XML Object Serialization

14,480 838

Mutations

Name #Mutations %detected

AspectJ Core 47,146 53

Barbecue 17,178 67

Commons 15,125 83

Jaxen 6,712 61

Joda-Time 13,859 79

JTopas 1,533 72

XStream 5,186 92

43
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% detected means covered mutations
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Performance

• Learning invariants is very expensive
22 CPU hours for AspectJ – one-time effort

• Creating checkers is somewhat expensive
10 CPU hours for AspectJ – one-time effort

• Mutation testing is feasible in practice
14 CPU hours for AspectJ, 6 CPU hours for XStream

Results

Evaluation

1. Are mutations that violate
invariants useful?

2. Are mutations with the
highest impact most useful?

3. Are mutants that violate invariants 
less likely to be equivalent?

What is a “useful” mutation?
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Useful Mutations

A technique for generating mutants is useful if
most of the generated mutants are detected:

• less likely to be equivalent
because detectable mutants = non-equivalent mutants

• close to real defects
because the test suite is designed to catch real defects

Mutations we look for

not violating
invariants

violating
invariants

not detected
by test suite

detected
by test suite

– –
? !

Are mutations that violate 
invariants useful?

0

25

50

75

100

AspectJ Barbecue Commons Jaxen Joda-Time JTopas XStream

Non-violating mutants detected Violating mutants detected

Mutations that violate invariants are 
more likely to be detected by actual 
tests – and thus likely to be useful.

All differences are statistically significant according to    testχ2
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Are mutations with the 
highest impact most useful?

0

25

50

75

100

AspectJ Barbecue Commons Jaxen Joda-Time JTopas XStream

Non-violating mutants detected Top 5% violating mutants detected

Mutations that violate several invariants 
are most likely to be detected by actual 

tests – and thus the most useful.

All differences are statistically significant according to    testχ2

Detection Rates
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Are mutants that violate invariants 
less likely to be equivalent?

• Randomly selected non-detected Jaxen 
mutants – 12 violating, 12 non-violating

• Manual inspection: Are mutations equivalent?

• Mutation was proven non-equivalent
iff we could create a detecting test case

• Assessment took 30 minutes per mutation
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Non-Equivalent
Equivalent

Are mutants that violate invariants 
less likely to be equivalent?

Equivalent
2

Non-Equivalent
10

Equivalent
8

Non-Equivalent
4

Violating mutants Non-violating mutants
Difference is statistically significant according to Fisher test

Mutations and tests made public to counter researcher bias

In our sample, mutants that violated 
several invariants were significantly less 

likely to be equivalent.

Evaluation

1. Are mutations that violate
invariants useful?

2. Are mutations with the
highest impact most useful?

3. Are mutants that violate invariants 
less likely to be equivalent?

✔

✔

✔

Efficiency Inspection
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Mid
16 LOC

AspectJ
~94,000 LOC

Future Work

• How effective is mutation testing?
on a large scale – compared to traditional coverage

• Predicting defects
How does test quality impact product quality?

• Alternative impact measures
Coverage • Program spectra • Method sequences

• Adaptive mutation testing
Evolve mutations to have the fittest survive

Conclusion

Factor 6,666 – plus full automation due 
to lack of inspection
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http://www.st.cs.uni-saarland.de/mutation/
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