Andreas Zeller

Reproducing Problems

The First Task

® Once a problem is reported (or exposed
by a test), some programmer must fix it.

® The first task is to reproduce the problem.

Why reproduce?

o Without being able
to reproduce the problem, one cannot
observe it or find any new facts.

° How do you know that
the problem is actually fixed?

A Tough Problem

® Reproducing is one of the toughest
problems in debugging.

® One must

® recreate the environment in which the
problem occurred

® recreate the problem history — the steps
that lead to the problem

Reproducing the
Environment

Where to Chances of
reproduce? Success

-
_

Iterative Reproduction

® Start with your environment

® While the problem is not reproduced,
adapt more and more circumstances from
the user’s environment

® |teration ends when problem is reproduced

® Side effect: Learn about failure-inducing
circumstances

Source: http://

WWW.Ci.newton.ma.

us/MIS/

Network.htm

Srs)

e NP
Millionsgoficonfiglirations

e e

Testing on dozehs of different machines

All needed
| B

Source: http://

—S < www.vmware.com/
products/server/
19 % Il :::; Ma:r:n':s 894.0 M IDDDNDORR0D g S X_S c re e n S [] h t m I

20 % 1000 Other 642.0 M HINNDIOND
System Total 39 % INII0NND System Total 1.5 ¢ IIDINOgAOOO000NAnn

virtual Machines (8)

RAM

urs 31 157.0 M
urs 8 176.0 M

urs 11 260.0 M

& Add virtual Machine

[[|3 [mternet

Reproducing

Execution

® After reproducing the environment, we must

reproduce the execution

® Basic idea: Any execution is determined by

the input (in a general sense)

® Reproducing input — reproducing

execution!

Program Inputs

Randomness Operating System

User Interaction —

Data Debugging Tools

Data

Easy to transfer and replicate
Caveat #1: Get all the data you need
Caveat #2: Get only the data you need

Caveat #3: Privacy issues

Program Inputs

User Interaction —

User Interaction

Input Sources

Recorded Interaction

send_xevents key H @400,100
send_xevents wait 376

send_xevents key T @400,100
send_xevents wait 178

send_xevents key T @400,100
send_xevents wait 214

send_xevents key P @400,101
send_xevents wait 537

send_xevents keydn Shift_L @400,101
send_xevents wait 218

send_xevents key “;” @400,101
send_xevents wait 167

send_xevents keyup Shift_L @400,101
send_xevents wait 1556

send_xevents click 1 @428,287
send_xevents wait 3765

Program Inputs

Communication

General idea: Record and replay
like user interaction

Bad impact on performance

Alternative #1: Only record since last
checkpoint (= reproducible state)

Alternative #2: Only record “last”
transaction

Program Inputs

Randomness

Randomness

® Program behaves different in every run
® Based on random number generator

® Pseudo-random: save seed
(and make it configurable)

® Same applies to time of day

® True random: record + replay sequence

Program Inputs

Operating System

Operating System

® The OS handles entire interaction between
program and environment

® Recording and replaying OS interaction
thus makes entire program run
reproducible

A Password Program

#include <string> $ c++ -0 password password.C
#include <iostream> $./password
using namespace std; Please enter your
password: secret
string secret_password = "secret"; Access granted.
$
int mainQ)
{
string given_password;
cout << "Please enter your password: ";
cin >> given_password;
if (given_password == secret_password)
cout << "Access granted." << endl;
else
cout << "Access denied." << endl;

Traced Interaction

$ c++ -0 password password.C
$ strace ./password 2> LOG
Enter your password: secret
Access granted.

$ cat LOG

write(l, "Please enter your password: ", 28)
read(@, "secret\n", 1024)

write(l, "Access granted.\n", 16)
exit_group(@)

How Tracing

Replaying Traces

Tr E.;’;rgj‘ «—— Trace File

A

Challenges

® Tracing creates lots of data

® Example:Web server with 10 requests/sec
A trace of 10 k/request means 8GB/day

® All of this must be replayed to reproduce
the failure (alternative: checkpoints)

® Huge performance penalty!

