
Andreas Zeller

Reproducing Problems

2

The First Task

• Once a problem is reported (or exposed
by a test), some programmer must fix it.

• The first task is to reproduce the problem.

3

Why reproduce?

• Observing the problem. Without being able
to reproduce the problem, one cannot
observe it or find any new facts.

• Check for success. How do you know that
the problem is actually fixed?

1

2

3

4

A Tough Problem

• Reproducing is one of the toughest
problems in debugging.

• One must

• recreate the environment in which the
problem occurred

• recreate the problem history – the steps
that lead to the problem

5

Where to
reproduce?

Chances of
Success Costs

User + --

Developer o +

Reproducing the
Environment

6

Iterative Reproduction
• Start with your environment

• While the problem is not reproduced,
adapt more and more circumstances from
the user’s environment

• Iteration ends when problem is reproduced
(or when environments are “identical”)

• Side effect: Learn about failure-inducing
circumstances

4

5

6

7

Setting up
the Environment

• Millions of configurations

• Testing on dozens of different machines

• All needed to find & reproduce problems

8

Virtual Machines

9

Reproducing
Execution

• After reproducing the environment, we must
reproduce the execution

• Basic idea: Any execution is determined by
the input (in a general sense)

• Reproducing input → reproducing
execution!

Source: http://
www.ci.newton.ma.
us/MIS/
Network.htm

7

Source: http://
www.vmware.com/
products/server/
gsx_screens.html

8

9

10

Program Inputs

Program

Data

User Interaction

Communication

Randomness Operating System

Schedules

Physics

Debugging Tools

11

Program Inputs

Program

Data

12

Data

• Easy to transfer and replicate

• Caveat #1: Get all the data you need

• Caveat #2: Get only the data you need

• Caveat #3: Privacy issues

10

11

12

13

Program Inputs

Program

Data

User Interaction

14

User Interaction

Input Sources

Record Replay

15

Recorded Interaction
send_xevents key H @400,100
send_xevents wait 376
send_xevents key T @400,100
send_xevents wait 178
send_xevents key T @400,100
send_xevents wait 214
send_xevents key P @400,101
send_xevents wait 537
send_xevents keydn Shift_L @400,101
send_xevents wait 218
send_xevents key “;” @400,101
send_xevents wait 167
send_xevents keyup Shift_L @400,101
send_xevents wait 1556
send_xevents click 1 @428,287
send_xevents wait 3765

13

14

15

16

Program Inputs

Program

Data

User Interaction

Communication

17

Communication

• General idea: Record and replay
like user interaction

• Bad impact on performance

• Alternative #1: Only record since last
checkpoint (= reproducible state)

• Alternative #2: Only record “last”
transaction

18

Program Inputs

Program

Data

User Interaction

Communication

Randomness

16

17

18

19

Randomness

• Program behaves different in every run

• Based on random number generator

• Pseudo-random: save seed
(and make it configurable)

• Same applies to time of day

• True random: record + replay sequence

20

Program Inputs

Program

Data

User Interaction

Communication

Randomness Operating System

21

Operating System

• The OS handles entire interaction between
program and environment

• Recording and replaying OS interaction
thus makes entire program run
reproducible

19

20

21

22

#include <string>
#include <iostream>
using namespace std;

string secret_password = "secret";

int main()
{
 string given_password;
 cout << "Please enter your password: ";
 cin >> given_password;
 if (given_password == secret_password)
 cout << "Access granted." << endl;
 else
 cout << "Access denied." << endl;
}

A Password Program
$ c++ -o password password.C
$./password
Please enter your
password:
Access granted.
$

secret

23

Traced Interaction
$ c++ -o password password.C
$ strace ./password 2> LOG
Enter your password:
Access granted.
$

secret

...
write(1, "Please enter your password: ", 28) = 28
read(0, "secret\n", 1024) = 7
write(1, "Access granted.\n", 16) = 16
exit_group(0) = ?

cat LOG

24

How Tracing works

Program Kernel

Tracer

22

23

24

25

Replaying Traces

Program

Tracer Trace File

Kernel

26

Challenges

• Tracing creates lots of data

• Example: Web server with 10 requests/sec
A trace of 10 k/request means 8GB/day

• All of this must be replayed to reproduce
the failure (alternative: checkpoints)

• Huge performance penalty!

