
Project 3
Detecting Anomalies

Andrzej Wasylkowski

Grading: Before

50%

15%

15%

10%

10%

Project 1
Project 2
Project 3
Project 4
Oral Exam

Grading: Now

50%

15%

10%

15%

10%

Project 1
Project 2
Project 3
Project 4
Oral Exam

Your Task

• Collect DIDUCE-like invariants

• Report invariants’ violations

• Use invariants’ violations to find the reason
for the failure in XMLProc

• Implement extensions

Tracing Program Run

1. Set the tracing function

• Trace all lines in the program

• Ignore lines in the external libraries

2. Invoke the program to be analyzed

3. Output invariants’ violations

Collecting Invariants (1)

• Invariants associated with variables and
source code locations

• “x is always between 2 and 4 in file
tooldir/main.py at line 8”

• Invariants for booleans, integers, longs, and
instances of classes

• Convert to integers; see the handout

Collecting Invariants (2)

• Use the DIDUCE-like approach

• V and M

• Update invariants for all local variables
at every executed line

• Report every invariant relaxation

Input & Output

• Your tool must be called pyduce.py and be
runnable as follows:

• Output invariants’ relaxations
$ python pyduce.py PROGRAM [ARGS]

Invariant violated at xmlproc/xml/parsers/xmlproc/xmlutils.py:650
 Old invariant: sum == 0
 New invariant: 0 <= sum <= 64
Invariant violated at xmlproc/xml/parsers/xmlproc/xmlutils.py:646
 Old invariant: 48 <= char <= 52
 New invariant: 32 <= char <= 117

Extension 1:
Handling Call Sites

• Collect invariants for callees’ arguments

• “The argument x is always between 10
and 15 at call to foo in file tooldir/
main.py at line 85”

• Tracing function gives you callee’s location

• Your job: find the call site

Extension 2:
Filtering

• Invariants have confidence

• Relaxing the invariant causes the
confidence to drop

• Output invariants’ violations with
sufficiently large confidence drop

• What threshold do you find best?

• See the paper about DIDUCE for details

Extension 2:
Output

• Output the confidence drop
Invariant violated at xmlproc/xml/parsers/xmlproc/xmlutils.py:622
Violation confidence drop: 1
 Old invariant: pos == 3
 New invariant: 3 <= pos <= 55
Invariant violated at xmlproc/xml/parsers/xmlproc/xmlutils.py:623
Violation confidence drop: 3
 Old invariant: start == 2
 New invariant: 2 <= start <= 54

Test Data

• Apply your tool to the XMLProc parser

• Do invariant violations help discover the
reason for the failure on demo/urls.xml?

• How effective is filtering based on
confidence?

• What threshold value do you find best?

Project Grading

20%

20% 60%

Base Version
Invariants at Call Sites
Filtering Invariants’ Violations

Submission

• 2009-01-09 23:59

• Send .zip archive to:
wasylkowski@.cs.uni-saarland.de

• Subject should start with [Project 3]

• Input and output exactly as prescribed

• Source code should be documented

This work is licensed under the Creative Commons Attribution License. To view a copy of this license, visit

http://creativecommons.org/licenses/by/3.0/

or send a letter to Creative Commons, 559 Abbott Way, Stanford, California 94305, USA.