XRay + DTrace

ay

e
—
SIS e © + o
Objectalon : Recipes

ME o

CPU Load. s —
o

Ol €

Q=) Uy
Mspector Tie

Cruoad 2318 17,665
. 2518 18.665
23:1819.665
View Optizen 23:18:20.665
Saing = |]23:1821.665
boekote sca 23:1822.665
23:18.23.665
23:18 24,665
23:18.25.665
$

XRay + DTrace

DTrace: Kernel extension for capturing data
System interaction can be monitored
Captured I/O can be replayed at will

Focus on high performance

Program Inputs

«— Schedules

Accessing Passwords

open(”.htpasswd”)
read(...)

Thread A modify(...)
\ write(...)
hegsadswd file
open(”.htpasswd”)
read(...)
modify(...)

write(...)
close(...)

Lost Update

open(”.htpasswd”)
open(”.htpasswd”)
read(...)

read(...)

modify(...) | A’s updates
write(...) get lost!

close(...)
Thread B modify(...)

write(...)
close(...)

Reproducing Schedules

® Thread changes are induced by a scheduler

® |t suffices to record the schedule (i.e. the
moments in time at which thread switches
occur) and to replay it

® Requires deterministic input replay

Constructive Solutions

® Lock resource before writing
® Check resource update time before writing

® ... or any other synchronization mechanism

Program Inputs

Physical Influences

® Static electricity

® Alpha particles (not cosmic rays) | p. .o and

® Quantum effects hard to

reproduce
® Humidity

® Mechanical failures + real bugs

Program Inputs

Debugging Tools

A Heisenbug

® Code fails outside debugger only

int fO {
Janitaiiss
return 1i;
}/ \
In program: In debugger:
returns random value returns 0

Bohr Bug = Repeatable
under well-def’d
conditions
Heisenbug = Changes
when observed
Bohr Bug | Heisenbug Mandelbug = Causes
are complex and
chaotic, appears non-
deterministic, but isn’t
Mandelbug SChI"OdInbug Schroc“nbug = Never
should have worked,
and promptly fails as
38 span one realizes this

More Bugs

Isolating Units

® Capture + replay unit instead of program

® Needs an unit control layer to monitor input

Isolated Units

° Replay only the interaction with

the database.

Record + replay intermediate
data structures rather than the entire
front-end.

Record + replay
communication calls.

A Control Example

class Map {

public:
virtual void add(string key, int value);
virtual void del(string key);

virtual int lookup(string key);
b

® How do we control this?

A Log as a Program

#include "Map.h"
#include <assert>

int main() {
Map map;
map.add("onions", 4);
map.del("truffels™);

assert(map.lookup("onions") == 4);
return 0;

® This is a log file (and also a program)

® How do we get this?

Controlled Map

class ControlledMap: public Map {
public:
typedef Map super;

virtual void add(string key, int value);
virtual void del(string key);
virtual int lookup(string key);

ControlledMap(); // Constructor
olledMap(Q); // Destructor

Logging

void ControlledMap: :add(string key, int value) {
clog << "map.add(\"" << key << "\", "
<< value << ");" << endl;
Map: :add(Ckey, value);
} map.add("onions", 4);

void ControlledMap::del(string key) {
clog << "map.del(\"" << key << "\");
Map: :del(key);

} map.del("truffels");

virtual int ControlledMap: :lookup(string key) {
clog << "assert(map.lookup(\"" << key << "\") == ";
int ret = Map::lookup(key);
clog << ret << ");" << endl;
return ret;

n

<< endl;

assert(map.lookup("onions") == 4);

Logging Fixture

ControlledMap: :ControlledMap()
{
clog << "#include \"Map.h\"" << endl
<< "#include <assert>" << endl
<< "" << endl
<< "int main() {" << endl

n

<< Map map;" << endl;

}

ControlledMap: :~ControlledMap()
{

"

clog << return 0;" << endl;
<< "}" << endl;

More Interaction

® Variables (hard to detect)
® Other units (break dependency if needed)

® Time (record + replay, too)

Mock Objects

® A Mock Object simulates an original object

® |[ts implementation tells how to react on
specific calls (i.e. returning other mock
objects)

Can be combined with recording, too!

Concepts

* Once a problem is tracked, one must
reproduce it in the own environment

* To reproduce a problem...

® reproduce the environment (by adopting
one circumstance after the other)

® reproduce the execution (by controlling
the input of the program or a unit)

Program Inputs

Randomness Operating System

\
Communication\ U J’ «—Schedules

Prosra
ey .d_t!ﬁﬁy’

/

——Physics

Debugging Tools