XRay + DTrace

27

25

26

27

28

XRay + DTrace

• DTrace: Kernel extension for capturing data

• System interaction can be monitored

• Captured I/O can be replayed at will

• Focus on high performance

29

Program Inputs

Program

Data

User Interaction

Communication

Randomness Operating System

Schedules

30

Accessing Passwords
open(”.htpasswd”)
read(…)
modify(…)
write(…)
close(…)
open(”.htpasswd”)
read(…)
modify(…)
write(…)
close(…)

Thread A

Thread B

.htpasswd file

28

29

30

31

Lost Update
open(”.htpasswd”)

read(…)
modify(…)
write(…)
close(…)

open(”.htpasswd”)
read(…)

modify(…)
write(…)
close(…)

Thread A

Thread B

A’s updates
get lost!

32

Reproducing Schedules

• Thread changes are induced by a scheduler

• It suffices to record the schedule (i.e. the
moments in time at which thread switches
occur) and to replay it

• Requires deterministic input replay

33

Constructive Solutions

• Lock resource before writing

• Check resource update time before writing

• … or any other synchronization mechanism

31

32

33

34

Program Inputs

Program

Data

User Interaction

Communication

Randomness Operating System

Schedules

Physics

35

Physical Influences

• Static electricity

• Alpha particles (not cosmic rays)

• Quantum effects

• Humidity

• Mechanical failures + real bugs

Rare and
hard to
reproduce

36

Program Inputs

Program

Data

User Interaction

Communication

Randomness Operating System

Schedules

Physics

Debugging Tools

34

35

36

37

A Heisenbug
• Code fails outside debugger only

int f() {
 int i;
 return i;
}

In program:
returns random value

In debugger:
returns 0

38

More Bugs

Bohr Bug Heisenbug

Mandelbug Schrödinbug

39

Isolating Units

• Capture + replay unit instead of program

• Needs an unit control layer to monitor input

Unit control layer

37

Bohr Bug = Repeatable
under well-def’d
conditions
Heisenbug = Changes
when observed
Mandelbug = Causes
are complex and
chaotic, appears non-
deterministic, but isn’t
Schrödinbug = Never
should have worked,
and promptly fails as
soon one realizes this38

39

40

Isolated Units

• Databases. Replay only the interaction with
the database.

• Compilers. Record + replay intermediate
data structures rather than the entire
front-end.

• Networking. Record + replay
communication calls.

41

A Control Example
class Map {
public:
 virtual void add(string key, int value);
 virtual void del(string key);
 virtual int lookup(string key);
};

• How do we control this?

42

A Log as a Program
#include "Map.h"
#include <assert>

int main() {
 Map map;
 map.add("onions", 4);
 map.del("truffels");
 assert(map.lookup("onions") == 4);
 return 0;
}

• This is a log file (and also a program)

• How do we get this?

40

41

42

43

Controlled Map
class ControlledMap: public Map {
public:
 typedef Map super;

 virtual void add(string key, int value);
 virtual void del(string key);
 virtual int lookup(string key);

 ControlledMap(); // Constructor
 ~ControlledMap(); // Destructor
};

44

Logging
void ControlledMap::add(string key, int value) {
 clog << "map.add(\"" << key << "\", "
 << value << ");" << endl;
 Map::add(key, value);
}
void ControlledMap::del(string key) {
 clog << "map.del(\"" << key << "\");" << endl;
 Map::del(key);
}

virtual int ControlledMap::lookup(string key) {
 clog << "assert(map.lookup(\"" << key << "\") == ";
 int ret = Map::lookup(key);
 clog << ret << ");" << endl;
 return ret;
}

map.add("onions", 4);

map.del("truffels");

assert(map.lookup("onions") == 4);

45

Logging Fixture
ControlledMap::ControlledMap()
{
 clog << "#include \"Map.h\"" << endl
 << "#include <assert>" << endl
 << "" << endl
 << "int main() {" << endl
 << " Map map;" << endl;
}

ControlledMap::~ControlledMap()
{
 clog << " return 0;" << endl;
 << "}" << endl;
}

43

44

45

46

More Interaction

• Variables (hard to detect)

• Other units (break dependency if needed)

• Time (record + replay, too)

Mock Objects

• A Mock Object simulates an original object

• Its implementation tells how to react on
specific calls (i.e. returning other mock
objects)

• Can be combined with recording, too!

47

48

Concepts
Once a problem is tracked, one must
reproduce it in the own environment

To reproduce a problem…

• reproduce the environment (by adopting
one circumstance after the other)

• reproduce the execution (by controlling
the input of the program or a unit)

46

47

48

49

Program Inputs

Program

Data

User Interaction

Communication

Randomness Operating System

Schedules

Physics

Debugging Tools

50

This work is licensed under the Creative Commons Attribution License. To view a copy of this license, visit

http://creativecommons.org/licenses/by/1.0

or send a letter to Creative Commons, 559 Abbott Way, Stanford, California 94305, USA.

49

50

